Catalytic Conjugate Addition of Allyl Groups to Styryl-Activated Enones

Joshua D. Sieber, Shubin Liu ${ }^{1}$, and James P. Morken ${ }^{*}$
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467
${ }^{1}$ Scientific Computing Center, University of North Carolina, Chapel Hill, NC 27599

Supplementary Material

General. Melting points were determined using a Mel-Temp II melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DRX 300 or 400 MHz spectrometers or a Gemini-400 (400 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: 7.24 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{h}=$ hextet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), and coupling constants (Hz). ${ }^{13} \mathrm{C}$ NMR was recorded using a Bruker $400 \mathrm{MHz}(100 \mathrm{MHz})$ instument, a Gemini-400 (100 MHz) instrument, or a Gemini-500 (125 MHz) instrument with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent as the internal standard (CDCl_{3} : 77.0 ppm). Low-resolution mass spectrometry was performed by the University of North Carolina, Department of Chemistry Mass Spectrometry Facility. Infrared (IR) spectra were obtained on a Nicolet 560 Magna-FTIR.

Liquid chromatography was performed using forced flow (flash chromatography) on silica gel ($\mathrm{SiO}_{2}, 40-63$ $\mu \mathrm{m})$ purchased from SiliCycle. Thin layer chromatography was performed on $250 \mu \mathrm{~m}$ silica gel plates from EMD Chemicals Inc. Visualization was achieved using UV light, phosphomolybdic acid in ethanol, or potassium permanganate in water, each followed by heating.

Analytical supercritical fluid chromatography (SFC) was performed on a Berger Instruments supercritical chromatograph equipped with an Alcott autosampler and a Knauer UV detector.

All reactions were conducted in oven or flame dried glassware under an inert atmosphere of nitrogen or argon. Anhydrous THF, used in reactions that were prepared in a dry-box, was purchased from Aldrich Chemical Company. For all other reactions prepared outside of a dry-box, THF that was freshly distilled from Na metal and benzophenone was used. Tris(dibenzylideneacetone)dipalladium, Bis(1,5-cyclooctadiene)nickel, and tricyclohexylphosphine were purchased from Strem Chemical Company. Allylboronic acid pinacol ester was purchased from Aldrich Chemical Company and distilled through a 6 inch Vigreux column $\left(58-62{ }^{\circ} \mathrm{C}\right.$ at 20 torr) and stored in the freezer under Ar. The styryl-activated substrates were synthesized by addition of the desired vinyl lithium reagent, prepared by Li-halogen exchange of the corresponding vinyl iodide or bromide, to N-methoxy- N-methylcinnamide at low temperature and is described below. N-Methoxy- N-methylcinnamide was synthesized according to the literature (Hiyama, T.; Reddy, G. B.; Minami, T.; Hanamoto, T. Bull. Chem. Soc. Jpn. 1995, 68, 350.). 1-Iododheptene was synthesized from 1-heptyne via hydroalumination with DIBAL followed by iodination (Stille, J. K.; Simpson, J. H. J. Am. Chem. Soc. 1987, 109, 2138. Trost, B. M.; Rudd, M. T. Org. Lett. 2003, 5, 4599.). 2-Iodovinylcyclohexane and 1-iodo-3,3-dimethyl-1-butene were synthesized via hydroboration of cyclohexylacetylene or t-butylacetylene, respectively, followed by iodination (Brown, H. C.; Hamaoka, T. Ravindran, N.; Subrahmanyam, C.; Somayaji, V.; Bhat, N. G. J. Org. Chem. 1989, 54, 6075. Gagnon, D.; Lauzon, S.; Godbout, C.; Spino, C. Org. Lett. 2005, 7, 4769.). Vinyl iodides bearing pendant TBSprotected alcohols were synthesized via hydrozirconation of the TBS-protected propargyl or homo propargyl alcohol with the Schwartz reagent, followed by iodination (Germain, J.; Deslongchamps, P. J. Org. Chem. 2002, 67, 5269.). Vinyl bromides were purchased from Aldrich Chemical Company and used without further
purification. All other reagents were purchased from either Fisher or Aldrich Chemical Companies and used directly.

Representative procedure for the synthesis of styryl-activated substrates.

Method A, from the vinyl iodide: To $2.25 \mathrm{~g}(10.0 \mathrm{mmol})$ of 1-iodoheptene in 10 mL of THF at $-78{ }^{\circ} \mathrm{C}$ was added $4.2 \mathrm{~mL}(10 \mathrm{mmol})$ of a 2.4 M solution of $n-\mathrm{BuLi}$ in hexane dropwise. This solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and then transferred dropwise via canula to a solution of $0.965 \mathrm{~g}(5.00 \mathrm{mmol})$ of N-methoxy- N methylcinnamide in 50 mL of THF at $-78{ }^{\circ} \mathrm{C}$. After complete addition, TLC analysis showed complete consumption of the starting material after 15 min at $-78{ }^{\circ} \mathrm{C}$, so the reaction was subsequently quenched with satd. $\mathrm{NH}_{4} \mathrm{Cl}_{(a q)}$. The crude reaction was transferred to a separatory funnel with 1 M HCl and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was collected after shaking, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{x})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated using reduced pressure. Silica gel chromatography (hexanes/EtOAc) of the crude mixture afforded 1.0 g (91%) of ($1 E, 4 E$)-1-phenyldeca-1,4-dien-3-one as a yellow oil. Spectral data was consistent with the literature (Tsuge, O.; Kanemasa, S.; Nakagawa, N.; Suga, H. Bull. Chem. Soc. Jpn. 1987, 69, 4091.).

Method B, from the vinyl bromide: To 1.05 g of (E)-1-bromopropene in 16 mL of THF at $-78{ }^{\circ} \mathrm{C}$ was added $10.8 \mathrm{~mL}(17 \mathrm{mmol})$ of a 1.6 M solution of $t-\mathrm{BuLi}$ in pentane dropwise. This solution was stirred at this temperature for 30 min and then transferred at $\sim 1 \mathrm{drop} / \mathrm{s}$ via canula to a solution of 0.832 g of N -methoxy- N methylcinnamide in 33 mL of THF at $-78{ }^{\circ} \mathrm{C}$ (addition of the vinyllithium at faster rates gave lower yields). After complete addition, TLC analysis showed complete consumption of the starting material after 15 min at $78{ }^{\circ} \mathrm{C}$, so the reaction was subsequently quenched with satd. $\mathrm{NH}_{4} \mathrm{Cl}_{(a q)}$. The crude reaction was transferred to a separatory funnel with 1 M HCl and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was collected after shaking, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{x})$. The combined organics were washed with $\mathrm{H}_{2} \mathrm{O}$ then brine and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated using reduced pressure. Silica gel chromatography (hexanes/EtOAc) of the crude mixture afforded $0.571 \mathrm{~g}(76 \%)$ of ($1 E, 4 E$)-1-phenylhexa-1,4-dien-3-one as a yellow oil.

(1E, 4E)-1-cyclohexyl-5-phenylpenta-1,4-dien-3-one. Prepared using Method A in 96% yield. A yellow solid. mp $42-46{ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.20$ (12:1 Hexanes:EtOAc); IR (KBr): 2924 (m), 2847 (m), 1806 (w), 1670 (s), 1627 (s), 1592 (s), 1441 (s), 1332 (s), $1278(\mathrm{~m}), 1184(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.62(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.55(2 \mathrm{H}, \mathrm{m})$, $7.30-7.42(3 \mathrm{H}, \mathrm{m}), 6.97(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{dd}, J=16 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}), 6.37(1 \mathrm{H}, \mathrm{dd}, J=14 \mathrm{~Hz}, J=$ $1.2 \mathrm{~Hz}), 2.19(1 \mathrm{H}, \mathrm{m}), 1.61-1.88(5 \mathrm{H}, \mathrm{m}) 1.10-1.40(5 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR: $\delta 189.6,153.2,142.8,134.8,130.3$, 128.9, 128.2, 126.8, 124.8, 40.87, 31.80, 25.90, 25.71. LRMS (ESI+) Calc'd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}: 263.1$ Found (M+Na) ${ }^{+}$: 263.2.

(1E, 4E)-6,6-dimethyl-1-phenylhepta-1,4-dien-3-one. Prepared using Method A in 86\% yield. An off-white solid. mp 60-64 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.30$ (12:1 Hexanes:EtOAc); IR (KBr): 3060 (w), 3017 (w), 2948 (m), 2862 (w), 1950 (w), 1880 (w), 1658 (s), 1588 (s), 1449 (m), 1324 (s), 1208 (s), 1165 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.63(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz})$, $7.56(2 \mathrm{H}, \mathrm{m}), 7.37(3 \mathrm{H}, \mathrm{m}), 6.98(2 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.32(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 1.12(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 189.7$, 157.9, 142.9, 134.8, 130.3, 128.9, 128.3, 124.9, 124.5, 33.97, 28.72. LRMS (ESI+) Calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}$ (M + $\mathrm{Na})^{+}: 237.1$ Found $(\mathrm{M}+\mathrm{Na})^{+}: 237.1$.

(1E, 4E)-7-(t-butyldimethylsilyloxy)-1-phenylhepta-1,4-dien-3-one. Prepared using Method A in 87\% yield. A yellow oil. $\mathrm{R}_{f}=0.19$ (12:1 Hexanes:EtOAc); IR (neat): 3029 (w), 2952 (s), 2854 (s), 1950 (w), 1802 (w), 1662 (s), 1631 (s), 1596 (s), 1472 (m), 1336 (m), 1254 (s), 1185 (m) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.63(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.55(2 \mathrm{H}, \mathrm{m}), 7.38(3 \mathrm{H}, \mathrm{m}), 6.98(1 \mathrm{H}, \mathrm{dt}, J=16 \mathrm{~Hz}, J=8.6 \mathrm{~Hz})$, $6.96(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{dt}, J=16 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}), 3.76(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}) 3.08(2 \mathrm{H}, \mathrm{dq}, J=7.2 \mathrm{~Hz}, J$ $=1.6 \mathrm{~Hz}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.050(3 \mathrm{H}, \mathrm{s}), 0.042(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 189.1,144.7,143.1,134.8,130.8,130.3$, 128.9, 128.2, 124.6, 61.60, 36.15, 25.86, 18.28, -5.33. LRMS (ESI+) Calc’d for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 339.2$ Found (M+Na) ${ }^{+}$: 339.2.

(1E, 4E)-6-(t-butyldimethylsilyloxy)-1-phenylhexa-1,4-dien-3-one. Prepared using Method A in 60% yield. A yellow oil. $\mathrm{R}_{f}=0.20$ (12:1 Hexanes:EtOAc); IR (neat): 3060 (w), 2955 (s), 2932 (s), 2854 (s), 1953 (w), 1806 (w), 1666 (s), 1634 (s), 1592 (s), 1449 (s), 1332 (s), 1254 (s), 1138 (s) $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR: $\delta 7.64(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.56(2 \mathrm{H}, \mathrm{m}), 7.38(3 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}, \mathrm{dt}, J=15 \mathrm{~Hz}, \mathrm{~J}=3.6 \mathrm{~Hz})$, $6.95(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{dt}, J=15 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}), 4.41(2 \mathrm{H}, \mathrm{m}), 0.94(9 \mathrm{H}, \mathrm{s}), 0.10(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 189.1,146.1,143.4,134.7,130.4,128.9,128.3,126.5,125.3,62.52,25.86,18.37,-5.41$. LRMS (ESI +) Calc'd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 303.2 Found $(\mathrm{M}+\mathrm{H})^{+}$: 303.2.

($\mathbf{E} \boldsymbol{E}, \mathbf{4 E}$)-4-methyl-1-phenylhexa-1,4-dien-3-one. Prepared using Method B in 53\% yield. A yellow oil. $\mathrm{R}_{f}=0.19$ (14:1 Hexanes:EtOAc); IR (neat): 3060 (m), 2920 (m), 1953 (w), 1887 (w), 1654 (s), 1600 (s), 1449 (s), 1328 (s), 1300 (s), 1223 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.59(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.55(2 \mathrm{H}, \mathrm{m}), 7.37(3 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz})$, $6.82(1 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}), 1.89(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 1.88(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 191.7,142.5,139.3,137.4,135.2$, 129.9, 128.8, 128.1, 121.7, 14.80, 11.55. LRMS (ESI+) Calc'd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}: 209.1$ Found ($\mathrm{M}+$ $\mathrm{Na})^{+}$: 209.1.

Procedure for the catalytic conjugate allylation of dibenzylidene acetone, chalcone, and benzylidene acetone (Scheme 1).

The procedure for dibenzylidene acetone is representative. An oven-dried 20 mL vial equipped with a magnetic stir-bar was charged with $4.9 \mathrm{mg}(0.0053 \mathrm{mmol})$ of tris(dibenzylideneacetone)dipalladium, 3.6 mg (0.013 mmol) of tricyclohexylphosphine, and 1.42 mL of THF in a dry-box under an argon atmosphere. The vial was capped and stirred for 45 min . Next, $39.4 \mathrm{mg}(0.234 \mathrm{mmol})$ of allylboronic acid pinacol ester was added followed by 50.0 mg (0.213 mmol) of dibenzylidene acetone. The vial was capped, taped with electrical
tape, removed from the dry-box, and allowed to stir at ambient temperature for the time indicated in Scheme 1. After this time period, water was added and the mixture transferred to a separatory funnel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After gently swirling the layers (to avoid formation of emulsions), the organic layer was collected and the aqueous layer washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{x})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and volatiles were removed under reduced pressure. Silica gel chromatography (hexanes/EtOAc) afforded 50.4 mg (80\%) of 1,5-diphenyl-1,7-octadien-3-one as a white solid whose spectral data was consistent with the literature (Mandal, S. K.; Amin, Sk. R.; Crowe, W. E. J. Am. Chem. Soc. 2001, 123, 6457.).

Procedure for the catalyst survey in the conjugate allylation (Table 1).

Procedure using $\mathbf{P d}_{\mathbf{2}}(\mathbf{d b a})_{3}$: An oven-dried 2-dram vial equipped with a magnetic stir-bar was charged with 2.3 mg (0.0025 mmol) of tris(dibenzylideneacetone)dipalladium, 0.0060 mmol of phosphine ligand, and 0.20 mL of THF in a dry-box under an argon atmosphere (ligands that could not be weighed in directly were added as $0.20 \mathrm{~mL}(0.0060 \mathrm{mmol})$ of a 0.030 M stock solution in THF and no additional solvent was added). The vial was capped and stirred for 45 min . Next, $19 \mathrm{mg}(0.11 \mathrm{mmol})$ of allylboronic acid pinacol ester was added followed by $0.31 \mathrm{~mL}(0.10 \mathrm{mmol})$ of a 0.325 M stock solution of ($1 E, 4 E$)-1-phenyldeca-1,4-dien-3-one in THF. The vial was capped, taped with electrical tape, removed from the dry-box, and allowed to stir at ambient temperature for the time indicated in Table 1. After this time period, water was added and the mixture transferred to a separatory funnel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After gently swirling the layers, the organic layer was collected and the aqueous layer washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{x})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and volatiles were removed under reduced pressure. NMR analysis of the crude mixture was used to determine the regioselectivity of the reaction. Yields were determined after isolation of pure material, as a mixture of isomers, using silica gel chromatography (hexanes/EtOAc).

Procedure using $\mathrm{Ni}(\mathbf{c o d})_{2}$: An oven-dried 20 mL scintillation vial equipped with a magnetic stir-bar was charged with $6.0 \mathrm{mg}(0.022 \mathrm{mmol})$ of bis(1,5-cyclooctadiene)nickel, 0.0438 mmol of phosphine ligand, and 1.46 mL of THF in a dry-box under an argon atmosphere. The vial was capped and stirred for 45 min . Next, $44.2 \mathrm{mg}(0.263 \mathrm{mmol})$ of allylboronic acid pinacol ester was added followed by $50.0 \mathrm{mg}(0.219 \mathrm{mmol})$ of ($1 E$, $4 E$)-1-phenyldeca-1,4-dien-3-one. The vial was capped, taped with electrical tape, removed from the dry-box, and allowed to stir at ambient temperature for 4 h . After this time period, $\sim 15 \mathrm{~mL}$ of water was added and the mixture transferred to a separatory funnel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After gently swirling the layers, the organic layer was collected and the aqueous layer washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{x})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and volatiles were removed under reduced pressure. NMR analysis of the crude mixture was used to determine the regioselectivity of the reaction. Yields were determined after isolation of pure material, as a mixture of isomers, using silica gel chromatography (hexanes/EtOAc).

Procedure for the Ni-catalyzed conjugate allylation of styryl enones (Table 2).

The conjugate allylation of styryl-activated enones using $\mathrm{Ni}(\mathrm{cod})_{2}$ was performed using the same procedure described above for the reaction in Table 1 using $\mathrm{Ni}(\operatorname{cod})_{2}$, where tricyclohexylphosphine was the ligand used. Reactions were performed using 50.0 mg of substrate and run at the temperature and for the time indicated in Table 2. For the allylation reaction using (E)-5-methyl-1-phenylhexa-1,4-dien-3-one (entry 8) as the substrate, 2.0 equiv of allylboronic acid pinacol ester was used. For substrates bearing TBS-protected alcohols (entry 5, 6), buffer ($\mathrm{pH}=7$) was used instead of $\mathrm{H}_{2} \mathrm{O}$ in the extraction step. The reaction utilizing ($1 E$, 4E)-4-methyl-1-phenylhexa-1,4-dien-3-one as the substrate (entry 9) was quenched with 2.2 equiv of 1.0 M HCl in $\mathrm{Et}_{2} \mathrm{O}$ under N_{2} before adding $\mathrm{H}_{2} \mathrm{O}$.

E)-5-allyl-1-phenyldec-1-en-3-one. An oil. Regioisomers were separable using iterative column chromatography $\left(\mathrm{SiO}_{2} /\right.$ hexanes: EtOAc). R_{f} (major) $=$ 0.22 (18:1 Hexanes:EtOAc); R_{f} (minor) = 0.19 (18:1 Hexanes:EtOAc); IR (major, neat): 3064 (w), 2948 (s), 2917 (s), 2858 (s), 1942 (w), 1821 (w), 1689 (s), 1654 (s), 1608 (s), 1445 (s), 1320 (m), 1167 (m) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR: δ (major) 7.48-7.59 (3H, m), 7.37 $(3 \mathrm{H}, \mathrm{m}), 6.72(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 5.76(1 \mathrm{H}, \mathrm{m}), 5.01(2 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 2.61(1 \mathrm{H}, \mathrm{dd}, J=16 \mathrm{~Hz}, J=6.0 \mathrm{~Hz})$, $2.52(1 \mathrm{H}, \mathrm{dd}, J=16 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}), 1.95-2.20(3 \mathrm{H}, \mathrm{m}), 1.15-1.40(8 \mathrm{H}, \mathrm{m}), 0.86(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ; \delta$ (minor) $7.20-7.30(2 \mathrm{H}, \mathrm{m}), 7.10-7.20(3 \mathrm{H}, \mathrm{m}), 6.72(1 \mathrm{H}, \mathrm{dt}, J=16 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}), 5.99(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 5.63(1 \mathrm{H}$, m), $4.94(2 \mathrm{H}, \mathrm{m}), 3.29(1 \mathrm{H}, \mathrm{p}, J=7.2 \mathrm{~Hz}), 2.82(2 \mathrm{H}, \mathrm{m}), 2.37(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.13(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 1.38$ $\left(2 \mathrm{H}, \mathrm{p}, J=7.2 \mathrm{~Hz}\right.$), 1.17-1.32 (6H, m), $0.87(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR: δ (major) 200.4, 142.2, 136.6, 134.6, 130.3, 128.9, 128.2, 126.6, 116.6, 45.23, 38.26, 34.07, 33.80, 31.97, 26.40, 22.58, 14.03. LRMS (ESI+) Calc'd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}: 293.2$ Found $(\mathrm{M}+\mathrm{Na})^{+}: 293.2$.
${ }^{1} \mathrm{H}$ NMR analysis of Crude Reaction Mixture ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

(\boldsymbol{E})-5-methyl-1-phenylocta-1,7-dien-3-one. An oil. $\mathrm{R}_{f}=0.24$ (12:1 Hexanes:EtOAc); IR (neat): 3064 (m), 2955 (s), 2917 (s), 1946 (w), 1829 (w), 1689 (s), 1666 (s), 1611 (s), 1452 (s), 1324 (s), 1173 (s) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.45-7.57$ (3H, $\mathrm{m}), 7.28-7.44(3 \mathrm{H}, \mathrm{m}), 6.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{m}), 5.02(2 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz})$, $2.66(1 \mathrm{H}, \mathrm{dd}, J=16 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}), 2.43(1 \mathrm{H}, \mathrm{dd}, J=16 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}), 2.19(1 \mathrm{H}, \mathrm{m}), 1.95-2.12(2 \mathrm{H}, \mathrm{m})$, 0.95 (3H, d, $J=6.4 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR: $\delta 200.2,142.4,136.7,134.5,130.4,128.9,128.2,126.5,116.5,47.43$, 41.20, 29.52, 19.77. LRMS (ESI +) Calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}: 237.1$ Found $(\mathrm{M}+\mathrm{Na})^{+}:$237.1.
${ }^{1} \mathrm{H}$ NMR analysis of Crude Reaction Mixture ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Vinyl CH
(minor + major isomers)

Vinyl CH
(minor isomer)

(E)-5-cyclohexyl-1-phenylocta-1,7-dien-3-one. An oil. Regioisomers were inseparable using column chromatography ($\mathrm{SiO}_{2} /$ hexanes: EtOAc). $\mathrm{R}_{f}=0.29$ (12:1 Hexanes:EtOAc); IR (neat): 3056 (m), 2913 (s), 2842 (s), 1953 (w), 1817 (w), 1685 (s), 1662 (s), 1603 (s), 1441 (s), 1320 (m), 1181 (m) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.52$ ($3 \mathrm{H}, \mathrm{m}$, major), 7.37 ($3 \mathrm{H}, \mathrm{m}$, major), 7.25 ($2 \mathrm{H}, \mathrm{m}$, minor), 7.16 ($3 \mathrm{H}, \mathrm{m}$, minor), 6.72 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}$, major), $6.65(1 \mathrm{H}, \mathrm{dd}, J=16 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}$, minor), $5.93(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}$, minor), $5.74(1 \mathrm{H}, \mathrm{m}$, major), $5.63(1 \mathrm{H}, \mathrm{m}$, minor), 4.90-5.05 (4H, m, major \& minor), $3.28(1 \mathrm{H}, \mathrm{p}, J=7.2 \mathrm{~Hz}$, minor), 2.81 ($2 \mathrm{H}, \mathrm{m}$, minor), $2.61(1 \mathrm{H}, \mathrm{dd}, J$ $=16 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}$, major) $2.52(1 \mathrm{H}, \mathrm{dd}, J=16 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}$, major), $2.37(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, minor), 2.16 (1H, m, major), 1.91-2.10 (3H, m, major \& minor), 1.57-1.78 ($10 \mathrm{H}, \mathrm{m}$, major \& minor), 1.36 ($1 \mathrm{H}, \mathrm{m}$, major), 0.94-1.29 (10H, m, major \& minor); ${ }^{13} \mathrm{C}$ NMR: δ 200.4, 199.5, 152.3, 144.2, 142.0, 137.4, 136.2, 134.6, 130.2, 128.8, 128.3, 128.2, 128.0, 127.5, 126.5, 126.2, 116.6, 116.2, 46.10, 42.55, 41.05, 40.59, 40.54, 40.40, 39.20, 35.90, 31.73, 30.06, 29.68, 26.71, 25.90, 25.68. LRMS (ESI +) Calc'd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}: 305.2$ Found (M $+\mathrm{Na})^{+}: 305.2$.
${ }^{1} \mathrm{H}$ NMR analysis of Crude Reaction Mixture ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Vinyl CH (minor + major isomers)

(E)-5-t-butyl-1-phenylocta-1,7-dien-3-one. An oil. $\mathrm{R}_{f}=0.24$ (15:1 Hexanes:EtOAc); IR (neat): 3064 (m), 2959 (s), 2870 (m), 1953 (w), 1814 (w), 1689 (s), 1654 (s), 1608 (s), 1445 (s), 1363 (s), 1185 (m) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.48-7.57$ (3H, m), $7.37(3 \mathrm{H}, \mathrm{m}), 6.73(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 5.72(1 \mathrm{H}, \mathrm{m}), 4.97(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 4.91$ $(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}) 2.66(1 \mathrm{H}, \mathrm{dd}, J=17 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}), 2.46(1 \mathrm{H}, \mathrm{dd}, J=17 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}), 2.32-2.41(1 \mathrm{H}$, $\mathrm{m}), 2.13(1 \mathrm{H}, \mathrm{m}), 1.78(1 \mathrm{H}, \mathrm{m}), 0.89(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 200.1,141.6,138.4,134.5,130.1,128.7,128.0$, 126.3, 115.8, 42.47, 41.99, 35.65, 33.28, 27.50. LRMS (ESI+) Calc'd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}: 279.2$ Found (M $+\mathrm{Na})^{+}: 279.2$.

(E)-5-(t-butyldimethylsilyloxy)methyl)-1-phenylocta-1,7-dien-3-one. An oil. Regioisomers were separable using column chromatography ($\mathrm{SiO}_{2} /$ hexanes:EtOAc). $\mathrm{R}_{f}=0.26$ (14:1 Hexanes:EtOAc); IR (neat): 3076 (m), 2955 (s), 2924 (s), 2854 (s), 1689 (s), 1662 (s), 1611 (s), 1471 (m), 1363 (m), 1251 (s), 1103 (s) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.49-7.59(3 \mathrm{H}, \mathrm{m}), 7.37(3 \mathrm{H}, \mathrm{m})$, $6.72(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 5.77(1 \mathrm{H}, \mathrm{m}), 5.03(2 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{dd}, J=10 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=10$ $\mathrm{Hz}, J=5.6 \mathrm{~Hz}), 2.77(1 \mathrm{H}, \mathrm{dd}, J=16 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}), 2.53(1 \mathrm{H}, \mathrm{dd}, J=16 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}), 2.11-2.31(2 \mathrm{H}, \mathrm{m})$, $2.07(1 \mathrm{H}, \mathrm{m}), 0.87(9 \mathrm{H} . \mathrm{s}), 0.015(3 \mathrm{H}, \mathrm{s}), 0.0030(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 200.2,142.3,136.5,134.6,130.3,128.9$, 128.2, 126.7, 116.6, 64.73, 41.91, 36.94, 35.63, 25.89, 18.26, -5.46. LRMS (ESI+) Calc'd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+$ $\mathrm{Na})^{+}: 367.2$ Found $(\mathrm{M}+\mathrm{Na})^{+}: 367.3$.

(E)-1-(t-butyldimethylsilyloxy)-6-phenylnona-2,8-dien-4-one. An oil. Regioisomers were separable using column chromatography $\left(\mathrm{SiO}_{2} /\right.$ hexanes:EtOAc). $\mathrm{R}_{f}=0.18$ (14:1 Hexanes:EtOAc); IR (neat): 3056 (m), 3029 (m), 2948 (s), 2924 (s), 2858 (s), 1697 (s), 1670 (s), 1635 (s), 1468 (m), 1359 (m), 1251 (s), 1134 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR: $\delta 7.20-7.30(2 \mathrm{H}, \mathrm{m}), 7.10-7.20(3 \mathrm{H}, \mathrm{m}), 6.76(1 \mathrm{H}, \mathrm{dt}, J=16 \mathrm{~Hz}, J$ $=3.2 \mathrm{~Hz}), 6.28(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 5.63(1 \mathrm{H}, \mathrm{m}), 4.96(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 4.28(2 \mathrm{H}, \mathrm{m})$, $3.31(1 \mathrm{H}, \mathrm{p}, J=7.2 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{m}), 2.37(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.90(9 \mathrm{H}, \mathrm{s}), 0.045(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 198.9$, 145.3, 144.2, 136.2, 128.4, 127.9, 127.5, 126.3, 116.7, 62.23, 46.70, 40.81, 40.60, 25.84, 18.35, -5.45. LRMS (ESI+) Calc'd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 367.2$ Found $(\mathrm{M}+\mathrm{Na})^{+}: 367.3$.
${ }^{1} \mathrm{H}$ NMR analysis of Crude Reaction Mixture ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

Carbinol Carbinol (minor isomer) (major isomer)

(E)-5-(2-t-butyldimethylsilyloxy)ethyl)-1-phenylocta-1,7-dien-3-one. An oil. Regioisomers were separable using iterative column chromatography ($\mathrm{SiO}_{2} /$ hexanes:EtOAc). $\quad \mathrm{R}_{f} \quad$ (major) $=0.25$ (15:1 Hexanes:EtOAc); R_{f} (minor) $=0.18$ (15:1 Hexanes:EtOAc); IR (major, neat): 3068 (m), 2948 (s), 2932 (s), 2847 (s), 1953 (w), 1817 (w), 1682 (s), 1658 (s), 1611 (s), 1468 (m), 1328 (m), 1254 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR: δ (major) 7.45-7.57 (3H, m), 7.37 (3H, m), $6.72(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 5.76(1 \mathrm{H}, \mathrm{m}), 5.02(2 \mathrm{H}, \mathrm{m}), 3.66(2 \mathrm{H}, \mathrm{m}) 2.63(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 2.27(1 \mathrm{H}$, heptet, $J=$ 6.4 Hz), 2.01-2.20 ($2 \mathrm{H}, \mathrm{m}$), 1.45-1.67 ($2 \mathrm{H}, \mathrm{m}$), $0.86(9 \mathrm{H}, \mathrm{s}), 0.020(6 \mathrm{H}, \mathrm{s}) ; \delta$ (minor) 7.21-7.30 (2H, m), 7.10$7.20(3 \mathrm{H}, \mathrm{m}), 6.74(1 \mathrm{H}, \mathrm{dt}, J=16 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}), 6.04(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{m}), 4.96(1 \mathrm{H}, \mathrm{d}, J=15$ Hz), 4.93 (1H, d, $J=10 \mathrm{~Hz}$), $3.67(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 3.30(1 \mathrm{H}, \mathrm{p}, J=7.2 \mathrm{~Hz}), 2.83(2 \mathrm{H}, \mathrm{m}), 2.35(4 \mathrm{H}, \mathrm{m}), 0.87$ (9H, s), 0.023 ($6 \mathrm{H}, \mathrm{s}$); ${ }^{13} \mathrm{C}$ NMR: δ (major) 200.1, 142.3, 136.4, 134.6, 130.3, 128.9, 128.2, 126.5, 116.9, 61.20, 45.29, 38.42, 36.61, 31.23, 25.92, 18.26, -5.34. LRMS (ESI+) Calc'd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 381.2$ Found $(\mathrm{M}+\mathrm{Na})^{+}: 381.3$.
${ }^{1} \mathrm{H}$ NMR analysis of Crude Reaction Mixture ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):

(E)-5,5-dimethyl-1-phenylocta-1,7-dien-3-one. An oil. $\mathrm{R}_{f}=0.26$ (14:1

Hexanes:EtOAc); IR (neat): 3072 (m), 2959 (s), 2862 (s), 1950 (w), 1814 (w), 1685 (s), 1651 (s), 1608 (s), 1440 (s), 1332 (s), 1200 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.52$ ($2 \mathrm{H}, \mathrm{m}$), $7.49(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.36(3 \mathrm{H}, \mathrm{m}), 6.72(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{m}), 5.05$ ($2 \mathrm{H}, \mathrm{m}$), $2.52(2 \mathrm{H}, \mathrm{s}), 2.12\left(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}\right.$), $1.03(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 200.0,141.9,135.0,134.6,130.3$, 128.9, 128.3, 127.6, 117.7, 51.49, 46.86, 34.30, 27.40. LRMS (ESI+) Calc'd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}: 251.1$ Found $(\mathrm{M}+\mathrm{Na})^{+}: 251.2$.

(E)-4,5-dimethyl-1-phenylocta-1,7-dien-3-one. An oil. Isolated as an inseparable mixture of diastereomers using column chromatography ($\mathrm{SiO}_{2} /$ hexanes:EtOAc). $\mathrm{R}_{f}=$ 0.26 (14:1 Hexanes:EtOAc); IR (neat): 3076 (m), 2967 (s), 2920 (s), 1942 (w), 1821 (w), 1685 (s), 1651 (s), 1608 (s), 1449 (s), 1324 (s), 1188 (m) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.58$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}$, major \& minor), 7.54 ($4 \mathrm{H}, \mathrm{m}$, major \& minor), 7.37 (6 H , major \& minor), $6.80(1 \mathrm{H}, \mathrm{d}, J=16$ Hz , major), 6.79 ($1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}$, minor), $5.76(2 \mathrm{H}, \mathrm{m}$, major \& minor), 5.02 ($4 \mathrm{H}, \mathrm{m}$, major \& minor), 2.80 $(1 \mathrm{H}, \mathrm{p}, J=6.4 \mathrm{~Hz}$, minor), $2.73(1 \mathrm{H}, \mathrm{p}, J=6.8 \mathrm{~Hz}$, major), $1.85-2.28$ ($6 \mathrm{H}, \mathrm{m}$, major \& minor), 1.13 ($3 \mathrm{H}, \mathrm{d}, J=$ 6.8 Hz , major), 1.06 ($3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}$, minor), 0.92 ($3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$, major), 0.84 ($3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$, minor); ${ }^{13} \mathrm{C}$ NMR: $\delta 203.6,203.5,142.3,136.9,136.65,136.59,134.6,130.4,130.3,128.9,128.3,128.27,125.3$, 125.1, 116.5, 116.4, 49.60, 48.47, 39.67, 37.42, 35.31, 34.59, 17.72, 15.25, 13.65, 11.35. LRMS (ESI+) Calc’d for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}:$251.1 Found $(\mathrm{M}+\mathrm{Na})^{+}: 251.1$.

Procedure for the ring closing metathesis in Scheme 2.

To $47.9 \mathrm{mg}(0.173 \mathrm{mmol})$ of 1,5-diphenyl-1,7-octadien-3-one was added $2.2 \mathrm{mg}(0.0035 \mathrm{mmol})$ of Hoveyda-Grubb’s $2^{\text {nd }}$ generation catalyst (Garber, S. B.; Kingbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168) in a dry-box under Ar. This was diluted with 5.7 mL of dry, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A magnetic stir bar was added, followed by a septum, and the reaction was removed from the dry-box and stirred at room temperature under N_{2}. After $1 \mathrm{~h}, 3$ drops (22 G needle) of t-butyl vinyl ether was added and volatiles removed under reduced pressure. Silica gel chromatography (pentane/Et $\mathrm{t}_{2} \mathrm{O}$) of the crude mixture afforded 28.1 mg (94\%) of 5-phenylcyclohex-2-enone whose spectral data was consistent with the literature (Rutherford, A. P.; Gibb, C. S.; Hartley, R. C.; Goodman, J. M. J. Chem. Soc. Perkin Trans. 1 2001, 1051.).

Procedure for the Sn-catalyzed Baeyer-Villager oxidation in Scheme 2.

For lead reference, see: Göttlich, R.; Yamakoshi, K.; Sasai, H.; Shibasaki, M. Synlett 1997, 971. In a 2dram vial with magnetic stir bar in a dry-box under Ar was weighed $\sim 30 \mathrm{mg}$ of crushed $4 \AA$ molecular sieves. Next, $33.8 \mu \mathrm{~L}(0.0338 \mathrm{mmol})$ of a 1 M solution of (\pm)-trans-1,2-diaminocyclohexane in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added by syringe followed by dilution with 0.32 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Next, $33.8 \mu \mathrm{~L}(0.0338 \mathrm{mmol})$ of a 1 M solution of SnCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the vial was capped with a septum, removed from the dry-box and cooled to $0{ }^{\circ} \mathrm{C}$ (ice/brine). $\mathrm{TMS}_{2} \mathrm{O}_{2}$ was added dropwise as a 1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.27 \mathrm{~mL}, 0.27 \mathrm{mmol})$. After stirring for 10 min at this temperature, $37.3 \mathrm{mg}(0.135 \mathrm{mmol})$ of 1,5 -diphenyl-1,7-octadien-3-one was added in 0.59 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via canula. The reaction became a blue-gray color and was subsequently warmed to room temperature and stirred for 15 h . Sodium sulfite (41 mg) was then added, and the reaction stirred for an additional 3 h . Finally, the reaction was filtered through a pad of silica gel using EtOAc and concentrated under reduced pressure. Silica gel chromatography (hexanes/EtOAc) of the crude material afforded 31.5 mg (80%) of (E)-styryl-3-phenylhex-5-enoate as a white solid.

(E)-styryl-3-phenylhex-5-enoate. A white solid. $\mathrm{mp}=66-70^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.24$ (30:1 Hexanes:EtOAc); IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution): 3087 (m), 3024 (m), 2917 (m), 1747 (s), 1652 (m), 1495 (m), 1212 (m), 1142 (s) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.74$ ($1 \mathrm{H}, \mathrm{d}$, $J=13 \mathrm{~Hz}), 7.24-7.39(6 \mathrm{H}, \mathrm{m}), 7.10-7.24(4 \mathrm{H}, \mathrm{m}), 6.03(1 \mathrm{H}, \mathrm{d}, J=13 \mathrm{~Hz}), 5.66$ $(1 \mathrm{H}, \mathrm{m}), 5.02(2 \mathrm{H}, \mathrm{m}), 3.26(1 \mathrm{H}, \mathrm{p}, J=7.2 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{dd}, J=16 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}), 2.68(1 \mathrm{H}, \mathrm{dd}, J=16 \mathrm{~Hz}, J$ $=8.4 \mathrm{~Hz}), 2.42(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.3,143.1,136.1,135.6,134.0,128.6,128.5,127.3,126.7,126.1$, 117.1, 115.2, 41.56, 40.61, 40.26. Note that the peak at 127.3 ppm was 2 overlapping signals that could not be resolved at higher frequency. ${ }^{13} \mathrm{C}$ analysis in $\mathrm{C}_{6} \mathrm{D}_{6}(125 \mathrm{MHz})$ resolved these peaks. This data $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$ referenced at 128.39 relative to tetramethylsilane) was: $169.3,143.9,137.0,136.4,134.9,129.2,129.1,128.1$, 127.8, 127.3, 126.8, 117.4, 115.7, 42.22, 41.12, 40.63. LRMS (ESI+) Calc'd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 315$ Found (M+Na) ${ }^{+}: 315$.

Procedure for the hydrolysis of (E)-styryl-3-phenylhex-5-enoate (Scheme 2).

To a solution of $26.3 \mathrm{mg}(0.900 \mathrm{mmol})$ of (E)-styryl-3-phenylhex-5-enoate in 0.68 mL of THF was added 0.22 mL of water, and the reaction then subsequently cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(7.6 \mathrm{mg}, 0.18 \mathrm{mmol})$ was then added, and the reaction was stirred at this temperature and monitored by TLC. After complete consumption of the starting material (2-2.5 h), the reaction was acidified with 1 M HCl and extracted with EtOAc (3x). The organic layers were combined, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Volatiles were removed under reduced pressure, and the product was purified using silica gel chromatography ($1 \% \mathrm{AcOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}_{f}=0.25$ in $1 \% \mathrm{AcOH}$ in $20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}$) to give $16.5 \mathrm{mg}(96 \%)$ of 3-phenyl-hex-5-enoic acid after removal of AcOH by azeotropic distillation with toluene using a rotary evaporator followed by removal of toluene via azeotropic distillation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Spectral data was consistent with the literature (Allin, S. M.; Essat, M.; Pita, C. H.; Baird, R. D.; McKee, V.; Elsegood, M.; Edgar, M.; Andrews, D. M.; Shah, P.; Aspinall, I. Org. Biomol. Chem. 2005, 3, 809.).

Procedure for the asymmetric conjugate allylation of dibenzylidene acetone (Scheme 4).

An oven-dried 2-dram vial equipped with a magnetic stir-bar was charged with $2.5 \mathrm{mg}(0.0027 \mathrm{mmol})$ of tris(dibenzylideneacetone)dipalladium, $6.3 \mathrm{mg}(0.0064 \mathrm{mmol})$ of chiral ligand (for ligand synthesis see: Woodward, A. R.; Burks, H. E.; Chan, L. M.; Morken, J. P. Org. Lett. 2005, 7, 5505), and 0.71 mL of THF in a dry-box under an argon atmosphere. The vial was capped and stirred for 45 min . Next, $19.8 \mathrm{mg}(0.118 \mathrm{mmol})$ of allylboronic acid pinacol ester was added followed by $25.0 \mathrm{mg}(0.107 \mathrm{mmol})$ of dibenzylidene acetone. The vial was capped, taped with electrical tape, removed from the dry-box, and allowed to stir at ambient temperature for 24 h . After this time period, water was added and the mixture transferred to a separatory funnel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After gently swirling the layers, the organic layer was collected and the aqueous layer washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and volatiles were removed under reduced pressure. Silica gel chromatography (hexanes/EtOAc) afforded 26.3 mg (83%) of 1,5 -diphenyl-1,7-octadien-3-one whose spectral data has been reported previously (Mandal, S. K.; Amin, S. R.; Crowe, W. E. J. Am. Chem. Soc. 2001, 123, 6457.). The optical rotation was: $[\alpha]^{20}{ }_{\mathrm{D}}=+13^{0}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The absolute configuration was determined by performing the ring-closing metathesis shown in Scheme 2 on the chiral material and comparing the optical rotation $\left([\alpha]^{20}{ }_{\mathrm{D}}=-42^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)\right.$)with the known value (Hareau, G. PJ.; Koiwa, M.; Hikichi, S; Sato, F. J. Am. Chem. Soc. 1999, 121, 3640). The enantiomeric excess was determined using chiral SFC (data shown below).

Chiral SFC (AD-H, Chiralpak, $150 \mathrm{psi}, 50^{\circ} \mathrm{C}$, flow $=3 \mathrm{~mL} / \mathrm{min}, 4 \% \mathrm{MeOH}$) analysis of conjugate allylation product:

Allylation product

Racemic

Allylation product + racemic coinjection

\#	Name	Start [Min]	Time [Min]	End [Min]	RT Ottset [Min]	Quantity [\% Area]	Height $\lfloor\mu \mathrm{V}]$	Area [$\mu \mathrm{V} . \mathrm{Min}$]	Area [\%]
1	UNKNOWN	5.91	6.27	6.72	0	94.41	24264.9	3924	94.412
2	UNKNOWN	8	8.29	8.75	0	5.59	1032.6	232.3	5.588
Total						100	25297.5	4156.2	100

Computational Methods: DFT calculations were performed using B3LYP ${ }^{1,2}$ with the basis set of Stuttgart RSC 1997 ECP ${ }^{3}$ for Pd, $6-311+\mathrm{G}^{* 4}$ for others. All calculations were conducted using Gaussian 03 C02 package ${ }^{5}$ with tight SCF convergence and ultra fine integration grids on the 128-CPU SGI Altix 3700 SMP machine ${ }^{6}$ at University of North Carolina at Chapel Hill. In search for the transition state structure, a single-point frequency calculation has been performed to ensure that the final structure obtained (i) has only one imaginary frequency and (ii) the vibration mode of the negative frequency corresponds to the anticipated bond formation.

Reactant (3,3'-Elmination):

C	-2.21400	4.32800	0.38200
H	-1.45700	5.10300	0.21800
H	-2.84100	4.67800	1.21100
H	-2.84300	4.27600	-0.51100
B	-3.03100	-1.03000	-0.44800
C	-1.33600	0.53100	0.28900
C	3.16900	-2.19400	-1.51400
C	3.32900	-2.44700	1.34000
C	4.53300	-0.19900	0.04200
C	-0.74800	0.10100	1.49100
C	-5.12300	-1.49800	0.29100
C	-4.73400	-2.47100	-0.84800
C	-1.84100	1.87100	0.02100
C	-0.18400	-1.17200	1.69100
C	-1.58900	3.00300	0.69800
C	1.25700	3.71300	-0.75200
C	1.57700	1.30800	-1.42700
C	1.96800	2.57100	-0.79200
H	3.09000	-1.54300	-2.38600
H	4.13000	-2.71600	-1.54300
H	2.36300	-2.92800	-1.57300
H	2.52200	-3.18100	1.36900
H	4.27700	-2.96500	1.16700
H	3.36800	-1.95300	2.31200
H	4.60100	0.36200	0.97700
H	5.41800	-0.83600	-0.05300
H	4.52400	0.51800	-0.78000
H	-5.44200	-2.01000	1.20200
H	-5.90700	-0.79700	-0.00900
H	-4.59100	-3.49500	-0.48800
H	-5.45900	-2.48500	-1.66300
H	-2.49300	1.92600	-0.85000
H	-0.91100	2.98700	1.54800
H	2.38900	0.86900	-2.01100
H	0.69700	1.41000	-2.06700
H	2.93300	2.57100	-0.28000
H	0.24600	-1.39700	2.66000
H	1.62200	4.59000	-0.22600
H	0.30700	3.80900	-1.26600
H	-0.57000	0.87000	2.23700
H	-0.54600	-2.02900	1.13300
0	-1.81600	-0.44600	-0.60200
0	-3.48000	-1.97700	-1.34000
0	-3.92400	-0.75700	0.56300
P	2.98200	-1.19700	0.02600
Pd	1.00800	-0.03800	0.15400

Transition State (3, $\left.3^{\prime}-E l m i n a t i o n\right): ~$

Reactant (1,2 addition to simple enone):

C	1.28100	0.44700	-0.93400
C	0.66100	-0.55700	-1.69600
C	0.11200	-1.73500	-1.15900
H	-0.39100	-2.42200	-1.82900
H	0.52800	-2.17900	-0.26000
B	3.14300	-0.35600	0.40500
0	3.68300	-0.66400	1.63300
0	4.01400	-0.55800	-0.64400
Pd	-0.97000	0.07900	-0.36400
P	-2.97800	-0.82600	0.30900
C	-3.19000	-0.93900	2.13900
H	-3.07700	0.05100	2.58400
H	-4.17200	-1.34100	2.40600
H	-2.41600	-1.58400	2.55700
C	-3.38400	-2.54600	-0.22700
H	-2.61500	-3.23200	0.13100
H	-4.35600	-2.87000	0.15600
H	-3.39700	-2.59600	-1.31700
C	-4.48700	0.09700	-0.21400
H	-4.55700	0.09600	-1.30300
H	-5.39400	-0.35300	0.20000
H	-4.42000	1.13400	0.11800
C	5.28300	-0.93200	-0.08600
H	5.66800	-1.80200	-0.62200
H	5.98200	-0.10100	-0.21700
C	4.98400	-1.22100	1.40500
H	4.95100	-2.29300	1.62100
H	5.70000	-0.75000	2.08200
C	-1.56200	2.01900	0.38300
H	-2.35600	1.84600	1.11800
H	-1.99700	2.55300	-0.47000
C	-0.47800	2.78800	1.01500
H	-0.10300	2.38900	1.95900
C	0.09500	3.91100	0.55200
H	-0.23400	4.38100	-0.37200
H	0.89800	4.40500	1.09000
0	1.87000	0.09500	0.29200
H	0.40600	-0.28300	-2.71600
C	1.78800	1.72400	-1.52100
H	2.86800	1.66700	-1.70000
H	1.29300	1.93700	-2.47100
H	1.59900	2.56200	-0.84300

Transition State (1,2 addition to simple enone):

Reactant (1,4 addition to simple enone):

C	1.24400	-0.18500	1.10300
C	0.77800	1.11000	1.28600
C	0.48700	2.02000	0.23200
H	0.07900	2.98900	0.49400
B	1.07400	1.99600	-0.68200
O	3.22600	-0.25000	-0.28500
O	3.85300	-0.60000	-1.45800
Pd	4.05300	0.37900	0.61800
P	-0.92400	0.39700	0.05000
C	-2.15200	-1.57600	-0.16700
H	-3.95100	-1.47300	0.23400
H	-4.41800	-0.68400	-0.35700
H	-4.46400	-2.41800	0.02900
C	-4.08100	-1.22300	1.28900
H	-1.64900	-3.07900	0.78400
H	-1.70200	-2.87800	1.85600
C	-2.28800	-3.93600	0.55400
H	-0.61600	-3.33700	0.54000
H	-2.17500	-2.22800	-1.89300
H	-1.15700	-2.46400	-2.20800
C	-2.79200	-3.12700	-1.98000
H	-2.56300	-1.46500	-2.57000
H	5.37600	0.38400	0.05900
C	5.80000	1.38600	0.14900
H	5.99800	-0.31300	0.62800
C	5.24700	-0.06300	-1.41100
H	5.89200	0.77500	-2.11100
H	-2.29100	-0.83300	-1.71900
H	-2.89900	1.56300	-1.09500
H	-1.69800	0.88200	-1.69800
H	-3.12800	2.18400	-1.77100
O	-3.89900	2.37500	-0.19100
H	-3.03500	1.83400	0.36200
H	-2.30000	3.69600	0.02700
H	1.98800	4.30900	-0.48800
	0.40700	4.20600	0.72900
1.44000	-0.53100	-0.07900	
2.48700	-1.33900	2.28200	
	1.16900	2.21700	
H	-1.17500	2.54900	
H	-0.91800	3.07600	
H	-2.18400	1.89800	
H			

C	1.24400	-0.18500	1.10300
C	0.77800	1.11000	1.28600
C	0.48700	2.02000	0.23200
H	0.07900	2.98900	0.49400
B	1.07400	1.99600	-0.68200
O	3.22600	-0.25000	-0.28500
O	3.85300	-0.60000	-1.45800
Pd	4.05300	0.37900	0.61800
P	-0.92400	0.39700	0.05000
C	-2.15200	-1.57600	-0.16700
H	-3.95100	-1.47300	0.23400
H	-4.41800	-0.68400	-0.35700
H	-4.46400	-2.41800	0.02900
C	-4.08100	-1.22300	1.28900
H	-1.64900	-3.07900	0.78400
H	-1.70200	-2.87800	1.85600
C	-2.28800	-3.93600	0.55400
H	-0.61600	-3.33700	0.54000
H	-2.17500	-2.22800	-1.89300
H	-1.15700	-2.46400	-2.20800
C	-2.79200	-3.12700	-1.98000
H	-2.56300	-1.46500	-2.57000
H	5.37600	0.38400	0.05900
C	5.80000	1.38600	0.14900
H	5.99800	-0.31300	0.62800
C	5.24700	-0.06300	-1.41100
H	5.89200	0.77500	-2.11100
H	-2.29100	-0.83300	-1.71900
H	-2.89900	1.56300	-1.09500
H	-1.69800	0.88200	-1.69800
H	-3.12800	2.18400	-1.77100
O	-3.89900	2.37500	-0.19100
H	-3.03500	1.83400	0.36200
H	-2.30000	3.69600	0.02700
H	1.98800	4.30900	-0.48800
	0.40700	4.20600	0.72900
1.44000	-0.53100	-0.07900	
2.48700	-1.33900	2.28200	
	1.16900	2.21700	
H	-1.17500	2.54900	
H	-0.91800	3.07600	
H	-2.18400	1.89800	
H			

Transition State (1,4 addition to simple enone):
(

REFERENCES

(1) A. D. Becke, J. Chem. Phys. 98, 1372 (1993).
(2) C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785(1988).
(3) Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H. Mol. Phys. 80, 1431(1993).
(4) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
(5) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.

Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
(6) http://its.unc.edu/hpc/hardware/\#Cedar/Cypress|outline

ppm
-189.735

33.965

- 28.721

Page SI-23

77.315
76.998
76.679
62.516
25.855
18.369

Page SI-27

Page SI-30

Page SI-33

Page SI-34

Page SI-39

Page SI-41

77.317 76.999 76.681
61.195

- 45.286
-38.422
36.605
31.228
25.919
18.256
\qquad

Page SI-48

Page SI-50

