XAFS Studies of Nickel and Sulfur Speciation in Residual Oil Fly-Ash Particulate Matters (ROFA PM)

Sidhartha Pattanaik, $^{\dagger, \, \, \, \, \, \, \, \, \, \, \, }$ Frank E. Huggins, $^{\, \, \, \, \, \, \, }$ Gerald P. Huffman, $^{\, \, \, \, \, \, \, \, }$ William P. Linak, $^{\, \, \, \, \, \, \, \, }$ and C. Andrew Miller $^{\, \, \, \, \, \, \, \, \, }$

[†]Central Electrochemical Research Institute, Karaikudi – 630 006, Tamilnadu, INDIA

[‡]CFFS/CME, University of Kentucky, 533 S. Limestone St., Lexington, KY 40506-0043, USA

§NRMRI, Environmental Protection Agency, Research Triangle Park, NC-27711, USA

Summary:

No of Pages: 5

No. of Figures: 8

No of Tables: 1

Figure S1. S K-edge XANES spectrum of HS6F (000) and the calculated fit (—), deconvoluted individual components (—) are shown underneath the fit.

Figure S2. Normalized Ni K-edge XANES spectra of BL6F (—) and NiSO₄.nH₂O (----).

Figure S3. Ni K-edge EXAFS of HS6C residue, Ni_3S_2 , and NiS_2 .

Figure S4. Back-transformed 1^{st} shell Ni-O EXAFS (—) and calculated pattern (---) based on NiO_N model, where the coordination number N was subjected to variation.

Figure S5. Back-transformed 1^{st} shell Ni-O EXAFS (—) and calculated pattern (---) based on NiO₆ model, where the coordination number was fixed at six.

Table S1. Ni coordination in ROFA PM_{2.5+}: distance (d), Debye-Waller factor (σ^2), coordination number (N) and energy shift (ΔE_o).

Sample	shell	d/Å	$\sigma^2/\text{Å}^2$	N	$\Delta E_o/eV$	$\Delta k/\text{Å}^{-1}$	R
NiSO ₄ .nH ₂ O	Ni-O	2.05	0.007	6	-3.7	2.0-12.0	9
HS6C	Ni-O	2.06	0.007	6	-1.9	2.0-12.0	11.5
BL5C	Ni-O	2.06	0.008	6	-1.5	2.0-12.0	12.2
MS6C	Ni-O	2.06	0.009	6	-1.8	2.0-12.0	15.1
LS6C	Ni-O	2.07	0.011	6	-1.1	2.0-12.0	20.1

 $S_o^2 = 0.9$, R - residual factor (in %).

Figure S6. RSF of all four $PM_{2.5+}$ samples from FTB compared with that of $NiSO_4.nH_2O$

Figure S7. Back-transformed Ni-(Ni/Fe) RSF peak of LS6F compared with that of NiFe₂O₄.

Figure S8. Backscattering amplitudes of Fe, Co, and Ni.