The Supplementary Information for the paper:

Total Syntheses of Conformationally-locked Difluorinated Pentopyranose and a Pentopyranosyl Phosphate Mimetic

Jonathan A. L. Miles, ${ }^{\text {a }}$ Lisa Mitchell, ${ }^{\text {b }}$ Jonathan M. Percy ${ }^{\text {b, }}{ }^{*}$ and Kuldip Singh ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH (UK),.
${ }^{\mathrm{b}}$ Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL (UK) jonathan.percy@strath.ac.uk

Table of contents	S1
General synthetic procedures	S2
Preparation of compounds 11a, 11b, 13, 14, 26a-27b, 30, 44 and 45	S3-S14
Cartesian coordinates and energies for RHF 6-31G ${ }^{*}$ optimised structures for lowest energy conformers of 39-41, calculated energies $($ RHF 6-31+G**) for 39-41.	S15-S19
NMR spectra $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F},{ }^{31} \mathrm{P}\right)$ for 11a, 11b, 13, 14, 16-19a, 26a-- $\mathbf{2 7 b}, \mathbf{3 3}, \mathbf{3 4}, \mathbf{4 4}, \mathbf{4 5}$ and $\mathbf{4 7}$	S20-S92

General Experimental Procedures:

NMR spectra were recorded on 300 or 400 MHz spectrometers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using the deuterated solvent as the lock and the residual solvent as the internal reference. ${ }^{19}$ F NMR spectra were recorded relative to chlorotrifluoromethane as the external standard. The multiplicities of the spectroscopic data are presented in the following manner: app. $=$ apparent, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, pent. $=$ pentet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad. The appearance of complex signals is indicated by app.. Homocouplings (H-H, F-F) are given in Hertz and specified by J; the nuclei involved in heteronuclear couplings are defined with the observed nucleus given first. Unless stated otherwise, all refer to ${ }^{3} J$ couplings. Chemical ionisation were recorded using ammonia as the reagent gas. GC-MS was carried out on a 30 mx 0.25 m column running a $20-350{ }^{0} \mathrm{C}$ ramp over 27 minutes. High resolution mass spectrometry measurements were carried out using peak matching to suitable reference peaks, depending on the technique used. Thin Layer Chromatography (TLC) was performed on precoated aluminium silica gel plates. Visualisation was achieved by UV light and/or potassium permanganate stain. THF was dried by refluxing with benzophenone over sodium wire until a deep purple colour developed and persisted, then distilled and collected by dry syringe as required.

1,1,1-Trifluoro-hept-6-en-2-one 11a

A solution of 5-bromopropene ($50.7 \mathrm{mmol}, 6 \mathrm{~mL}$) in diethyl ether (30 mL) was added to magnesium turnings ($49 \mathrm{mmol}, 1.2 \mathrm{~g}$) in diethyl ether (20 mL) dropwise with sonication so as to maintain a steady reflux. The black Grignard solution was sonicated at rt for 150 min. further, then cannulated cautiously dropwise to a stirred solution of ethyl trifluoroacetate ($75 \mathrm{mmol}, 9 \mathrm{~mL}$) in diethyl ether $(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under N_{2}. The solution was warmed to $-30^{\circ} \mathrm{C}$ and stirred for 90 min , then warmed to $-10^{\circ} \mathrm{C}$ and stirred for a further 90 min , upon which a white precipitate was deposited. The reaction was quenched with HCl (20 mLof a 20% aqueous solution), the aqueous phase saturated with NaCl , and then extracted with diethyl ether ($1 \times 100 \mathrm{~mL}, 2 \times 50 \mathrm{~mL}$). The combined ether extracts were washed with $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to give a yellow oil, which was purified by distillation $\left(95-100{ }^{\circ} \mathrm{C} / 760 \mathrm{~mm} \mathrm{Hg}\right)$ to afford known ketone 11a ($2.94 \mathrm{~g}, 36 \%, 92 \%$ by GC) as a clear oil. R_{f}. (50% ethyl acetate/hexane) $0.45 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.85-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.01(\mathrm{~m}, 2 \mathrm{H}), 2.72$ (t, $J 7.2,2 \mathrm{H}), 2.12(\mathrm{q}, J 7.2,2 \mathrm{H}), 1.79$ (quint.et, $\left.{ }^{3} J 7.2,2 \mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 191.3$ (q, $\left.{ }^{2} J_{\text {C-F }} 34.7\right), 137.0,116.2,115.7\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}} 292.0, \mathrm{CF}_{3}\right), 35.5,32.6,21.4 ; \delta_{\mathrm{F}}(282 \mathrm{MHz}$, CDCl_{3}) $-79.4(\mathrm{~s}) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2940 \mathrm{w}, 1764 \mathrm{~s}, 1643 \mathrm{w}, 1204 \mathrm{~s}, 1145 \mathrm{~s} ; \mathrm{m} / \mathrm{z}\left(\mathrm{EI}^{+}\right) 166$ $\left(8 \%, \mathrm{M}^{+}\right), 165$ (100), 145 (33), 124 (15), 113 (96), 95 (38), 59 (29). HRMS ($\mathrm{EI}^{+},\left[\mathrm{M}^{+}\right.$) Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}$ 166.06055: found: 166.06047 . The NMR data were in agreement with those of Felix and Laurent ${ }^{19}$ reported previously at a lower level of characterisation. The impurities in the product appear to arise from Wurtz coupling of the Grignard reagent.

1-Chloro-1,1-difluoro-hept-6-en-2-one 11b

The Grignard was prepared as for 11a from 5-bromopropene ($134 \mathrm{mmol}, 15.8 \mathrm{~mL}$) in diethyl ether (25 mL) and magnesium turnings ($160 \mathrm{mmol}, 3.84 \mathrm{~g}$) in diethyl ether (15 mL). The black Grignard solution was then cannulated cautiously dropwise to a stirred solution of methyl chlorodifluoroacetate ($145 \mathrm{mmol}, 15.3 \mathrm{~mL}$) in diethyl ether (140 mL) at $-70^{\circ} \mathrm{C}$ under an atmosphere of N_{2}, then allowed to warm to rt and stirred for 48 h . Quenching and extractive work up as for 11a afforded a yellow oil, which was distilled ($32{ }^{\circ} \mathrm{C} / 10 \mathrm{mmHg}$) to afford 11b ($8.12 \mathrm{~g}, 33 \%, 88 \%$ by GC); R_{f}. (30% ethyl acetate/hexane) $0.58 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.76(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 2 \mathrm{H}), 2.77\left(\mathrm{t},{ }^{3} \mathrm{~J}\right.$ 7.2, 2H), 2.17-2.00 (m, 2H), 1.80 (quint, $J 7.2,2 \mathrm{H}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 191.7$ (dd, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}$ $29.0,29.0), 137.0,119.8\left(\mathrm{t},{ }^{1} J_{\mathrm{C}-\mathrm{F}} 306.1\right), 116.0,34.2,32.5,21.8 ; \delta_{\mathrm{F}}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-$ 68.2 (s); $v_{\max }(f \mathrm{film}) / \mathrm{cm}^{-1} 2930 \mathrm{w}, 1760 \mathrm{~s}, 1115 \mathrm{~s}, 1148 \mathrm{~s}, 911 \mathrm{~s} ; \mathrm{m} / \mathrm{z}\left(\mathrm{EI}^{+}\right) 182\left(10 \%, \mathrm{M}^{+}\right)$, 135 (5), 97 (100), 85 (22), 79 (12), 69 (87), 55 (40), 54 (46); HRMS (EI ${ }^{+},\left[\mathrm{M}^{+}\right)$Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{OCl}$ 182.03111: found: 182.03100 . The impurities in the product appear to arise from Wurtz coupling of the Grignard reagent.

Attempted preparation of $\mathbf{1 2}$ by reductive defluorination.

Ketone 11 a ($0.5 \mathrm{~g}, 3 \mathrm{mmol}$) was added to a stirred suspension of magnesium ($0.145 \mathrm{~g}, 6$ mmol), $\mathrm{TMSCl}(1.52 \mathrm{~mL}, 12 \mathrm{mmol})$ and $\mathrm{DMF}(12 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under argon. The suspension was stirred for 30 min then an aliquot was withdrawn by syringe and analysed by ${ }^{19} \mathrm{~F}$ NMR, revealing a complex mixture from which the pair of doublets indicative of the vinylic CF_{2} was absent.

Attempted direct preparation of 13

A suspension of zinc powder (325 mesh, $0.196 \mathrm{~g}, 3 \mathrm{mmol}$), and freshly-purified CuCl $(0.030 \mathrm{~g}, 0.3 \mathrm{mmol})$ in dry THF (5 mL) was stirred for 30 min under an argon atmosphere. Acrolein ($0.06 \mathrm{~mL}, 1.1 \mathrm{mmol}$) and 11b $(0.182 \mathrm{~g}, 1 \mathrm{mmol})$ were added by syringe and the mixture was stirred at reflux for 4 hr , then an aliquot was withdrawn by syringe and analysed by ${ }^{19}$ F NMR. Some conversion of starting material was observed (ca. 50%) but the signals consistent with the formation of 13 (dd and dd, ${ }^{2} J_{\mathrm{F}-\mathrm{F}} c a .250 \mathrm{~Hz}$) were not present.

4,4-Difluoro-5-oxo-deca-1,9-dien-3-ol 13

Thionyl chloride ($3.54 \mathrm{mmol}, 259 \mathrm{~mL}$) was added to a stirred solution of homoallylic alcohol $\mathbf{1 7}(3.54 \mathrm{mmol}, 1.04 \mathrm{~g})$ in methanol $(35.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature and stirred for 18 h after which the solvent was removed in vacuo. The resulting paste was diluted with water (20 mL) and extracted with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give ketone $\mathbf{1 3}$ (706 $\mathrm{mg}, 98 \%$) as a brown oil, which could be used crude or purified by distillation (Kugelrohr) to afford $\mathbf{1 3}$ as a clear oil ($48 \%, 100 \%$ by GC); bp $75-80^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg} ; \mathrm{R}_{\mathrm{f}}$ (10% diethyl ether in hexane) $0.22 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.92$ (ddd, $J 17.2,10.5,5.8,{ }^{4} J$ $0.6,1 \mathrm{H}), 5.76(\mathrm{ddt}, J 17.0,10.2,6.7,1 \mathrm{H}), 5.50\left(\mathrm{dt}, J 17.2,{ }^{2} J 1.3,1 \mathrm{H}\right), 5.42\left(\mathrm{dt}, J 10.5,{ }^{2} J\right.$ $1.3,1 \mathrm{H}), 5.07-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.43(\mathrm{dd}, \mathrm{m}, 1 \mathrm{H}), 2.72(\mathrm{t}, J 7.2,3 \mathrm{H}), 2.18(\mathrm{q}, J 7.2,2 \mathrm{H})$, 1.73 (pentet, $J 7.2,2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.8\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 30.9,25.5\right), 137.5,131.1$, $120.4,114.8$ (dd, ${ }^{1} J_{\text {C-F }} 258.8,255.0$), 115.6, 72.1 (dd, ${ }^{2} J_{\mathrm{C}-\mathrm{F}} 28.1,25.1$), 37.1, 32.6, 21.4;
$\delta_{\mathrm{F}}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-113.7\left(\mathrm{dd},{ }^{2} J_{\mathrm{F}-\mathrm{F}} 273.0, J_{\mathrm{H}-\mathrm{F}} 7.1,1 \mathrm{~F}\right),-123.3\left(\mathrm{dd},{ }^{2} J_{\mathrm{F}-\mathrm{F}} 273.0, J_{\mathrm{H}-\mathrm{F}}\right.$ $15.2,1 \mathrm{~F}) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3380 \mathrm{br}, 3060 \mathrm{w}, 2994 \mathrm{w}, 1740 \mathrm{w} ; \mathrm{m} / \mathrm{z}$ (CI) $222(100 \%$, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$), 204 (9); HRMS (EI, $\mathrm{M}+\mathrm{H}^{+}$) Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~F}_{2}$ 204.09621: found: 204.09621. In the ${ }^{1} \mathrm{H}$ NMR, the OH signal lies under the t at 2.72 ppm .

2,2-Difluoro-3-oxo-cyclooct-7Z-en-1-ol 14

A solution of $\mathbf{1 3}(0.29 \mathrm{mmol}, 60 \mathrm{mg})$ and titanium(IV) isopropoxide $(0.09 \mathrm{mmol}, 27 \mu \mathrm{~L})$ in DCM (300 mL) was refluxed for 30 minutes. Catalyst 21 ($0.015 \mathrm{mmol}, 12 \mathrm{mg}$) was added as a solution in DCM (5 mL) and the reaction was refluxed for 2 hours. The DCM was distilled off carefully at atmospheric pressure to leave a brown oil (54 mg). Purification by column chromatograpy (40% diethyl ether in pentane, with careful evaporation of the solvent at >200 mmHg) afforded $\mathbf{1 4}(32 \mathrm{mg}, 60 \%, 83 \%$ by GC-MS); $\mathrm{R}_{\mathrm{f}}\left(40 \%\right.$ diethyl ether in hexane ether) 0.33 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.86-5.78(\mathrm{~m}, 1 \mathrm{H})$, $5.65-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.88$ (dddd, $\left.J_{\mathrm{H}-\mathrm{F}} 21.0,3.5, J 7.2,{ }^{4} J 1.2,1 \mathrm{H}\right), 2.66-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.57-$ $2.48(\mathrm{~m}, 1 \mathrm{H}), 2.33\left(\mathrm{dddd},{ }^{2} J 17.2, J\right.$ 8.8, $\left.5.6,3.6,1 \mathrm{H}\right), 2.06-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.61(\mathrm{~m}$, $1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{CDCl}_{3}\right) 200.9\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 25.6\right), 133.3,128.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 6.4\right), 117.7$ $\left(\mathrm{t},{ }^{1} J_{\mathrm{C}-\mathrm{F}} 258.8\right), 68.1\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 23.2\right), 36.2,27.2,26.2 ; \delta_{\mathrm{F}}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-113.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}}\right.$ 236.0, 1F), -123.8 (dd, $\left.{ }^{2} J_{\mathrm{F}-\mathrm{F}} 236.0, J_{\mathrm{H}-\mathrm{F}} 21.0,1 \mathrm{~F}\right) ; m / z(\mathrm{EI}) 175$ (42 \%, [M-H]), 83 (100). An HRMS was not recorded given the relatively low purity of the product.

(\pm)-Syn and achiral and meso 3,16-dibenzoyloxy-4,4,15,15-tetrafluoro-octadeca-1,9E,17-trien-5,14-diones 26a and 27a

A solution of ketone 19a ($0.17 \mathrm{mmol}, 52 \mathrm{mg}$) and titanium tetra iso-propoxide (0.051 mmol, $15.2 \mu \mathrm{~L}$) in freshly degassed $\mathrm{DCM}(8.5 \mathrm{~mL})$ was refluxed under a nitrogen atmosphere for $20 \mathrm{~min} .$. Neolyst catalyst 25 ($0.0084 \mathrm{mmol}, 8 \mathrm{mg}, 5 \mathrm{~mol} \%$) was added and the resulting solution refluxed for 18 hr . The solvent was removed in vacuo and the residue taken up in diethyl ether $(10 \mathrm{~mL})$ then the suspension was filtered through celite. The filtrate was concentrated in vacuo to leave a black oil which was purified by flash chromatography (silica gel, 10% diethyl ether in hexane) to afford an inseparable mixture of dimers 26a and 27a as a yellow oil ($14 \mathrm{mg}, 34 \%$); R_{f} (30% diethyl ether in hexane) $0.24 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8.06-8.01 (m, 4H), 7.63-7.56 (m, 2 H), 7.49-7.42 (m, 4H), $6.05-5.87(\mathrm{~m}, 4 \mathrm{H}), 5.57(\mathrm{~d}, J 16.0,2 \mathrm{H}), 5.50(\mathrm{~d}, J 9.4,2 \mathrm{H}), 5.32-5.27(\mathrm{~m}, 2 \mathrm{H}), 2.65\left(\mathrm{t},{ }^{3} J\right.$ $7.2,4 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.65$ (quintet, ${ }^{3} J 7.2,2 \mathrm{H}$), 1.64 (quintet, ${ }^{3} J 7.2,2 \mathrm{H}$); δ_{C} ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 199.7 (dd, ${ }^{2} J_{\mathrm{C}-\mathrm{F}} 29.6,28.0$), $164.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}} 1.6\right), 133.7,130.1,129.8$, 129.5, 129.0 (d, ${ }^{5} J_{\text {C-F }} 2.4$), 128.6, 127.7-127.6 (m), 122.8, 114.1 (dd, ${ }^{1} J_{\text {C-F }} 262.0,255.6$), 72.34 (dd, ${ }^{2} J_{\mathrm{C}-\mathrm{F}} 30.0,25.2$), 72.31 (dd, ${ }^{2} J_{\mathrm{C}-\mathrm{F}} 30.0,25.2$), 36.9, 36.7, 31.4, 26.1, 22.3, 22.1; $\left\{{ }^{1} \mathrm{H}\right\} \delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-113.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{FFF}} 274.4,1 \mathrm{~F}\right),-113.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{FFF}} 274.4,1 \mathrm{~F}\right),-113.7$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{FFF}} 274.9,2 \mathrm{~F}\right),-118.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{FF}} 274.9,1 \mathrm{~F}\right),-118.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{FFF}} 274.9,1 \mathrm{~F}\right),-118.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}}\right.$ 274.4, 1F), -118.9 (d, $\left.{ }^{2} J_{\text {F-F }} 274.4,1 \mathrm{~F}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2935 \mathrm{~s}, 1742 \mathrm{~s}, 1601 \mathrm{w}, 1452 \mathrm{~s}$, 1264s, 1108s, 987w, 711s; m/z (ES $\left.{ }^{+}\right) 611$ (100\%, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right), 419$ (14); HRMS (ES ${ }^{+}$, $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$) Calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~F}_{4} \mathrm{O}_{6} \mathrm{~N}$: 606.2473: found: 606.2470: and recovered starting material 19a ($22 \mathrm{mg}, 42 \%$) as a yellow oil.

(\pm)-Syn and achiral and meso 3,16-dibenzyloxy-4,4,15,15-tetrafluoro-octadeca-1,9E,17-trien-5,14-diones 26b and 27b

A solution of ketone 19b ($0.190 \mathrm{mmol}, 56 \mathrm{mg}$) and Neolyst catalyst $25(0.0095 \mathrm{mmol}, 9$ $\mathrm{mg}, 10 \%$) in freshly degassed DCM (25 mL) was refluxed under a nitrogen atmosphere for 18 hr . The solvent was removed in vacuo and the residue taken up in diethyl ether (5 mL) then the suspension was filtered through celite. The filtrate was concentrated in vacuo to leave a black oil which was purified by flash chromatography (silica gel, 20% diethyl ether in hexane) to afford an inseparable mixture of dimers 26b and 27b as a yellow oil ($20 \mathrm{mg}, 38 \%$); $\mathrm{R}_{\mathrm{f}}\left(10 \%\right.$ diethyl ether in hexane) $0.40 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.39-7.28 (envelope, 10H), 5.85 (ddd, J 17.1, 10.5, 7.6, 2H), 5.53 (d, J 10.5, 2H), 5.48 (d, $J 17.1,2 \mathrm{H}), 5.30(\mathrm{t}, J 3.8,2 \mathrm{H}), 4.61\left(\mathrm{~d},{ }^{2} J 11.6,2 \mathrm{H}\right), 4.38\left(\mathrm{~d},{ }^{2} J 11.6,2 \mathrm{H}\right), 4.25\left(\mathrm{dt}, J_{\mathrm{H}-\mathrm{F}}\right.$ $16.4, J 7.2,2 H$), 2.69-2.61 (m, 4H), 2.00-1.90 (m, 4H), 1.63 (quintet, $J 7.3,4 \mathrm{H}$); δ_{C} (100MHz, CDCl_{3}) $201.7\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 31.2,25.6\right), 201.6\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 32.0,24.8\right), 136.8,130.2$, 129.6, 128.4, 128.1, 128.0, 128.0, 123.2, 115.0 (dd, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}} 262.0,254.0\right), 79.3\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}\right.$ 31.2, 24.0), 71.4, 37.7, 37.6, 31.5, 26.2, 22.3, 22.1; $\left\{{ }^{1} \mathrm{H}\right\} \delta_{\mathrm{F}}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-110.7(\mathrm{~d}$, $\left.{ }^{2} J_{\text {F-F }} 263.5,4 \mathrm{~F}\right),-124.0\left(\mathrm{~d},{ }^{2} J_{\text {F-F }} 263.5,2 \mathrm{~F}\right),-124.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}} 263.5,1 \mathrm{~F}\right),-124.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}}\right.$ 263.5, 1F); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2933 \mathrm{~s}, 1730 \mathrm{~s}, 1455 \mathrm{w}, 1402 \mathrm{w}, 1208 \mathrm{w}, 1098 \mathrm{~s}, 738 \mathrm{~s}, 699 \mathrm{~s} ; \mathrm{m} / \mathrm{z}$ $\left(\mathrm{Cl}^{+}\right) 578\left(24 \%,\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right), 358$ (13), 172 (38), 106 (100): $\mathrm{HRMS}\left(\mathrm{ES}^{+},\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$ Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~F}_{4} \mathrm{O}_{4} \mathrm{~N} 578.2888$: found: 578.2899: then cyclooctenone 20b ($2 \mathrm{mg}, 4 \%$) as a yellow oil and recovered $\mathbf{1 9 b}$ ($20 \mathrm{mg}, 36 \%$).

$3 R^{*}, 4 R^{*}$-Diacetoxy-2,2-difluoro-9-oxa-1 $S^{*}, 5 R^{*}$-bicyclo[3.3.1]nonan- $1 S^{*}$-ol 30

A solution of epoxide 29a ($0.2 \mathrm{~g}, 0.68 \mathrm{~mol}$), in water (2 mL) was made up in a CEM microwave vial which was then sealed with a crimp cap. The tube was irradiated in a CEM Discover microwave for 10 minutes at $100^{\circ} \mathrm{C}$ (30 W power with cooling). The solution was transferred to a flask and stirred, and a mixture of $\mathrm{NaOH}(10 \mathrm{~mL}$ of a 0.1 M aqueous solution, 1 mmol) and methanol (5 mL) was added. The solution was stirred at room temperature for one hour and neutralised with $\mathrm{HCl}(3 \mathrm{~mL}$ of a 0.5 M aqueous solution, 1.5 mmol). The whole mixture was concentrated in vacuo to yield a white solid (a mixture of triol, benzoic acid and NaCl). The solid mixture was dissolved in water (2 mL) and passed through a short column ($c a .6 \mathrm{~cm}$) containing pre-swollen Sephadex G10 size exclusion beads. The product mixure was collected and re-concentrated in vacuo before dissolving again in the minimum amount of water (1 mL) and passing through a Supelco $\mathrm{DSC}-\mathrm{NH}_{2}$ SPE tube conditioned with water (2 mL) and a small amount of 5% HCl solution $(0.5 \mathrm{~mL})$. The product was eluted with a 50% mixture of water/methanol and the solution concentrated in vacuo to yield a solid triol (0.1 g, ca. 0.48 mmol) which was bis-acetylated directly.

Acetic anhydride ($0.24 \mathrm{~mL}, 2.4 \mathrm{mmol}$) and PVP ($0.48 \mathrm{~g}, 0.48 \mathrm{mmol}$) were added to a solution of crude triol in DCM (4.8 mL), and the mixture was swirled gently at room temperature overnight. The resin was filtered off and washed with a saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and dried for reuse. The washings were extracted with DCM (3 x 10 mL) and the combined organic extracts washed with saturated NaHCO_{3} solution $(10 \mathrm{~mL})$, brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford a white solid. This solid was washed through a Supelco DSC-NH2 SPE tube preconditioned with DCM (2
$\mathrm{mL})$ to remove excess acetic anhydride. The product was eluted with DCM (3 x 2 mL) and the resulting solution concentrated in vacuo to afford $\mathbf{3 0}$ as a white solid ($98 \mathrm{mg}, 49 \%$ over 3 steps,). Crystals were grown by vapour diffusion of hexane into ethyl acetate. R_{f} (35% ethyl acetate in hexane) $0.24 . ; \mathrm{mp} 170^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.83-5.73$ (ddd, $J_{\mathrm{H}-}$ F $20.8,7.0, J 17.4,1 \mathrm{H}), 5.28$ (dd, J 17.4, 3.5, 1H), 4.43 (dd, J 6.5, 3.5, 1H), 3.43 (br. s), 1.94-1.91 (m 2H), 1.89-1.86 (m, 2H), 2.17-2.14 (s, 3H), 2.12-2.10 (m, 2H), 1.82-1.78 (s, $3 \mathrm{H}), \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.8,169.6,116.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}} 262.2,261.0\right), 93.9\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}\right.$ 25.7, 20.8), 71.1 (dd, ${ }^{2} J_{\text {C-F }} 8.6,1.2$), 69.9, 69.7 (t, ${ }^{2} J_{\text {C-F }} 23.2$), 27.4, 20.7 (2 signals), 20.6, $18.0, \delta_{\mathrm{F}}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right),-117.6\left(\mathrm{dd},{ }^{2} J_{\mathrm{F}-\mathrm{F}} 259.0, J_{\mathrm{F}-\mathrm{H}} 7.0,1 \mathrm{~F}\right),-127.5\left(\mathrm{dd},{ }^{2} J_{\mathrm{F}-\mathrm{F}} 259.0\right.$, $\left.J_{\mathrm{F}-\mathrm{H}} 20.8,1 \mathrm{~F}\right)$; Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{6} \mathrm{~F}_{2} \mathrm{C}, 49.0 ; \mathrm{H}, 5.5$: found $\mathrm{C}, 49.1 ; \mathrm{H}, 5.43$. A satisfactory ion could not be obtained for this compound (ES-MS, GC-MS) Crystal data: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{6}$, crystal size $0.27 \times 0.13 \times 0.10 \mathrm{~mm}^{3}, M=294.25$, monoclinic, a $=12.1162(19) \AA, b=7.5984(12) \AA, c=15.339(3) \AA, \alpha=90, \beta=110.262(3)^{\circ}, \gamma=90$ deg, $U=1324.8(4) \AA^{3}, T=150(2) \mathrm{K}$, space group $\mathrm{P} 2(1) / \mathrm{c}, \mathrm{Z}=4, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.135$ $\mathrm{mm}^{-1}, 9151$ reflections measured, $2323[\mathrm{R}($ int $)=0.0473]$ which were used in all calculations. Final R indices $\left[\mathrm{F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)\right] \mathrm{R} 1=0.0428$, $\mathrm{wR} 2=0.0978$; R indices (all data) $\mathrm{R} 1=0.0542, \mathrm{wR} 2=0.1034$.

Diols 37 and 38 under stoichiometric $\mathbf{O s}(V I I I)$ conditions

TMEDA ($1.1 \mathrm{mmol}, 0.166 \mathrm{~mL}$) was added to a solution of cyclooctenone $\mathbf{2 0 b}$ (0.87 $\mathrm{mmol}, 0.232 \mathrm{~g})$ in dry DCM (100 mL). The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and osmium tetroxide ($0.98 \mathrm{mmol}, 250 \mathrm{mg}$) was added in one portion. The solution was stirred at this temperature for 12 h then $\mathrm{Na}_{2} \mathrm{SO}_{3}(1 \mathrm{~g})$ was added in one portion and stirred as the
reaction warmed to rt over 3 hr . Water was added $(30 \mathrm{~mL})$ and the layers separated, then the aqueous layer was extracted with DCM ($2 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine and concentrated in vacuo. The ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(\left\{{ }^{1} \mathrm{H}\right\} \delta_{\mathrm{F}}(282\right.$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)-108.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}} 265.8,1 \mathrm{~F}\right),(-111.8)-(-116.0)(\mathrm{m}, 2 \mathrm{~F}),-131.2\left(\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{F}}\right.\right.$ $265.8,1 \mathrm{~F}$) was not consistent with the formation of $\mathbf{3 7}$ and 38, and electrospray MS showed the product still bound as the osmate ester $\left(\mathrm{m} / \mathrm{z}\right.$, (ES-MS, ES ${ }^{+}$) 637 (44%, [M$\left.\mathrm{H}]^{+}, 635(62)\right)$ therefore the crude material was taken up in $\mathrm{CD}_{3} \mathrm{OD}(0.5 \mathrm{~mL})$ and conc. $\mathrm{HCl}\left(3\right.$ drops, 0.3 mL) was added. The ${ }^{19} \mathrm{~F}$ NMR spectrum then showed the presence of 37 and 38 (1:1) alone.

Diols 37 and 38 under catalytic Ru(VIII) conditions

A solution of $\mathrm{NaIO}_{4}(1.4 \mathrm{mmol}, 300 \mathrm{mg})$ and $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 38 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(2$ $\mathrm{mL})$ was prepared and stirred at rt for 10 min ., then cooled to $0^{\circ} \mathrm{C}$. Ethyl acetate (3 mL), acetonitrile (6 mL) and $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(0.025 \mathrm{mmol}, 5.2 \mathrm{mg})$ were added sequentially and the solution stirred for a further 3 min . A solution of $\mathbf{2 0 b}(0.98 \mathrm{mmol}, 261 \mathrm{mg})$ in ethyl acetate (3 mL) was added and the solution stirred vigorously (to ensure intimate mixing of the two phases which tended to separate), allowed to warm to room temperature over 2h then stirred at this temperature for 18 hr . The reaction mixture was diluted with ethyl acetate (80 mL), and the mixture washed with $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to afford a viscous red oil. Flash chromatography (silica gel eluted with 30-50\% gradient of ethyl acetate in hexane for 4 column volumes, then 50% ethyl acetate in hexane) afforded $\mathbf{3 8}(62 \mathrm{mg}, 21 \%)$ then 37 (71 mg, 24\%).

$3 R^{*}$-Benzyloxy-1 R^{*}-(dibenzylphosphoryloxy)-2,2-difluoro-9-oxa-1 $R^{*}, 5 S^{*}$ -bicyclo[3.3.1]nona-4R*-ol 44 and $3 R^{*}$-Benzyloxy- $1 R^{*}, 4 R^{*}$ -
 bis(dibenzylphosphoryloxy)- 2,2-difluoro-9-oxa-1 $R^{*}, 5 S^{*}$-bicyclo[3.3.1]nonane 45

n-Butyllithium ($0.035 \mathrm{mmol}, 0.015 \mathrm{~mL}$ of a 2.03 M solution in hexanes) was added to a stirred solution of $\mathbf{3 7}(0.035 \mathrm{mmol}, 10.5 \mathrm{mg})$ in dry THF (1.5 mL) under an atmosphere of nitrogen at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 6 hr then tetrabenzylpyrophosphate ($0.035 \mathrm{mmol}, 19 \mathrm{mg}$) was added as a solution in THF $(0.5 \mathrm{~mL})$ in one portion and the solution allowed to warm to rt over 2 hr , then stirred overnight. The reaction was quenched with buffer (5 mL of a pH 7 solution) and the aqueous phase was extracted with ethyl acetate (3 x 20 mL). The combined organic extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to afford a grey paste which was purified (flash silica, 70% ethyl acetate in hexane) to afford phosphate ester 44 ($15 \mathrm{mg}, 14 \%$) as a grey paste; $\mathrm{R}_{\mathrm{f}}\left(70 \%\right.$ ethyl acetate in hexane) $0.21 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.41-7.28(\mathrm{~m}, 15 \mathrm{H}), 5.14\left(\mathrm{dd},{ }^{2} J 11.8, J_{\mathrm{H}-\mathrm{P}} 7.4,1 \mathrm{H}\right), 5.11\left(\mathrm{dd},{ }^{2} J 11.8, J_{\mathrm{H}-\mathrm{P}}\right.$ $7.4,1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.91\left(\mathrm{~d},{ }^{2} J 11.7,1 \mathrm{H}\right), 4.78\left(\mathrm{~d},{ }^{2} J 11.7,1 \mathrm{H}\right), 4.43(\mathrm{~d}, J$ $6.6,1 \mathrm{H}$), 4.01 (ddd, $J_{\mathrm{H}-\mathrm{F}} 19.4$, J 7.0, 4.4, 1H), 3.83 (br. s, 1H), 2.54-2.40 (m, 1H), 2.18$2.06(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.35(\mathrm{~m}, 2 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 136.5,136.0$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{P}} 8.8\right), 135.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{P}} 8.0\right), 128.7,128.5,128.5,128.4,128.4,128.2,128.2,128.0$, $127.9,116.6\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}} 258.0,251.7\right), 99.7\left(\mathrm{ddd},{ }^{2} J_{\mathrm{C}-\mathrm{F}} 27.2,17.6,{ }^{2} J_{\mathrm{C}-\mathrm{P}} 7.2\right), 74.3$ (ddd, ${ }^{2} J_{\mathrm{C}-}$ $\left.{ }_{\mathrm{F}} 20.0,16.8,{ }^{4} J_{\mathrm{C}-\mathrm{P}} 1.6\right), 73.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}} 1.6\right), 70.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}} 8.0\right), 69.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{P}} 6.4\right), 69.4(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{P}} 6.4\right) 28.0,22.7,18.4 ; \delta_{\mathrm{F}}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-115.5\left(1 \mathrm{~F}, \mathrm{~m}\right.$. incl. app. d, $\left.{ }^{2} J_{\mathrm{F}-\mathrm{F}} 246.7\right)$, -121.6 (ddd, $\left.{ }^{2} J_{\mathrm{F}-\mathrm{F}} 246.7, J_{\mathrm{H}-\mathrm{F}} 19.4,{ }^{4} J_{\mathrm{H}-\mathrm{F}} 4.3,1 \mathrm{~F}\right) ; \delta_{\mathrm{P}}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-8.50$ (quintet, J_{P}

н 7.3); $v_{\text {max }}(f i l m) / \mathrm{cm}^{-1} 3425 \mathrm{br}, 2943,1490 \mathrm{w}, 1455 \mathrm{~s}, 1279,1214 \mathrm{~s}, 1108 \mathrm{~s}, 1038 \mathrm{~s}, 744 \mathrm{~s}$, 697s; $m / z\left(\mathrm{ES}^{+}\right) 561\left(97 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 404$ (4), 381 (4), 228 (100), 158 (13); HRMS (ES^{+}, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{O}_{7} \mathrm{P}: 561.1848$: found: 561.1845: and bis-phosphate 45 (7 $\mathrm{mg}, 3 \%)$ as a grey paste; R_{f} (70% ethyl acetate in hexane) $0.15 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.44-7.17 (m, 20H), 5.15-5.02 (m, 2H), $5.02\left(\mathrm{~d},{ }^{2} J 10.4,1 \mathrm{H}\right), 4.97\left(\mathrm{~d},{ }^{2} J 10.4,1 \mathrm{H}\right), 4.96$ $\left(\mathrm{d},{ }^{2} J 11.8,1 \mathrm{H}\right), 4.91\left(\mathrm{~d},{ }^{2} J 11.8,1 \mathrm{H}\right), 4.86\left(\mathrm{~d},{ }^{2} J 11.5,1 \mathrm{H}\right), 4.81\left(\mathrm{~d},{ }^{2} J 11.5,1 \mathrm{H}\right), 4.76-$ $4.69(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J 6.1,1 \mathrm{H}), 4.03\left(1 \mathrm{H}\right.$, br. d, $\left.J_{\mathrm{H}-\mathrm{F}} 19.9\right), 2.48$-range please (m, 1 H), 2.48-1.78 (m, 3H), 1.48-1.32 (m, 2H); $\delta_{\mathrm{F}}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-117.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{FFF}} 246.4,1 \mathrm{~F}\right),-$ 123.4 (ddd, $\left.{ }^{2} J_{\mathrm{F}-\mathrm{F}} 246.4, J_{\mathrm{H}-\mathrm{F}} 19.9,{ }^{4} J_{\mathrm{H}-\mathrm{F}} 5.2,1 \mathrm{~F}\right) ; \delta_{\mathrm{P}}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-1.86$ (quintet, $J_{\mathrm{P}-\mathrm{H}}$ 7.3, 1P), -8.68 (quintet, $\left.J_{\mathrm{P}-\mathrm{H}} 7.3,1 \mathrm{P}\right) ; m / z\left(\mathrm{ES}^{+}\right) 821\left(79 \%,[\mathrm{M}+\mathrm{H}]^{+}\right), 583$ (19), 561 (23), 404 (6), 228 (100), 158 (32). [HRMS ($\mathrm{ES}^{+},[\mathrm{M}+\mathrm{H}]^{+}$) Found: 821.2448. Calc. for $\left.\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{~F}_{2} \mathrm{O}_{10} \mathrm{P}_{2}: 821.2451\right]$: and 37 ($21 \mathrm{mg}, 35 \%$). Insufficient material was obtained for a ${ }^{13} \mathrm{C}$ NMR spectrum of 45 .

Attempted Selective Phosphorylation of the Sodium Salt of 31 in the presence of 15-crown-5

A solution of sodium hexamethyldisilazane $(0.041 \mathrm{mmol}, 0.023 \mathrm{~mL}$ of a 1.8 M solution in THF) was added to a stirred solution of bicyclic diol 37 ($0.041 \mathrm{mmol}, 12.2 \mathrm{mg}$) in dry THF $\left(0.5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C} .15$-Crown- $5(0.041 \mathrm{mmol}, 8.1 \mu \mathrm{~L})$ was added and the solution cooled to $-20^{\circ} \mathrm{C}$ and stirred at that temperature for 24 hours. A solution of tetrabenzyl pyrophosphate $(0.041 \mathrm{mmol}, 22.1 \mathrm{mg})$ in dry THF $\left(0.2 \mathrm{~cm}^{3}\right)$ was added and the solution stirred at $-20^{\circ} \mathrm{C}$ for a further 27 hours. The reaction was quenched with pH 7 buffer solution (5 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic
extracts were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give a grey paste. Analysis by ${ }^{19} \mathrm{~F}$ NMR indicated the presence of monophosphate 44 (40\%), bis-phosphate 45 (16\%) and recovered starting material 37 (44\%).

Cartesian coordinates for geometry optimised structures for 39-41 (RHF 6-31G*) and energies
RHF geometry optimisations and energy calculations were carried out using PC Spartan Pro 1.0.5 (Intel Pentium 4 (2.66 GHz with 1.02GB RAM)).

Frequency calculations were carried out for both conformers of each of 39-41 using Spartan04 ((Intel Pentium 4 (3.80 GHz with 1.99 GB RAM)). No imaginary frequencies were obtained for any of the six structures.

39 boat-boat

ATOM				Coordinates (Angstroms)	
X	C	0.778580	1.170112	0.436141	
2	C	-0.021919	-0.959828	1.110720	
3	C	-1.371208	0.255695	-0.677580	
4	C	-1.395958	-0.751668	0.469671	
5	C	-0.538248	1.472813	-0.307229	
6	O	0.458262	0.314999	1.496590	
7	H	-0.939273	-0.202525	-1.551378	
8	H	-0.178216	-1.498822	2.034083	
9	C	1.032035	-1.702743	0.289199	
10	H	1.839223	-1.947155	0.973509	
11	H	0.618817	-2.637050	-0.070215	
12	C	1.879940	0.571854	-0.432276	
13	H	2.764847	0.599775	0.192922	
14	H	2.062708	1.216260	-1.282795	
15	C	1.602429	-0.872157	-0.866848	
16	H	2.529846	-1.319560	-1.208062	
17	H	0.938045	-0.897456	-1.722273	
18	O	1.269770	2.337193	0.964476	
19	H	0.630770	2.698331	1.566953	
20	O	-2.671589	0.613642	-1.048339	
21	H	-3.019485	1.237894	-0.423776	
22	F	-0.301095	2.223668	-1.389016	
23	F	-1.297517	2.238816	0.527207	
24	O	-1.893805	-1.981733	0.036672	
25	H	-2.741982	-1.843138	-0.366230	
26	H	-2.034978	-0.337219	1.247875	

Energy is -808.249119373 au

39 boat-chair

ATOM		Coordinates (Angstroms)		
1	C	0.683375	1.184044	0.417614
2	C	0.101763	-1.050457	0.984545
3	C	-1.493128	0.205341	-0.488831
4	C	-1.361507	-0.874353	0.576283
5	C	-0.751543	1.458855	-0.059551
6	O	0.574083	0.212074	1.419802
7	H	-1.042748	-0.146251	-1.410691
8	H	0.130851	-1.674231	1.864598
9	C	1.022331	-1.639420	-0.110307
10	H	1.412113	-2.594731	0.220621
11	H	0.458729	-1.843668	-1.013349
12	C	1.629990	0.726019	-0.708120
13	H	2.432197	1.448611	-0.770896
14	H	1.123870	0.736285	-1.667177
15	C	2.170804	-0.673599	-0.411398
16	H	2.841388	-0.625681	0.439005
17	H	2.749833	-1.031930	-1.256119
18	O	1.204063	2.316743	0.990011
19	H	0.658271	2.566086	1.726627
20	O	-2.856122	0.443536	-0.682290
21	H	-2.981701	1.079169	-1.375073
22	F	-0.756591	2.342676	-1.078772
23	F	-1.414275	2.051172	0.953738
24	O	-1.856509	-2.095009	0.115814
25	H	-2.766938	-1.980675	-0.126359
26	H	-1.912597	-0.540605	1.450275

Energy is -808.245239886 au

40 boat-boat

		Coordinates (Angstroms)		
ATOM				X
1	C	0.321029	1.236447	0.493786
2	C	0.131170	-1.089502	0.939645
3	C	-1.250012	-0.190321	-1.003890
4	C	-1.128651	-1.260741	0.089242
5	C	-0.902794	1.187093	-0.443119
6	0	0.126168	0.230515	1.456862
7	H	-0.557824	-0.395632	-1.804613
8	H	0.009490	-1.729631	1.802324
9	H	-1.150291	-2.238437	-0.373467

10	C	1.477485	-1.400620	0.283408
11	H	2.206043	-1.451933	1.086378
12	H	1.444843	-2.383910	-0.176535
13	C	1.673201	1.074294	-0.191623
14	H	2.399964	1.311870	0.576524
15	H	1.771350	1.817282	-0.972528
16	C	1.931796	-0.338775	-0.725093
17	H	2.993148	-0.454978	-0.915383
18	H	1.448384	-0.483423	-1.683653
19	0	0.348453	2.444622	1.140614
20	H	-0.487646	2.595905	1.564050
21	0	-2.514263	-0.189049	-1.572308
22	H	-3.151122	-0.295946	-0.875580
23	0	-2.263490	-1.201542	0.918785
24	H	-2.162838	-0.480136	1.528733
25	F	-0.752213	2.067872	-1.438794
26	F	-1.961382	1.618678	0.296235

Energy is -808.250065318 au
40 boat-chair

ATOM		Coordinates (Angstroms)		
1	C	0.347800	1.209630	0.400546
2	C	0.146947	-1.123296	0.818485
3	C	-1.374692	-0.146167	-0.944872
4	C	-1.202020	-1.244050	0.115011
5	C	-0.977690	1.213489	-0.377118
6	O	0.235385	0.185901	1.356864
7	H	-0.724453	-0.340554	-1.786626
8	H	0.128572	-1.769094	1.683744
9	H	-1.295011	-2.208758	-0.366317
10	C	1.369655	-1.451330	-0.068398
11	H	1.867371	-2.335238	0.313516
12	H	1.057708	-1.692310	-1.081163
13	C	1.582703	1.006263	-0.497530
14	H	2.209853	1.880008	-0.386356
15	H	1.293888	0.958938	-1.541659
16	C	2.333040	-0.264474	-0.100762
17	H	2.781472	-0.131189	0.877021
18	H	3.138823	-0.453860	-0.801610
19	O	0.497760	2.394503	1.073661
20	H	-0.257714	2.535109	1.631817
21	O	-2.669233	-0.120408	-1.440098
22	H	-3.266080	-0.224502	-0.707998
23	O	-2.253515	-1.172499	1.042986

24	H	-2.089578	-0.455356	1.643518
25	F	-0.938040	2.130764	-1.349190
26	F	-1.942953	1.618480	0.492527
Energy is		-808.246689139	au	
41 boat-boat				
ATOM		Coordinates (Angstroms)		
		X	Y	Z
1	0	-0.049877	0.148226	-1.516268
2	C	-1.129282	-1.385169	-0.040374
3	C	-1.082273	1.113509	0.358977
4	C	-1.390271	-0.257117	0.968490
5	C	0.110516	1.210794	-0.614549
6	C	0.091847	-1.141649	-0.936880
7	H	-1.018748	-2.305625	0.515360
8	H	-2.449530	-0.261124	1.198035
9	H	-0.014407	-1.829398	-1.763893
10	C	1.494580	-1.307824	-0.351275
11	H	1.565512	-2.262307	0.161172
12	H	2.170798	-1.352761	-1.199940
13	C	1.502120	1.195450	0.008878
14	H	1.567811	1.973680	0.759121
15	H	2.159165	1.477992	-0.805574
16	C	1.926111	-0.164635	0.572975
17	H	1.514887	-0.310842	1.557940
18	H	3.006268	-0.177004	0.676270
19	0	0.013255	2.385738	-1.318532
20	H	-0.827208	2.421006	-1.757999
21	F	-2.180399	1.467363	-0.360280
22	F	-0.966538	2.020019	1.346392
23	0	-0.642302	-0.486944	2.122714
24	H	-0.814037	0.200961	2.752362
25	0	-2.258190	-1.545963	-0.857622
26	H	-2.299808	-0.826375	-1.475500
Ene	rgy is	-808.245696213		

41 boat-chair

ATOM			X	Y
1	0	0.333046	0.238873	-1.444475
2	C	-1.068871	-1.143319	-0.011835
3	C	-0.765844	1.311190	0.367400
4	C	-1.753795	0.209684	0.012857
5	C	0.548298	1.230405	-0.478166

6	C	0.171416	-1.073976	-0.926763
7	H	-0.789574	-1.396590	1.006139
8	H	-2.122952	0.421372	-0.984230
9	H	-0.032325	-1.691102	-1.787861
10	C	1.462759	-1.507422	-0.241530
11	H	1.343007	-2.507660	0.164168
12	H	2.243883	-1.552063	-0.994291
13	C	1.808992	0.922595	0.326982
14	H	1.915622	1.643202	1.126913
15	H	2.623000	1.082494	-0.370873
16	C	1.857358	-0.513649	0.855725
17	H	1.203528	-0.617704	1.714439
18	H	2.859587	-0.730221	1.209970
19	0	0.781940	2.415203	-1.126790
20	H	0.014027	2.680183	-1.616357
21	F	-1.391119	2.492755	0.146181
22	F	-0.493840	1.285418	1.681981
23	0	-2.804327	0.138089	0.929794
24	H	-3.308697	0.941002	0.913431
25	0	-1.932448	-2.123243	-0.513361
26	H	-2.702669	-2.155516	0.040554
Energy is	-808.242457349	au		

Table S1. Energies for 39-41 (RHF 6-311+G**)

Triol E/au (SPE, RHF 6-311+G**)

39 boat-boat	$\mathbf{- 8 0 8 . 4 8 9 8 9 1 8}$
39 boat-chair	$\mathbf{- 8 0 8 . 4 8 6 2 1 1 4}$
40 boat-boat	$\mathbf{- 8 0 8 . 4 8 9 4 5 2 1}$
40 boat-chair	$\mathbf{- 8 0 8 . 4 8 6 0 7 1 7}$
41 boat-boat	$\mathbf{- 8 0 8 . 4 8 4 8 7 1 3}$
41 boat-chair	$\mathbf{- 8 0 8 . 4 8 3 3 1 6 5}$

175
150
125
100

75
50
25

$17 \quad{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{Spectrum}$
$282 \mathrm{MHz}, \mathrm{CDCl}_{3}$
-

[^0]

| 1 | \mid | 1 |
| :---: | :---: | :---: | :---: |
| -50 | -100 | |

ppm (f1)

18a
${ }^{1} \mathrm{H}$ NMR Spectrum $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

BzO O O

F F
18a
${ }^{13}$ C NMR Spectrum
$75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

18a Crude Material
${ }^{1}$ H NMR Spectrum
$300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

BnO O O O

F F
18b
${ }^{19}$ F NMR Spectrum $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$

F F
19a
${ }^{13} \mathrm{C}$ NMR Spectrum
$75 \mathrm{MHz}, \mathrm{CDCl}_{3}$

BzO O
 F F

19a Crude Material
${ }^{1}$ H NMR Spectrum $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

19b
${ }^{19}$ F NMR Spectrum
$282 \mathrm{MHz}, \mathrm{CDCl}_{3}$

26a/27a
$\left\{{ }^{1} \mathrm{H}\right\}^{19} \mathrm{~F}$ NMR Spectrum
$376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

26b/27b
$\left\{{ }^{1} \mathrm{H}\right\}{ }^{19}$ F NMR Spectrum
$282 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^1]

```
-40 [-50 <lllllllllll
```

-25
-50
-75
-100
-125
-150

$\mathrm{AcO} \mathrm{OBn}_{\mathrm{F}}$
47
31 P NMR Spectrum
$121 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$

150
125
100
25
-25
-50
-125

$\mathrm{O} \mathrm{F} \mathrm{OPO}(\mathrm{OH})_{2}$
 $\mathrm{AcO}^{\mathrm{OH}} \underset{\mathrm{F}}{ }$

Free acid from 47
${ }^{31}$ P NMR Spectrum
$121 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$

$$
\begin{aligned}
& \mathrm{O} \mathrm{FPO}_{3} .2 \mathrm{HNEt}_{3} \\
& \mathrm{HO} \mathrm{OH}_{\mathrm{F}} \\
& \text { Bis(triethylamonium) salt } \\
& \text { from } 47 \\
& { }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{Spectrum} \\
& 376 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}
\end{aligned}
$$

[^2]

\[

$$
\begin{aligned}
& \mathrm{O} \mathrm{~F}^{\mathrm{OPO}_{3} \cdot\left(\mathrm{NH}_{4}\right) \mathrm{Na}} \\
& \mathrm{HO}{ }^{\mathrm{OH}} \mathrm{~F} \\
& \mathbf{4 8}^{19} \mathrm{~F} \mathrm{NMR} \mathrm{Spectrum} \\
& 376 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}
\end{aligned}
$$
\]

[^0]:

[^1]: ${ }^{\mathrm{O}} \mathrm{F}^{\mathrm{OPO}(\mathrm{OBn})_{2}}$
 $\mathrm{HO}^{\mathrm{OBn}} \mathrm{F}_{\mathrm{F}}$
 44
 ${ }^{19}$ F NMR Spectrum
 $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^2]:

