Electrochemical Generation of Cationic Pd Catalysts and Pd/TEMPO Double-Mediatory Electrooxidative Wacker-type Reactions

Koichi Mitsudo,* Takashi Kaide, Eriko Nakamoto, Kenta Yoshida, and Hideo Tanaka*

Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan

1. General

¹H and ¹³C NMR spectra were recorded on Varian GEMINI 200 (¹H 200 MHz, ¹³C 50 MHz) spectrometer in CD₃NO₂ or CDCl₃ using TMS or residual solvent as internal standard. IR spectra were recorded on a JASCO FT/IR-4100 spectrophotometer. Unless otherwise noted, all reactions were performed under air. Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. Dried acetonitrile (CH₃CN) over CaH₂ was used in the synthesis of palladium complexes. Unless otherwise noted, all reactions were performed under air.

2. General Procedure for Electrochemical Preparation of Cationic Palladium Complex

The anodic oxidation was carried out in an H-type divided cell (glass filter) equipped with two platinum electrodes $(1.0 \times 1.5 \text{ cm}^2)$. In the anodic chamber was placed a solution of Pd(OAc)₂ (22 mg, 0.1 mmol) in 0.2 M Bu₄NBF₄/CH₃CN (5.0 mL). In the cathodic chamber was placed 0.2 M Bu₄NBF₄/CH₃CN (5.0 mL). Under argon, the constant current electrolysis (10 mA) was carried out at room temperature with magnetic stirring until 3.0 F/mol of electricity was passed. After the electrolysis, the anodic solution was poured into dry Et₂O (10 mL). The resulting pale yellow precipitate was washed with dry Et₂O and dried under reduced pressure to afford [Pd(CH₃CN)₄][BF₄]₂ **1a** (26 mg, 58%).

[**Pd**(**CH**₃**CN**)₄][**BF**₄]₂ (**1a**):¹ ¹H NMR (200 MHz, CD₃NO₂) δ 2.66 (s, 12H); IR (KBr) 2359, 2342, 1084 cm⁻¹. Anal. Calcd for $C_8H_{12}B_2F_8N_4Pd$: C, 21.63; H, 2.72; N, 12.61. Found: C, 21.01; H, 2.76; N, 12.02.

[Pd(CH₃CN)₄][PF₆]₂ (1b):^{2 1}H NMR (200 MHz, CD₃NO₂) δ 2.66 (s, 12H). IR (KBr) 2358, 2335, 2359 cm⁻¹. Anal. Calcd for C₈H₁₂F₁₂N₄P₂Pd: C, 17.14; H, 2.16; N, 9.99. Found: C, 18.09; H, 2.64; N, 9.94.

 $[Pd(CH_3CN)_4][ClO_4]_2$ (1c): ¹H NMR (200 MHz, CD₃NO₂) δ 2.67 (s, 12H); IR (KBr) 2361, 2334, 1143, 1109, 1089 cm⁻¹.

⁽¹⁾ Yuan, J.-C.; Lu, S.-J. Organometallics 2001, 20, 2697–2703.

⁽²⁾ Sommer, R. D.; Rheingold, A. L.; Goshe, A. J.; Bosnich, B.; J. Am. Chem. Soc. 2001, 123, 3940–3952.

3. Typical Procedure for Pd/TEMPO Double-Mediatory Electrooxidative Wacker-type Reaction

The anodic oxidation was carried out in an H-type divided cell equipped with two platinum electrodes $(1.0 \times 1.5 \text{ cm}^2)$. In the anodic chamber were placed 1-dodecene **2a** (85 mg, 0.5 mmol), Pd(OAc)₂ (12 mg, 0.05 mmol), and TEMPO (22 mg, 0.14 mmol) in 0.05 M NaClO₄ solution of CH₃CN/H₂O (8.75/1.25 mL). In the cathodic chamber was placed 0.05 M NaClO₄ solution of CH₃CN/H₂O (8.75/1.25 mL). The constant current electrolysis (5 mA) was carried out at room temperature with magnetic stirring until 3.0 F/mol of electricity was passed. To the resulting mixture was added aq sat. NaCl (5 mL) and extracted with EtOAc (3 × 5 mL). The combined organic phase was washed with aq sat. NaCl (10 mL) and dried over Na₂SO₄. Removal of solvent under reduced pressure and subsequent column chromatography on silica gel afforded dodecan-2-one **3a** (76 mg, 82%) as colorless liquid.

Dodecan-2-one (**3a**):³ Colorless liquid; ¹H NMR (200 MHz, CDCl₃) δ 0.88 (t, *J* = 6.5 Hz, 3H), 1.20–1.38 (m, 14H), 1.50–1.66 (m, 2H), 2.14 (s, 3H), 2.42 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 14.1, 22.7, 23.9, 29.2, 29.3, 29.40, 29.48, 29.55, 29.8, 31.9, 43.8, 209.2; IR (neat) 2925, 2854, 1718, 1466, 1411, 1359, 1162 cm⁻¹.

Decan-2-one (**3b**):⁴ Colorless liquid; ¹H NMR (200 MHz, CDCl₃) δ 0.88 (t, J = 6.6 Hz, 3H), 1.20–1.36 (m, 10H), 1.50–1.64 (m, 2H), 2.14 (s, 3H), 2.42 (t, J = 7.4 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 14.1, 22.6, 23.9, 29.1, 29.2, 29.4, 29.8, 31.8, 43.8, 209.2; IR (neat) 2928, 2855, 1715, 1465, 1412, 1360, 1163 cm⁻¹.

Undecan-2-one (**3c**):⁵ Colorless liquid; ¹H NMR (200 MHz, CDCl₃) δ 0.88 (t, *J* = 6.4 Hz, 3H), 1.20–1.38 (m, 12H), 1.50–1.64 (m, 2H), 2.14 (s, 3H), 2.42 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 14.0, 22.6, 23.8, 29.1, 29.2, 29.4, 29.7, 31.8, 43.7, 209.1; IR (neat) 2926, 2854, 1716, 1466, 1411, 1359, 1162 cm⁻¹.

Tetradodecan-2-one (3d): White solids; ¹H NMR (200 MHz, CDCl₃) δ 0.88 (t, J = 6.5 Hz, 3H), 1.20–1.36 (m, 18H), 1.50–1.64 (m, 2H), 2.13 (s, 3H), 2.42 (t, J = 7.4 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 14.1, 22.7, 23.9, 29.2, 29.3, 29.4, 29.5, 29.6, 29.8, 31.9, 43.8, 209.1; IR (KBr) 2917, 2849, 1712, 1464, 1414, 1376, 1168 cm⁻¹.

Methyl 10-oxoundecanoate (3e):⁶ Colorless liquid; ¹H NMR (200 MHz, CDCl₃) δ 1.24–1.34 (m, 8H), 1.50–1.66 (m, 4H), 2.13 (s, 3H), 2.30 (t, *J* = 7.5 Hz, 2H), 2.42 (t, *J* = 7.4 Hz, 2H), 3.67 (s, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 23.8, 24.9, 29.0, 29.1, 29.8, 34.0, 43.7, 51.4, 174.1, 209.1; IR (neat) 2931, 2856, 1715, 1437, 1361, 1171 cm⁻¹.

4-Phenylbutan-2-one (3f):⁵ Colorless liquid; ¹H NMR (200 MHz, CDCl₃) δ 2.15 (s, 3H), 2.72–2.94 (m, 4H), 7.16–7.32 (m, 5H); ¹³C NMR (50 MHz, CDCl₃) δ 29.7, 30.0, 45.1, 126.0, 128.1, 128.3, 140.8,

⁽³⁾ Tokuyasu, T.; Kunikawa, S.; Masuyama, A.; Nojima, M. Org. Lett. 2002, 4, 3595–3598.

⁽⁴⁾ Ragagnin, G.; Betzemeier, B.; Quici, S.; Knochel, P. Tetrahedron 2002, 58, 3985–3991.

⁽⁵⁾ Gerard, J.; Hevesi, L. Tetrahedron 2004, 60, 367-381.

⁽⁶⁾ Schultz, S.; Toft, S., Tetrahedron 1993, 49, 6805–6820.

207.7; IR (KBr) 3062, 3028, 2925, 1717, 1603, 1496, 1453, 1409, 1358, 1162 cm⁻¹.

10-Oxoundecanal (**3g**):⁷ Colorless liquid; ¹H NMR (200 MHz, CDCl₃) δ 1.24–1.36 (m, 8H), 1.50–1.68 (m, 4H), 2.13 (s, 3H), 2.42 (t, *J* = 7.4 Hz, 4H), 9.76 (s, 1H); ¹³C NMR (50 MHz, CDCl₃) δ 22.0, 23.7, 29.0, 29.1, 29.8, 43.7, 43.8, 202.7, 209.1; IR (KBr) 2930, 2856, 2720, 1717, 1464, 1411, 1361, 1166 cm⁻¹.

4-Benzyloxybutan-2-one (3h):⁸ Colorless liquid; ¹H NMR (200 MHz, CDCl₃) δ 2.18 (s, 3H), 2.72 (t, J = 6.3 Hz, 2H), 3.74 (t, J = 6.3 Hz, 2H), 4.51 (s, 2H), 7.29–7.37 (m, 5H); ¹³C NMR (50 MHz, CDCl₃) δ 30.4, 43.7, 65.1, 73.1, 127.5, 128.2, 137.9, 207.0; IR (neat) 3063, 3031, 2867, 1715, 1496, 1421, 1364, 1233, 1171, 1105 cm⁻¹.

4. Electrooxidation of Palladium Acetate in the Presence of TEMPO

The anodic oxidation was carried out in an H-type divided cell (glass filter) equipped with two platinum electrodes $(1.5 \times 2.0 \text{ cm}^2)$. In the anodic chamber was placed a solution of Pd(OAc)₂ (225 mg, 1.0 mmol) and TEMPO (469 mg, 3.0 mmol) in 0.1 M Bu₄NBF₄/CH₃CN (15 mL). In the cathodic chamber was placed 0.1 M Bu₄NBF₄/CH₃CN (15 mL). Under argon, the constant current electrolysis (10 mA) was carried out at room temperature with magnetic stirring until 2.4 F/mol of electricity was passed. After the electrolysis, to the combined solution of the anodic and cathodic chambers was added dry Et₂O (30 mL). The resulting pale yellow precipitate was washed with dry Et₂O and dried under reduced pressure to afford [Pd(CH₃CN)₄(tempo)][BF₄] (237 mg, 46%). IR (KBr) 3443, 2962, 2188, 1636, 1417 cm⁻¹. Anal. Calcd for C₁₇H₃₀BF₄N₅OPd: C, 39.75; H, 5.89; N, 13.63. Found: C, 39.32; H, 5.54; N, 13.66.

⁽⁷⁾ McMurry, J. E.; Silvestri, M. G.; Fleming, M. P.; Hoz, T.; Grayston, M. W. J. Org. Chem. **1978**, 43, 3249–3255. (8) Wabnitz, T. C.; Spencer, J. B. Org. Lett. **2003**, 5, 2141–2144.