Supporting Information for

Rationally Designed Micropores within a Metal-Organic Framework for Selective Sorption of Gas Molecules

Banglin Chen, ${ }^{*}{ }^{\dagger}$ Shengqian Ma, ${ }^{\dagger}$ Fatima Zapata, ${ }^{\dagger}$ Frank R. Fronczek, ${ }^{\|}$Emil B. Lobkovsky, ${ }^{\perp}$ and Hong-Cai Zhou ${ }^{\ddagger}$

${ }^{\dagger}$ Department of Chemistry, University of Texas-Pan American, Edinburg, TX 785412999, USA.Email: banglin@utpa.edu
${ }^{\ddagger}$ Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
|| Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
${ }^{\perp}$ Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301

Single-crystal X-ray Crystallographic data: Crystal data for MOF 1: $\mathrm{Cu}(\mathrm{FMA})(\mathrm{Pyz})_{0.5}$, $\mathrm{T}=110 \mathrm{~K}$, monoclinic, space group $\mathrm{C} 2, a=9.7192(19), b=11.769(2), c=7.2656(15) \AA$, $\beta=119.02(3)^{\circ}, \mathrm{V}=726.8(3) \AA^{3}, \mathrm{Z}=4, d_{\text {calc }}=1.989 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mu\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)=2.973 \mathrm{~mm}^{-1}$, $2 \theta_{\max }=51.60^{\circ}$. Total number of reflections $1214\left(R_{\mathrm{int}}=0.0996\right), R_{1}=0.0528(1098$ reflections with $I>2 \sigma(I)$, wR2 (all data) $=0.1382$, GOF $=1.015$ and 55 parameters. Crystal data for MOF 2: $\mathrm{Cu}_{2}(\mathrm{FMA})_{2}\left(4,4^{\prime}-\mathrm{Bipy}\right) \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.5}, \mathrm{~T}=173 \mathrm{~K}$, orthorhombic, space group Pnna, $a=23.275(5), b=12.580(3), c=14.073(3) \AA, \mathrm{V}=4120.6(14) \AA^{3}, \mathrm{Z}=8$, $d_{\text {calc }}=1.681 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mu\left(\right.$ Mo $\left.\mathrm{K}_{\alpha}\right)=2.115 \mathrm{~mm}^{-1}, 2 \theta_{\max }=65.16^{\circ}$. Total number of reflections $7484\left(R_{\text {int }}=0.0641\right), R_{1}=0.0370$ (3835 reflections with $\left.I>2 \sigma(I)\right)$, wR2 (all data) $=0.1120$, GOF $=1.021$ and 345 parameters. Crystal data for MOF 3: $\mathrm{Cu}_{2}(\mathrm{FMA})_{2}\left(4,4^{\prime}-\mathrm{Bpe}\right) \cdot\left(\mathrm{H}_{2} \mathrm{O}\right), \mathrm{T}=110 \mathrm{~K}$, monoclinic, space group $\mathrm{C} 2 / \mathrm{c}, a=16.360(3), b$ $=10.753$ (2), $c=13.595$ (2) $\AA, \beta=105.302(11)^{\circ}, \mathrm{V}=2306.8(7) \AA^{3}, \mathrm{Z}=4, d_{\text {calc }}=1.599$ $\mathrm{g} / \mathrm{cm}^{3}$ and $\mu\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)=1.896 \mathrm{~mm}^{-1}, 2 \theta_{\max }=61.60^{\circ}$. Total number of reflections $3614\left(R_{\text {int }}\right.$
$=0.049), R_{1}=0.044(2327$ reflections with $I>2 \sigma(I))$, wR2 $($ all data $)=0.092, \mathrm{GOF}=$ 1.014 and 154 parameters. Crystal data for MOF 3a: $\mathrm{Cu}(\mathrm{FMA})\left(4,4^{\prime} \text { - }{ }^{\prime} \text { - }{ }^{\prime}\right)_{0.5}, \mathrm{~T}=110 \mathrm{~K}$, monoclinic, space group $\mathrm{C} 2 / \mathrm{m}, a=13.4864(9), b=11.1000(8), c=9.0925(7) \AA, \beta=$ $120.335(3)^{\circ}, \mathrm{V}=1174.78(15)(3) \AA^{3}, \mathrm{Z}=4, \mathrm{Z}=4, d_{\text {calc }}=1.519 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mu\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)=$ $1.855 \mathrm{~mm}^{-1}, 2 \theta_{\max }=68.58^{\circ}$. Total number of independent reflections $2404\left(R_{\mathrm{int}}=\right.$ $0.0352), R_{1}=0.0324, \mathrm{wR} 2($ all data $)=0.0861, \mathrm{GOF}=1.077$ and 113 parameters. Unit cells: MOF 3' (re-hydrated MOF 3 from MOF 3a), $a=16.348(3), b=10.900(2), c=$ $13.515(3) \AA, \beta=105.226(12)^{\circ}, V=2323.7(8) \AA^{3}(195 \mathrm{~K}) ; a=16.353(3), b=11.062(3)$, $c=13.446(2) \AA, \beta=104.625(11)^{\circ}, \mathrm{V}=2353.5(8) \AA^{3}(297 \mathrm{~K}) . \operatorname{MOF} 3 \mathrm{a}, a=13.4864(9), b$ $=11.1000(8), c=9.0925(7) \AA, \beta=120.335(3)^{\circ}, \mathrm{V}=1174.78(15)(3) \AA^{3}(195 \mathrm{~K})$.

Figure S1. Crystal structure of MOF 2 showing pore cavities of about $3.6 \AA$ interconnected by small pore window of about $1.4 \times 1.8 \AA$, viewed along $a(\mathrm{a}), b$ (b) and c (c) axis, respectively.

Figure S2. Crystal structure of MOF $\mathbf{3}$ showing pore cavities of about $3.6 \AA$ interconnected by small pore window of about $2.0 \times 3.2 \AA$, viewed along $b(\mathrm{a}), c(\mathrm{~b})$ and a (c) axis, respectively.

Figure S3. TGA plot of MOF 1

Figure S4. Powder X-ray diffraction (PXRD) patterns of simulated (black) and assynthesized MOF 1 (red).

Figure S5. TGA plot of MOF 2

Figure S6. Powder X-ray diffraction (PXRD) patterns of simulated (black) and assynthesized MOF 2 (red).

Figure S7. TGA plot of MOF 3

Figure S8. Powder X-ray diffraction (PXRD) patterns of (a) simulated MOF 3, (b) simulated MOF 3a, (c) dehydrated MOF 3 (3a) and (d) regenerated MOF 3 (the unit cells of simulated $\mathbf{3}$ and $\mathbf{3 a}$ are based on those at room temperature and 195 K , respectively).

