Directed *ortho* Metalation – Boronation and Suzuki-Miyaura Cross Coupling of Pyridine Derivatives. A One-pot Protocol to Substituted Azabiaryls

Manlio Alessi, Andrew Larkin Lamont, Kevin A. Ogilvie, Laine A. Green, Sunny Lai, Simon Lopez, Victor Snieckus*

victor.snieckus@chem.queensu.ca

Department of Chemistry, Queen's University, Kingston, ON, Canada KlL 3N6

TABLE OF CONTENTS

General Methods	S 3
Preparation and characterization data for:	
N2,N2-Diethyl-2-pyridinecarboxamide (5).	S 3
N2,N2-Diethyl-3-(2-pyridylcarbonyl)-2-pyridinecarboxamide (7).	S 4
tert-Butyl-6-[(diethylamino)carbonyl]nicotinate (9).	S4
N2,N2-Diethyl-5-([1-(<i>tert</i> -butyl)-1,1-dimethylsilyl]oxymethyl)-2-pyridine-	
carboxamide (10).	S 6
Characterization data for:	
tert-Butyl-6-[(diethylamino)carbonyl]-5-hydroxynicotinate (13).	S 7
N2,N2-Diethyl-5-([1-(tert-butyl)-1,1-dimethylsilyl]oxymethyl)-3-hydroxy-2-	
pyridinecarboxamide (14).	S 7
3-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine-2-carboxylic	
acid diethylamide (16a).	S 8
N,N-Diethyl-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-isonicotinamide	
(16c) .	S 8
3-Fluoro-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (16d).	S 9

5 [1,3,0,2]Dioxuzuborocun 2 ji pyriune 2 curboxyne uciu uternyiunnue (174).	3-[1,3,6,2]Dioxazaborocan-2-yl-pyridine-2-carboxylic acid diethylamide (17a). S9		
4-[1,3,6,2]Dioxazaborocan-2-yl- <i>N</i> , <i>N</i> -diethyl-nicotinamide (17b).	10		
3-[1,3,6,2]Dioxazaborocan-2-yl-N,N-diethyl-isonicotinamide (17c). S1	10		
2-(3-Fluoro-pyridin-4-yl)-[1,3,6,2]dioxazaborocane (17d).	11		
4-[1,3,6,2]Dioxazaborocan-2-yl-pyridine-3-sulfonic acid diethylamide (17e). S1	11		
Diethyl-carbamic acid 4-[1,3,6,2]dioxazaborocan-2-yl-pyridin-3-yl ester (17f).S1	12		
Preparation and characterization data for N,N-Diethyl-4-phenyl-nicotinamide (18). S1	12		
Characterization data for:			
3-(4-Methoxy-phenyl)-pyridine-2-carboxylic acid diethylamide (19a). S1	13		
3-(4-Cyano-phenyl)-pyridine-2-carboxylic acid diethylamide (19b). S1	13		
3-(2,4-Dimethoxy-phenyl)-pyridine -2-carboxylic acid diethylamide (19c). S1	14		
3-(4-Nitrophenyl)-pyridine -2-carboxylic acid diethylamide (19d). S1	15		
N,N-diethyl-4-(4-methoxyphenyl)nicotinamide 1(9e). S1	15		
4-(3,4-dimethoxyphenyl)-N,N-diethylnicotinamide (19f). S1	16		
4-(4-cyanophenyl)-N,N-diethylnicotinamide (19g). S1	16		
N,N-Diethyl-4-(3-methoxy-phenyl)-nicotinamide (19h). S1	17		
3-(2,4-Dimethoxy-phenyl)-N,N-diethylisonicotinamide (19i). S1	17		
3-(4-Cyano-phenyl)-N,N-diethylisonicotinamide (19k). S1	18		
3-(3-Chloro-phenyl)-N,N-diethylisonicotinamide (19l). S1	18		
N,N-Diethyl-3-thiophen-2-ylisonicotinamide (19m).	19		
3-(2-Diethylcarbamoyl-phenyl)-N,N-diethylisonicotinamide (19n). S1	19		
Representative Procedure 5 for the One-Pot DoM – Boronation - Suzuki-			
Miyaura Cross Coupling of 15f. 3-Chloro-4-(4-methoxy-henyl)pyridine (19o). S2	20		
Characterization Data for:			
4-(3-Chloro-pyridin-4-yl)benzonitrile (19p). S2	21		
3-Chloro -4-(4-nitrophenyl)pyridine (19q).	21		
2-Fluoro-3-(3-methoxy-phenyl)pyridine (19r).	22		
3-(3-Chloro-phenyl)-2-fluoropyridine (19s).	22		
	23		
Diethyl-carbamic acid 4-(4-methoxy-phenyl)-pyridin-3-yl ester (19t). S2			
Diethyl-carbamic acid 4-(4-methoxy-phenyl)-pyridin-3-yl ester (19t).S2Preparation and characterization data for			

Preparation of 7-Methoxy-2-azafluorenone 20e.	S24
Preparation of 8-Methoxy-2-azafluorenone 20h.	S24
React IR Study for the Directed Remote Metalation of 19h.	S25

General Methods. Melting points were obtained with a Fisher Scientific Melting Point Apparatus and are uncorrected. IR spectra were recorded as KBr pellets or as thin films using a BOMEM FT-IR spectrometer. ¹H 200, 300 and 400 MHz and ¹³C 50, 75.43 and 100 MHz NMR spectra were obtained on a Bruker AC 200, Avance-300, or Avance-400 spectrometer. THF was freshly distilled from sodium benzophenone ketyl under nitrogen whereas toluene and Na₂CO₃ 2 M solution were degassed with argon for 1 h under sonication. HN^{*i*}Pr₂ was freshly distilled from CaH₂ under nitrogen. *n*-Butyllithium was purchased from Aldrich as solution in hexanes, stored in resealable containers, and titrated periodically against *sec*-butanol using 1,10-phenanthroline as indicator.¹ All experiments were carried out under argon in flame-dried glassware, using syringe-septum cap techniques. Flash column chromatography was carried out using Silicycle Silia-P Flash Silica Gel (particle size: 40-63 μ m, 60A). The React IR study was carried out with a Mettler Toledo ReaactIRTM 4000 equipped with a SiComp sensor.

N2,N2-Diethyl-2-pyridinecarboxamide (5). A slurry of picolinic acid (10.2 g; 83.3 mmol) in SOC₂ (100 mL) was stirred for 10 min at rt and DMF (0.32 mL, 4.2 mmol) was added dropwise *via* syringe (*caution: vigorous SO₂ evolution*). The nixture was stirred for 3 h at rt and concentrated *in vacuo* (3 × PhMe chase to remove residual SOC₂). The residue was dissolved in dry CH₂Cl₂ (100 mL), cooled to 0 °C and Et₂NH (34.5 mL, 330 mmol) was added over 10 min. The resulting slurry was stirred overnight

and passed through Celite. The filtrate was poured into water, the layers were separated, and the aqueous layer was back-extracted with CH_2Cl_2 (× 3). The combined organic layer was washed (1N NaOH, water, brine), dried (Na₂SO₄), subjected to filtration, and the filtrate was concentrated *in vacuo*. The residue was purified by bulb-to-bulb distillation (115°C/0.25 mm Hg) to afford 13.1 g (88%) of **5** as a colorless oil whose IR and ¹H NMR spectra were found to be consistent with those reported.²

N2,N2-Diethyl-3-(2-pyridylcarbonyl)-2-pyridinecarboxamide (7). This compound, prepared by a know procedure,² was shown to exhibit spectral data consistent with those reported.

tert-Butyl-6-[(diethylamino)carbonyl]nicotinate (9). A. Methyl 6-[(diethylamino)carbonyl]nicotinate. To a solution of Et_2NH (3.18 mL, 30.8 mmol) in PhMe (100 mL) at 0 °C was added AlMe₃ (30.8 mmol; 15.4 mL of a 2 M solution in heptane), dropwise over 30 min (*caution: methane evolution*). The solution was warmed to rt, stirred (45 min), and slowly added to a suspension of dimethyl 2,5-pyridinedicarboxylate (5.46 g 28.0 mmol) in PhMe (30 mL) at 0 °C. The mixture was then refluxed under argon for 40 h, cooled to 0 °C, and hydrolyzed by slow addition of 0.67 N HCl (46 mL). The mixture was stirred (45 min), the precipitated solids were removed by filtration, and the layers of the biphasic filtrate were separated. The aqueous layer was adjusted to pH 7 with satd Na₂CO₃, subjected to filtration, and the filtrate was extracted with CH₂Cl₂ (× 3). The combined CH₂Cl₂ extract was washed (20% citric acid, water), dried (Na₂SO₄), subjected to filtration, and the filtrate was concentrated *in vacuo*. The residue was purified *via* flash chromatography (1:1 EtOAc/hexanes), affording 3.67 g (56%) of methyl 6-[(diethylamino)carbonyl]nicotinate as a yellow oil: IR (film) v_{max} 1730, 1638 cm⁻¹; ¹H NMR (300 MHz, CDCb) δ 9.12 (d, 1H, J = 2.1 Hz), 8.33 (dd, 1H, J = 8.0, 2.2 Hz), 7.60 (d, 1H, J = 8.0 Hz), 3.92 (s, 3H), 3.52 (q, 2H, J = 7.1 Hz), 3.28 (q, 2H, J = 7.1 Hz), 1.22 (t, 3H, J = 7.1 Hz), 1.11 (t, 3H, J = 7.0 Hz); ¹³C NMR (75 MHz, CDCb) δ 167.8, 165.3, 158.6, 149.7, 138.1, 126.2, 122.7, 52.7, 43.3, 40.3, 14.4, 12.9; MS (*i*-butane CI) m/z 238 (M+2, 15), 237 (M+H, 100); HRMS calcd for C₁₂H₁₆N₂O₃ 236.1161, found 236.0905.

B. *tert*-Butyl-6-[(diethylamino)carbonyl]nicotinate (9). To a solution of *t*-BuOLi³ (16.0 mmol) in THF (60 mL) at -10 °C was added a solution of methyl 6-[(diethylamino)carbonyl]nicotinate as prepared above (3.42 g; 14.5 mmol) in THF (5 mL) over 15 min. The resulting solution was warmed to rt, aged for 4.5 h, diluted with Et₂O, poured into water, and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (× 3). The combined organic extract was dried (Na₂SO₄), subjected to filtration, and the filtrate was concentrated *in vacuo*. The residue was purified by flash chromatography (25% EtOAc/hexanes \rightarrow 1:1 EtOAc/hexanes), affording 3.56 g (88%) of **9** as an orange oil: IR (film) v_{max} 1719, 1638 cm⁻¹; ¹H NMR (300 MHz, CDCl_b) δ 9.08 (dd, 1H, *J* = 2.1, 0.8 Hz), 8.27 (dd, 1H, *J* = 7.9, 2.1 Hz), 7.58 (dd, 1H, *J* = 7.9, 0.8 Hz), 3.53 (q, 2H, *J* = 7.1 Hz), 3.30 (q, 2H, *J* = 7.1 Hz), 1.59 (s, 9H), 1.23 (t, 3H, *J* = 7.1 Hz), 1.11 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (75 MHz, CDCl_b) δ 168.0, 163.9, 158.2, 149.7, 137.9, 127.8, 122.6, 82.5, 43.3, 40.3, 28.2, 14.4, 12.9; MS (*i*-butane CI) *m/z* 280 (M+2, 16), 279 (M+H, 100); HRMS calcd for C₁₅H₂₂N₂O₃ 278.1630, found 278.1622.

N2,N2-Diethyl-5-([1-(*tert*-butyl)-1,1-dimethylsilyl]oxymethyl)-2-pyridinecarboxami**de (10).** To a solution held at -40 °C of methyl 6-[(diethylamino)carbonyl]nicotinate as prepared above was added a solution of lithium diisopropylaminoborohydride⁴ (25.4 mmol) in THF (10 mL) over 1 h. The resulting mixture was stirred for 30 min, warmed to 0 °C and hydrolyzed with 2N HCl (15 mL). The whole was concentrated in vacuo, diluted with 1N NaOH, and exhaustively extracted with CHCk (20×50 mL). The combined organic extract was dried (Na₂SO₄), subjected to filtration, and the filtrate was concentrated in vacuo. The residue was dissolved in DMF (30 mL) and to the resulting solution was added Et₃N (3.51 mL; 25.4 mmol), DMAP (259 mg; 2.12 mmol), and a solution of TBSCl (3.84 g; 25.4 mmol) in DMF (10 mL). After stirring for 1 h at rt, the mixture was poured into water and the whole was extracted with CH_2Cl_2 (× 3). The combined organic extract was washed (water, brine), dried (Na₂SO₄), subjected to filtration, and the filtrate was concentrated *in vacuo*. The residue was purified by flash chromatography (40% EtOAc/hexanes), affording 5.73 g (84%) of 10 as a waxy, colorless solid: mp 44-45 °C; IR (film) v_{max} 1635 cm⁻¹; ¹H NMR (200 MHz, CDCb) δ 8.53 (d, 1H, J = 2.1 Hz), 7.74 (dd, 1H, J = 7.9, 2.1 Hz), 7.56 (d, 1H, J = 8.1 Hz), 4.79 (s, 2H), 3.57 (q, 2H, J = 7.1), 3.36 (q, 2H, J = 7.1 Hz), 1.27 (t, , 3H J = 7.1 Hz), 1.15 (t, 3H, J = 7.0 Hz), 0.95 (s, 9H), 0.12 (s, 6H); ¹³C NMR (50 MHz, CDCb) δ 167.8, 153.3, 145.6, 136.6, 134.0, 122.1, 62.0, 42.6, 39.6, 25.3, 17.7, 13.7, 12.3, 5.9; MS (EI, 70eV) *m/z* 322 (M+, 35), 323 (9), 265 (37), 251 (42); HRMS calcd for C₁₇H₃₀N₂O₂Si 322.2077, found 322.2086.

S6

tert-Butyl-6-[(diethylamino)carbonyl]-5-hydroxynicotinate (13). Prepared according to general procedure 1 from **9** (2.99 g; 10.8 mmol), B(O*i*Pr)₃ (7.45 mL; 32.2 mmol), and LDA (12.4 mmol). Oxidative workup (11 mL × 30 wt% H₂O₂, 2 h) and flash chromatography (20% EtOAc/hexanes) afforded 2.51 g (78%) of **13** as a pale yellow oil: IR (film) v_{max} 3418, 1721, 1624 cm⁻¹; ¹H NMR (300 MHz, CDC\b) δ 12.35 (bs, 1H), 8.61 (d, 1H, *J* = 2.1 Hz), 7.80 (d, 1H, *J* = 1.8 Hz), 3.96 (q, 2H, *J* = 6.9 Hz), 3.54 (q, 2H, *J* = 6.6 Hz), 1.59 (s, 9H), 1.25 – 1.34 (m, 6H) ppm; ¹³C NMR (75 MHz, CDC\b) δ 168.3, 163.9, 158.1, 139.2, 137.5, 130.7, 126.6, 82.5, 44.9, 43.1, 28.3, 14.6, 12.7 ppm; MS (*i*butane CI) *m*/*z* 295 (M+H, 100), 296 (17), 279 (70); HRMS calcd for C₁₅H₂₂N₂O₄ 294.1580, found 294.1573.

*N*2,*N*2-Diethyl-5-([1-(*tert*-butyl)-1,1-dimethylsilyl]oxymethyl)-3-hydroxy-2-pyridinecarboxamide (14). Prepared according to general procedure 1 from 10 (5.43 g; 16.8 mmol), B(O*i*-Pr)₃ (11.6 mL; 50.4 mmol), and LDA (21.9 mmol). Oxidative workup (10 mL × 30 wt% H₂O₂, 25 min) and flash chromatography (10% EtOAc/hexanes) afforded 5.06 g (89%) of 14 as a colorless oil: IR (film) v_{max} 3386, 1622 cm⁻¹; ¹H NMR (200 MHz, CDCh₃) δ 12.46 (bs, 1H), 8.04 (d, 1H, *J* = 2.1 Hz), 7.26 (d, 1H, *J* = 2.5 Hz), 4.74 (s, 2H), 4.00 (bs, 2H), 3.55 (bs, 2H), 1.30 (t, 6H, *J* = 7.0 Hz), 0.95 (s, 9H), 0.12 (s, 6H) ppm; ¹³C NMR (50 MHz, CDCh₃) δ 168.8, 158.5, 141.2, 136.5, 133.5, 122.9, 62.3, 25.9, 18.4, -5.3 ppm; MS (EI, 70eV) *m/z* 338 (M+, 45), 293 (28), 267 (44); HRMS calcd for C₁₇H₃₀N₂O₃Si 338.2026, found 338.2025. **3-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine -2-carboxylic** acid diethylamide (16a). Prepared according to general procedure 2 from 15a (0.52 g, 2.9 mmol) in 5 mL of THF, $B(O^{i}Pr)_{3}$ (0.80 mL, 3.5 mmol) and LDA (5.0 mL, 3.5 mmol, 0.7M) to obtain 16a as a colourless solid (0.180 g, 20 %): mp 76-80 °C (hexanes/CH₂Cl₂); IR (KBr disk) v_{max} 3450, 3042, 2979, 2948, 1627, 1577, 1464, 1379, 1157, 1026, 708 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.52 (dd, 1H, *J* = 4.81 Hz), 8.01 (dd, 1H, *J* = 7.49), 7.33 (dd, 1H, *J* = 7.63 Hz), 4.35 (q, 2H, *J* = 6.99 Hz), 3.69 (q, 2H, 7.17 Hz), 1.37-1.28 (m, 18H); ¹³C NMR (50 MHz, CDCl₃) δ 168.9, 153.8, 148.7, 139.7, 125.9, 80.8, 44.7, 43.5, 25.2, 13.9, 12.4; LRMS 304 (M+, 19), 245 (100), 221 (57), 189 (29), 131 (28), 104 (27), 72 (54); HRMS calculated for C₁₆H₂₅BN₂O₃: 304.1958, found 304.1953.

N,*N*-Diethyl-3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-isonicotinamide

(16c). Prepared according to general procedure 2 from 15c (0.52 g, 2.9 mmol) in 5 mL of THF, B(O^{*i*}Pr)₃ (0.80 mL, 3.5 mmol) and LDA (5.0 mL, 3.5 mmol, 0.7M) to obtain 16c as a colourless solid (0.364 g, 41 %): mp 47-48 °C (hexanes/CH₂CL₂); IR (KBr disk) ?_{max} 2973, 2929, 2854, 2359, 1631, 1458, 1358, 1270, 1164, 1102, 1032, 751 cm⁻¹; ¹H NMR (200 MHz, CDCL₃) d 9.0 (s, 1), 8.69 (d, 1H, J = 5.03), 7.17 (d, 1H, J = 4.85), 3.56 (q, 4H, J = 7.04 Hz), 3.10 (g, 2H, J = 7.12 Hz), 1.32-1.28 (m, 15H), 1.04 (t, 3H, J = 7.27 Hz); ¹³C NMR (50 MHz, CDCL₃) d 209.8, 159.6, 156.4, 120.3, 84.5, 42.9, 39.1, 25.0, 13.8, 12.5; LRMS 304 (M+, 15) 303 (36), 246 (100), 245 (45), 203 (88), 175 (93), 159 (67), 131 (91), 103 (27); HRMS calculated for C₁₆H₂₅BN₂O₃: 304.1958, found 304.1956.

3-Fluoro-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine (16d). Prepared according to general procedure 2 from **15d** (0.29 g, 3 mmol) in 5 mL of THF, $B(O^{i}Pr)_{3}$ (1.1 mL, 4.5 mmol) and LDA (6.4 mL, 4.5 mmol, 0.7M) to obtain **16d** as a colourless solid (0.20 g, 30 %): mp 110-115 °C (sublimes, hexanes/CH₂CL₂); IR (KBr disk) ?_{max} 3399, 3129, 2972, 2930, 2858, 2239, 1475, 1427, 1186, 1150, 1036, 904, 777, 651 cm⁻¹; ¹H NMR (200 MHz, CDCL₃) d 8.47 (bs, 1H), 8.44 (apparent bdd, 1H, J = 2.01, 4.80 Hz), 7.60 (apparent bt, 1H, J = 4.67 Hz), 1.37 (s, 1H); ¹³C NMR (50 MHz, CDCL₃) d 163.1 (d, J = 260.16 Hz), 145.2 (d, J = 4.58 Hz), 138.4 (d, J = 26.70 Hz), 129.8 (d, J = 4.58 Hz), 84.9, 25.0; LRMS 224 (M+1, 100), 223 (M+, 30), 180 (13), 139 (6), 93 (4); HRMS calculated for C₁₁H₁₅BFNO₂: 223.1180, found 223.1176.

3-[1,3,6,2]Dioxazaborocan-2-yl-pyridine-2-carboxylic acid diethylamide (17a). Prepared according to general procedure 2 from **15a** (0.52 g, 2.9 mmol) in 5 mL of THF, $B(O^{i}Pr)_{3}$ (0.80 mL, 3.5 mmol) and LDA (5.0 mL, 3.5 mmol, 0.7M) to obtain **17a** as a colourless solid (0.34 g, 40 %): mp 139-141 °C (hexanes/CH₂CL₂); IR (KBr disk) ?_{max} 3407, 2993, 2950, 2883, 2110, 1647, 1598, 1458, 1403, 1220, 1105, 1068, 751, 636 cm⁻¹; ¹H NMR (200 MHz, CDCb) d 8.43 (dd, 1H, J = 1.72, 4.92 Hz), 8.13 (dd, 1H, J = 1.84, 7.51 Hz), 7.23 (m, 1H), 6.40 (bs, 1H), 4.15-3.86 (m, 4H), 3.55 (q, 2H, J = 7.13), 3.40-3.30 (m, 2H), 3.20 (q, 2H, J = 7.13 Hz), 2.84-2.77 (m, 2H), 1.27 (t, 3H, J = 7.13), 1.14 (t, 3H, J = 7.13 Hz); ¹³C NMR (50 MHz, CDCb) d 172.8, 159.0, 147.2, 143.1, 123.1, 63.5, 51.0, 43.6, 39.3, 13.2, 12.9; LRMS 291 (M+, 2) 260 (2), 218 (4), 178 (18), 149 (13), 114 (25), 78 (16), 72(100); HRMS calculated for C₁₄H₂₂BN₃O₃: 291.1754, found 291.1763. **4-[1,3,6,2]Dioxazaborocan-2-yl-***N,N***-diethyl-nicotinamide** (**17b**). Prepared according to general procedure 2 from **15b** (0.5 g, 2.8 mmol) in 5 mL of THF, B(O^{*i*}Pr)₃ (3.36 mmol, 0.77 mL) and LDA (4.80 mL, 3.36 mmol, 0.7M) stock solution to obtain **17b** as a colourless solid (0.30 g, 37 %): mp 132-133 °C (hexanes/CH₂CL₂); IR (KBr disk) v_{max} 3471, 2980, 2943, 2881, 2160, 1638, 1594, 1451, 1277, 1221, 1078, 842, 755, 656 cm⁻¹; ¹H NMR (200 MHz, CDCh) δ 8.50 (d, 1H, *J* = 4.92 Hz), 8.32 (s, 1H), 7.74 (d, 1H, *J* = 4.67 Hz), 6.29 (bs, 1H), 4.10-3.92 (m, 4H), 3.58-3.48 (m, 4H), 3.23 (q, 2H, *J* = 7.13 Hz), 2.82 (bs, 2H), 1.26 (t, 3H, *J* = 7.14 Hz), 1.12 (t, 3H, *J* = 7.14 Hz); ¹³C NMR (50 MHz, CDCh) δ 173.0, 149.0, 145.0, 137.4, 129.5, 63.6, 51.0, 44.0, 39.1, 13.5, 12.9; LRMS 290 (M-1, 1) 260 (4), 218 (7), 178 (15), 177 (20), 114 (50), 106 (45), 86 (56), 72 (100); HRMS calculated for C₁₄H₂₂BN₃O₃: 291.1754, found 291.1755.

3-[1,3,6,2]Dioxazaborocan-2-yl-N,N-diethyl-isonicotinamide (17c). Prepared according to general procedure 2 from **15c** (0.52 g, 2.9 mmol) in 5 mL of THF, B(OⁱPr)₃ (0.80 mL, 3.5 mmol) and LDA (5.0 mL, 3.5 mmol, 0.7M) to obtain **17c** as a colourless solid (0.50 g, 59 %): mp 162-164 °C (hexanes/CH₂CL₂); IR (KBr disk) v_{max} 3403, 2991, 2942, 2874, 2118, 1644, 1595, 1460, 1288, 1220, 1066, 839, 636 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) d 8.96 (s, 1H), 8.52 (d, 1H, *J* = 4.55 Hz), 6.98 (d, 1H, *J* = 4.48 Hz), 5.98 (bs, 1H), 4.11-3.88 (m, 4H), 3.57-3.17 (m, 6H), 2.88-2.78 (m,2H), 1.24 (t, 3H, *J* = 7.04), 1.10 (t, 3H, *J* = 7.04 Hz); ¹³C NMR (50 MHz, CDCl₃) d 172.8, 156.1, 149.2, 148.7, 119.2, 63.7, 63.4, 50.9, 43.5, 38.8, 13.3, 12.8; LRMS 290 (M-1, 1) 260 (8), 218 (10), 178 (34), 177 (30), 114 (100), 107 (61), 106 (46), 72 (93); HRMS calculated for C₁₄H₂₂BN₃O₃: 291.1754, found 291.1755.

2-(3-Fluoro -pyridin-4-yl)-[1,3,6,2]dioxazaborocane (17d). Prepared according to general procedure 2 from **15d** (0.29 g, 3 mmol) in 5 mL of THF, $B(O^{i}Pr)_{3}$ (1.1 mL, 4.5 mmol) and LDA (6.4 mL, 4.5 mmol, 0.7M) to obtain **17d** as a colourless solid (0.22 g, 35 %): mp 133-135 °C (hexanes/CH₂Cl₂); IR (KBr disk) v_{max} 3418, 3280, 2973, 2936, 2860, 2247, 2115, 1658, 1402, 1270, 1201, 1032, 820, 763, 625 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) d 8.24 (s, 1H), 8.23 (apparent dd, 1H, J = 2.30 Hz), 7.42 (apparent t, 1H, J = 4.92 Hz), 7.32 (bs, 1H), 3.92-3.68 (m, 4H), 3.26-3.09 (m, 2H), 2.95-2.84 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) d 163.3 (d, J = 247.96 Hz), 144.3 (d, J = 3.82 Hz), 136.1 (d, J = 28.22 Hz), 129.0 (d, J = 8.39 Hz), 62.7, 50.7; LRMS 211 (M+1, 61), 210 (M+, 26), 138 (3), 114 (100), 70 (16); HRMS calculated for C₉H₁₂BFN₂O₂: 210.0976, found 210.0974.

4-[1,3,6,2]Dioxazaborocan-2-yl-pyridine-3-sulfonic acid diethylamide (17e). Prepared according to general procedure 2 from **15e** (0.54 g, 2.52 mmol) in 5 mL of THF, $B(O^{i}Pr)_{3}$ (0.70 mL, 3.0 mmol) and LDA (4.3 mL, 3.0 mmol, 0.7M) to obtain **17e** as a colourless solid (0.33 g, 40 %): mp 133-135 °C (hexanes/CH₂CL₂); IR (KBr disk) v_{max} 3385, 2986, 2943, 2882, 2360, 2115, 1673, 1643, 1458, 1317, 1207, 1158, 1066, 937, 851, 783, 679 cm⁻¹; ¹H NMR (200 MHz, CDCL₃) d 8.75 (s, 1H), 8.61 (d, 1H, *J* = 4.92 Hz), 8.02 (d, 1H, *J* = 4.67 Hz), 6.52 (bs, 1H), 4.19-4.07 (m, 2H), 4.01-3.91 (m, 2H), 3.69-3.37 (m, 6H), 3.00-2.88 (m, 2H), 1.23 (t, 6H, *J* = 7.14 Hz); ¹³C NMR (50 MHz, CDCL₃) d 151.7, 146.6, 139.9, 131.4, 63.2, 51.9, 42.7, 42.3, 14.8, 14.3; LRMS 328 (M+1, 1) 296 (4), 225 (7), 199 (14), 192 (16) 149 (6), 114 (36), 93 (68), 72(100); HRMS calculated for C₁₃H₂₂BN₃O₄S: 296.1240, found 296.12441. **Diethyl carbamic acid 4-[1,3,6,2]dioxazaborocan-2-yl-pyridin-3-yl ester (17f).** Prepared according to general procedure 2 (with the exception that the reaction was performed at -78 °C with slow warm up to 0 °C over 30 min) from **15f** (0.51 g, 2.63 mmol) in 5 mL of THF, B(O^{*i*}Pr)₃ (0.72 mL, 3.15 mmol) and LDA (4.5 mL, 3.15 mmol, 0.7M) to obtain **17f** as a colourless solid (0.49 g, 61 %): mp 156-159 °C (hexanes/CH₂Cl₂); IR (KBr disk) v_{max} 3380, 2992, 2867, 1690, 1464, 1408, 1277, 1201, 1064, 751 cm⁻¹; ¹H NMR δ = 8.37 (d, 1H, *J* = 4.68 Hz), 8.16 (s, 1H), 7.64 (d, 1H, *J* = 4.67 Hz), 6.06 (bs, 1H), 4.17-3.94 (m, 4H), 3.51 (q, 2H, *J* = 7.13 Hz), 3.39 (q, 2H, *J* = 7.14 Hz), 3.29-3.12 (m, 2H), 2.89-2.77 (m, 2H), 1.30 (t, 3H, *J* = 7.14 Hz), 1.22 (t, 3H, *J* = 7.13 Hz); ¹³C NMR δ = 155.8, 151.9, 145.9, 142.9, 129.9, 63.6, 51.0, 42.0, 41.9, 13.7, 13.4; LRMS 308 (M+1, 1), 276 (9), 213 (10), 194(11), 189(14), 175 (43), 114(83), 100 (100), 96 (65), 72 (100). HRMS calculated for C₁₄H₂₂BN₃O₄: 307.1737, found 307.1725.

N,N-Diethyl-4-phenyl-nicotinamide (18).⁵

A mixture of N,N-Diethyl-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-nicotinamide (**16b**) (0.1266 g 0.42 mmol), iodobenzene (0.5 mmol, 0.056 mL), Na₂CO₃ (2.1 mmol, 2M solution in H₂O, degassed), and Pd(PPh₃)₄ (5 mol%, 0.024 g) in freshly distilled toluene was refluxed for 18 hours. Upon cooling to room temperature a saturated solution of NH₄Cl (10 mL) was added and the mixture was extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The crude material was purified by flash column chromatography using hexanes/ethyl acetate (1:1) as the

solvent system to give a yellow oil (0.094 g, 88 %). IR (thin film) v_{max} 3461, 3054, 2979, 2936, 2879, 1627, 1546, 1452, 1289, 1107, 838, 744 cm⁻¹; ¹H NMR δ = 8.66 (d, 1H, *J* = 4.92 Hz), 8.61 (s, 1H), 7.55-7.39 (m, 5H), 7.35 (d, 1H, *J* = 5.17 Hz), 3.75-2.73 (m, 4H), 0.97 (t, 3H, *J* = 7.13 Hz), 0.75 (t, 3H, *J* = 7.13 Hz) ppm; ¹³C NMR δ = 168.1, 150.1, 148.1, 146.0, 137.3, 132.3, 129.2, 128.7, 128.5, 123.6, 42.6, 38.9, 13.6, 12.1 ppm; LRMS 254 (M+, 10), 253 (56), 182 (100), 154 (59), 126 (60), 77 (45); HRMS calculated for C₁₆H₁₈N₂O: 254.1419, found 254.1412.

3-(4-Methoxy-phenyl)-pyridine-2-carboxylic acid diethylamide (19a). Prepared according to representative procedure 3 from **15a** (0.5 g, 2.8 mmol) and 4-bromoanisole (0.56g, 3.08 mmol). Flash chromatography (CH₂Cl₂/MeOH 19.65/0.35) of the crude residue and Kugelrohr distillation (150 °C/0.13 mmHg) afforded **19a** (62% yield) as clear oil: IR (thin film) ?_{max} 1637 cm⁻¹; ¹H NMR (400 MHz, CD₃Cl) δ 8.58 (bs, 1H), 7.72 (d, 1H, *J* = 8 Hz), 7.44 (d, 1H, *J* = 8 Hz), 7.36 (dd, 2H, *J* = 8.0, 4.8 Hz), 6.94 (d, 2H, *J* = 8 Hz), 3.83 (s, 3H), 3.43 (q, 2H, *J* = 7.2 Hz), 2.88 (q, 2H, *J* = 7.2 Hz), 1.04 (t, 3H, *J* = 7.2 Hz), 0.84 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCh) δ 168.3, 159.7, 153.4, 147.6, 137.1, 133.9, 130.0, 129.4, 123.5, 114.0, 55.2, 42.4, 38.6, 13.4, 12.2; EI MS *m*/*z* 284 (M⁺, 61), 269 (5), 255, (3), 213 (40), 212 (22), 185 (64), 184 (44); 72 (100); HRMS calcd for C₁₇H₂₀N₂O₂, 284.1525, found 284.1534.

3-(4-Cyano-phenyl)-pyridine-2-carboxylic acid diethylamide (19b). Prepared according to representative procedure 3 from **15a** (0.5 g, 2.8 mmol) and 4-bromobenzonitrile (0.56 g, 3.08 mmol). Flash chromatography ($CH_2Cl_2/MeOH$ 19.75/0.25) and

recrystallization (hexanes/EtOAc) afforded **19b** (71% yield) as colourless needles: mp 140.5-142 °C (hexanes/EtOAc); IR (KBr disk) $?_{max}$ 2223, 1632 cm⁻¹; ¹H NMR (400 MHz, CD₂Cl₂) δ 8.63 (dd, 1H, J = 4.8, 1.6 Hz), 7.77 (dd, 1H, J = 8.0, 1.6 Hz), 7.72 (d, 2H, J = 8 Hz), 7.60 (d, 2H, J = 8.8 Hz), 7.43 (dd, 1H, J = 8.0, 4.8 Hz), 3.38 (q, 2H, J = 7.2 Hz), 2.93 (q, 2H J = 7.2 Hz), 0.99 (t, 3H, J = 7.22 Hz), 0.91 (t, 3H, J = 7.2 Hz); ¹³C NMR (100 MHz, CD₂Cl₂) δ 168.0. 154.3 149.5, 142.6, 137.8, 133.2, 132.8, 130.1, 124.3, 119.0, 112.6, 43.1, 39.3, 12.9, 12.5; MS m/z 280 (M+1, 6), 279 (34), 264, (6), 207 (22), 179 (94), 100 (7), 72 (100); HRMS calcd for C₁₇H₁₇N₃O 279.1372, found 279.1377.

3-(2,4-Dimethoxy-phenyl)-pyridine-2-carboxylic acid diethylamide (19c). Prepared according to representative procedure 3 from **15a** (0.5 g, 2.8 mmol) and 1-bromo-2,4-dimethoxybenzene (0.67 g, 3.08 mmol). Flash chromatography (CH₂Cl₂/MeOH 19.6/0.4) of the crude residue and distillation (170 °C / 0.6 mmHg) afforded **19c** (37% yield) as a thick clear oil: IR (film) $?_{max}$ 1636 cm⁻¹; ¹H NMR (300 MHz, CD₂Cl₂) δ 8.53 (dd, 1H, J = 4.8, 1.5 Hz), 7.73 (d, 1H, J = 7.8, 1.5 Hz), 7.35 (dd, 1H, J = 7.8, 4.8 Hz), 7.21 (d, 1H, J = 9.0 Hz), 6.55 (m, 2H), 3.86 (s, 3H), 3.75 (s, 3H), 3.36 (q, 2H, J = 7.2 Hz), 3.04 (q, 2H, J = 7.2 Hz), 1.03 (t, 3H, J = 7.2 Hz); 0.96 (t, 3H, J = 7.2 Hz); ¹³C NMR (100 MHz, CD₂Cl₂) δ 168.4, 161.9, 158.2, 152.7, 148.5, 145.0, 132.7, 132.4, 121.2, 118.2, 105.0, 99.0, 55.94, 55.90, 42.7, 38.7, 14.0, 12.5; MS *m*/*z* 314 (M⁺, 46), 283 (12), 243, (47), 214 (100), 199 (57), 184 (44), 156 (24); HRMS calcd for C₁₈H₂₂N₂O₃ 314.1630, found 314.1632.

3-(4-Nitrophenyl)-pyridine -2-carboxylic acid diethylamide (19d). Prepared according to representative procedure 3 from **15a** (0.5 g, 2.8 mmol) and 1-bromo-4-nitrobenzene (0.622 g, 3.08 mmol). Flash chromatography (Hexanes/EtOAc 4/1) of the crude residue and recrystallization (Hexanes/CH₂Cl₂) furnished **19d** (37% yield) as pale yellow plates: mp 127-128 °C (hexanes/EtOAc); IR (KBr disk) ?_{max} 1628, 1512, 1351 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.69 (dd, 1H, *J* = 4.7, 1.5 Hz), 8.28 (d, 2H, *J* = 8.8 Hz), 7.79 (d, 1H, *J* = 7.9, 1.5 Hz), 7.69 (d, 2H, *J* = 8.8 Hz), 7.46 (1H, dd, *J* = 7.9, 4.7 Hz), 3.44 (q, 2H, *J* = 7.0 Hz), 2.99 (q, 2H, *J* = 7.0 Hz), 1.05 (t, 3H, *J* = 7.3 Hz), 0.96 (t, 3H, *J* = 7.04 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 153.6, 149.2, 147.7, 143.9, 137.4, 132.4, 129.8, 123.9, 123.7, 42.7, 39.0, 13.6, 12.3; MS *m*/*z* 299 (M⁺, 16), 269 (14), 228 (8), 227 (11), 200 (20), 199 (35), 72 (100); HRMS calcd for C₁₆H₁₇N₃O₃ 299.1270, found 299.1275.

N,N-diethyl-4-(4-methoxyphenyl)nicotinamide (19e). Prepared according to representative procedure 3 from 15b (0.5 g, 2.8 mmol) and 4-bromoanisole (0.56 g, 3.08 mmol). Flash chromatography (EtOAc/MeOH 9/1) and Kugelrohr distillation (125 °C/0.4 mmHg) afforded 20e (71% yield) as a clear oil: IR (film) $?_{max}$ 1621, 1244 cm⁻¹; ¹H NMR (400.3 MHz, CDCb) d 8.63 (d, 1H, J = 4.8 Hz), 8.57 (s, 1H), 7.47 (d, 2H, J = 8.4 Hz), 7.33 (d, 1H, J = 4.8 Hz), 6.95 (d, 1H, J = 8.4 Hz), 3.84 (s, 3H), 3.67-3.78 (m, 1H), 3.07-3.16 (m, 1H), 2.83-2.92 (m, 1H), 2.65-2.73 (m, 1H), 1.04 (t, 3H, J = 7.2 Hz), 0.76 (t, 3H, J = 7.2 Hz); ¹³C NMR (101 MHz, CDCb) d 168.3, 160.4, 149.9, 148.0, 145.4, 131.7, 129.9, 129.5, 123.2, 114.2, 55.4, 42.5, 38.8, 13.5, 12.2; MS *m*/z 284 (M⁺, 47), 283 (85), 269 (4), 255 (6), 212 (100), 184 (6); HRMS calcd for C₁₇H₁₉N₂O₂, (M-H) 283.1447, found 283.1451.

4-(3,4-dimethoxyphenyl)-N,N-diethylnicotinamide (19f). Prepared according to representative procedure 3 from **15b** (0.5 g, 2.8 mmol) and 1-bromo-3,4-dimethoxybenzene (0.67 g, 3.08 mmol). Flash chromatography (EtOAc/MeOH 9/1) afforded **19f** (42% yield) as yellow oil: IR (film) ?_{max} 1617, 1204 cm⁻¹; ¹H NMR (400.3 MHz, CDCh) d 8.57 (s, 1H), 8.54 (d, 1H, J = 5.2 Hz), 7.30 (d, 1H, J = 5.2 Hz), 7.22 (m, 1H), 6.50 (m, 2H), 3.81 (s, 3H), 3.73 (s, 3H), 3.60-3.80 (m, 1H), 2.95-2.65 (m, 3H), 0.90 (t, 3H, J = 7.2 Hz), 0.83 (t, 3H, J = 7.2 Hz); ¹³C NMR (101 MHz, CDCh) d 168.3, 161.5, 157.2, 149.0, 147.7, 143.3, 132.8, 131.7, 125.7, 118.6, 104.4, 98.6, 55.4, 55.3, 42.3, 38.5, 13.7, 12.2; MS *m*/*z* 314 (M⁺, 54), 313 (60), 299 (4), 283 (50), 242 (100), 212 (100), 184 (6); HRMS calcd for C₁₈H₂₁N₂O₃ (M-H) 313.1552, found 313.1550.

4-(4-cyanophenyl)-N,N-diethylnicotinamide (19g). Prepared according to representative procedure 3 from 15b (0.5 g, 2.8 mmol) and 4-bromo-benzonitrile (0.56 g, 3.08 mmol). Recrystallization of the crude mixture afforded **19g** (73% yield) as colourless needles: mp 118-119 °C (Hexanes/EtOAc). IR (KBr disk) ?_{max} 2212, 1618 cm⁻¹; ¹H NMR (400.3 MHz, CDCb) d 8.72 (d, 1H, J = 5.2 Hz), 8.64 (s, 1H), 7.73 (d, 2H, J = 6.4 Hz), 7.64 (d, 2H, J = 6.4 Hz), 7.34 (d, 1H, J = 5.2 Hz), 2.7-3.9 (bm, 4H), 0.980 (t, 3H, J = 6.8 Hz), 0.824 (t, 3H, J = 6.8 Hz); ¹³C NMR (101 MHz, CDCb) d 167.3, 150.4, 148.0, 143.9, 141.7, 132.5, 131.7, 129.3, 123.2, 118.2, 113.0, 42.7, 38.9, 13.7, 12.1; MS *m/z* 279 (M⁺, 37), 278 (100), 264, (4), 250 (9), 207 (81), 179 (31); HRMS calcd for C₁₇H₁₆N₃O (M-H) 278.1293, found 278.1294.

N,N-Diethyl-4-(3-methoxy-phenyl)-nicotinamide (19h). Prepared according to representative procedure 3 from 15b (1.5 g, 8.4 mmol) and 3-bromoanisole (1.73 g, 9.24 mmol). Flash chromatography (EtOAc/MeOH 9.65/0.35) afforded 19h (57% yield) as a clear oil: IR (film) ?_{max} 1631, 1579, 1433, 1219 cm⁻¹; ¹H NMR (300 MHz, CDCh) d 8.66 (d, 1H, J = 5.1 Hz), 8.60 (s, 1H), 7.38-7.31 (m, 2H), 7.11-7.06 (m, 2H), 6.99-6.94 (m, 1H), 3.83 (s, 3H), 3.65-3.90 (bs, 1H), 3.20-3.65 (m, 3H), 0.99 (t, 3H, J = 4.2 Hz), 0.78 (t, 3H, J = 4.2 Hz); ¹³C NMR (101 MHz, CDCh) d 168.0, 159.7, 150.0, 147.9, 145.8, 138.5, 131.9, 129.8, 123.4, 120.8, 114.8, 113.8, 55.4, 42.5, 38.7, 13.5, 12.0; MS *m*/*z* 284 (M, 26), 283 (74), 213 (17), 212 (100), 185 (12), 169 (27); HRMS calcd for C₁₇H₁₉N₂O₂ (M-H) 283.1447, found 283.1436.

3-(2,4-Dimethoxy-phenyl)-N,N-diethyl-isonicotinamide (19i). Prepared according to representative procedure 3 from 15c (0.5 g 2.8 mmol) and 1-bromo-2,4-dimethoxybenzene (0.67 g, 3.08 mmol). Flash chromatography (CH₂CL₂/MeOH 19.75/0.25) of the crude mixture (156 °C/0.13 mmHg) followed by Kugelrohr distillation afforded 19i (33% yield) as colourless oil: IR (thin film) ?_{max} 3483, 1628; ¹H NMR (400 MHz, CD₂CL₂) δ 8.56 (s, 1H), 8.52 (d, 1H, *J* = 4.8 Hz), 7.22 (dd, 1H, *J* = 4.8, 0.8 Hz), 7.16 (dd, 1H, *J* = 7.6, 0.8 Hz), 6.51-6.53 (m, 2H), 3.82 (s, 3H), 3.74 (s, 3H), 3.5-3.7 (bm, 1H), 2.6-3.2 (bm, 3H), 0.87 (t, 3H, *J* = 7.2 Hz), 0.85 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CD₂CL₂) δ : 168.4, 161.9, 158.1, 152.7, 148.5, 145.0, 132.7, 130.7, 121.2, 118.2 104.9, 98.9, 55.94, 55.89, 42.7, 38.7, 14.0, 12.5; EI MS (*m*/*z*): 314 (M⁺, 90), 313 (92); 283 (53), 242, (47), 227 (63), 191 (100); HRMS calcd for C₁₈H₂₃N₂O₃ (M+H) 315.1709, found 315.1716.

3-(4-Cyano-phenyl)-N,N-diethyl-isonicotinamide (**19k**). Prepared according to representative procedure 3 from **15c** (0.5 g, 2.8 mmol) and 4-bromo-benzonitrile (0.56 g, 3.08 mmol). Flash chromatography (CH₂Cl₂/MeOH 19.75/0.25) followed by recrystallization afforded **19k** (75% yield) as colourless needles: mp 112-113 °C (hexanes/EtOAc); IR (KBr disk) ?_{max} 3406, 2224, 1636; ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, 1H, *J* = 5.1 Hz), 8.7 (s, 1H), 7.74 (d, 2H, *J* = 8.4 Hz), 7.64 (d, 2H, *J* = 8.8 Hz), 7.32 (s, 1H, *J* = 4.8 Hz), 3.70-2.70 (bm, 4H), 0.97 (t, 3H, *J* = 7.2 Hz), 0.84 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ **?**67.4, 150.2, 143.7, 141.0, 132.7, 131.6, 129.9, 121.2, 118.6, 112.6, 42.7, 38.9, 13.8, 12.3; MS *m*/*z* 279 (M⁺, 55), 278 (75), 264 (3), 250 (14), 207, (100), 179 (35), 152 (32); HRMS calcd for C₁₇H₁₇N₃O 279.1372, found 279.1367.

3-(3-Chloro-phenyl)-N,N-diethyl-isonicotinamide (**19l**). Prepared according to representative procedure 3 from **15c** (0.5 g, 2.8 mmol) and 1-bromo-3-chlorobenzene (0.59 g, 3.08 mmol). Flash chromatography (CH₂Cl₂/MeOH 19.7/0.3) followed by recrystallization (hexanes/EtOAc) afforded **19l** (61% yield) as colourless needles: mp 73-75 °C (hexanes); IR (KBr disk) ?_{max} 3489, 1632; ¹H NMR (400 MHz, CD₂Cl₂) δ 8.65-8.63 (m, 2H), 7.47-7.49 (m, 1H), 7.38-7.40 (m, 3H), 7.26 (dd, 1H, *J* = 4.8, 0.8 Hz), 3.60-3.90 (bm, 1H), 2.65-3.15 (bm, 3H), 0.96 (t, 3H, *J* = 7.2 Hz), 0.80 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 150.6, 150.0, 144.2, 138.7, 134.9, 132.3, 130.6, 129.3, 128.9, 127.8, 121.4, 43.0, 39.1, 13.9, 12.3; MS *m/z* 290 (16), 289 (28), 288 (M⁺, 50), 287

(65), 259 (10), 218 (31), 216 (100), 190 (10), 188 (29); HRMS calcd for C₁₆H₁₆N₂OCl (M-H) 287.0951, found 287.0947.

3-(2-Diethylcarbamoyl-phenyl)-N,N-diethyl-isonicotinamide (19m). Prepared according to representative procedure 3 from 15c (0.5 g, 2.8 mmol) and 2-Bromo-N,N-diethylbenzamide (0.79 g, 3.08 mmol). Flash chromatography (hexanes / Et₂O) of the crude residue and recrystallization (hexanes/ Et₂O) afforded **19m** (67% yield) as colourless needles: mp 110-111 °C; IR (KBr disk) ?_{max} 1628; 1H NMR (400 MHz, CD₂Cl₂) δ 8.56 (d, 1H, *J* = 5.8 Hz), 8.47 (s, 1H), 7.34-7.45 (m, 4H), 7.22 (d, 1H, *J* = 4.8 Hz), 2.80-3.90 (bm, 8H), 1.90 (t, 3H, *J* = 7.2 Hz), 1.04 (t, 3H, *J* = 7.0), 0.95 (t, 3H, *J* = 7.0 Hz), 0.88 (t, 3H, *J* = 7.0 Hz); ¹³C NMR (400 MHz, CD₂Cl₂) δ 169.9, 168.0, 150.7, 149.3, 144.9, 137.7, 134.1, 132.1, 131.3, 129.0, 128.5, 127.0, 121.4, 43.4, 43.0, 39.0, 38.9, 14.2, 14.0, 12.5, 12.4; MS *m/z* 353 (54), 352 (50), 282 (25), 281 (25), 253 (11), 183 (42), 182 (100), 100 (13), 72 (35); HRMS calcd for C₂₁H₂₇N₃O₂ 353.2103, found 353.2099.

N,N-Diethyl-3-thiophen-2-yl-isonicotinamide (19n). Prepared according to representative procedure 3 from 15c (0.5 g, 2.8 mmol) and 2-bromothiophene (0.50 g, 3.08 mmol). Flash chromatography (EtOAc/Et₃N 99/1) of the crude residue afforded 19n (85% yield) as a colourless oil: IR (thin film) $?_{max}$ 1630 cm⁻¹; 1H NMR (400 MHz, CDCh) δ 8.75 (s, 1H), 8.60 (d, 1H, J = 5.2 Hz), 7.51 (dd, 1H, J = 3.2, 1.6 Hz), 7.39 (dd, 1H, J = 5.2, 3.2 Hz), 7.29 (dd, 1H, J = 5.2, 1.2 Hz), 7.24 (d, 1H, J = 5.2 Hz), 3.70 (bm, 1H), 3.20 (bs, 1H), 2.83 (m, 2H), 1.070 (t, 3H, J = 6.8 Hz), 0.76 (t, 3H, J = 7.2 Hz); ¹³C

NMR (100 MHz, CDCb) δ 168.1, 149.7, 148.5, 143.1, 136.4, 128.2, 127.8, 126.4, 124.4, 121.0, 42.4, 38.7, 13.4, 12.2; MS m/z 260 (M⁺, 75), 245 (3), 231 (17), 189 (42), 188 (100), 161 (87), 160 (58); HRMS calcd for C₁₄H₁₆N₂OS 260.0983, found 260.0985.

Representative Procedure 5 for the One-Pot DoM – Boronation – Suzuki-Miyaura Cross Coupling of 15g. 3-Chloro-4-(4-methoxy-phenyl)-pyridine (190).

A stock solution of LDA (0.7 M) was prepared as in representative procedure 3. (Experimental Section) A 50 mL flame-dried round bottom flask was charged with 15g (0.5 g, 4.4 mmol), THF (5 mL) and B(OⁱPr)₃ (0.91 mL, 4.84 mmol). To this solution cooled to -78 °C, LDA (6.91 mL, 4.8 mmol), prepared as in representative procedure 2, was added and the mixture was stirred at -78 °C for 2 hours. Pinacol (0.62 g, 5.28 mmol) was added and the mixture was allowed to reach rt and was stirred for 1 hour. The solvent was completely evaporated in vacuo and Pd(PPh₃)₄ (0.255 g, 0.22 mmol, 5 % mol) and 4-bromoanisole (0.905 g, 4.84 mmol) were added with care to minimize exposure of the mixture to air. After flushing briefly with argon, a water condenser was fitted to the flask and a degassed 2 M aqueous solution of Na₂CO₃ (11 mL, 22 mmol) and 10 mL of degassed toluene were added through a septum sealing the top of the condenser. The mixture was refluxed for 12 h, cooled, and extracted with EtOAc (6 x 10 mL). The combined organic extract was washed with brine (40 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Kugelrohr distillation of the residue (150 °C/0.20 mmHg) furnished 0.460 g (3.3 mmol, 48%) of **190** as colourless flakes: mp 82-85 °C (of bulb-tobulb distilled material which crystallized); IR (KBr disk) ?max 1613, 1517, 1474, 1251, 1046, 814 cm⁻¹; ¹H NMR (400.3 MHz, CDCb) d 8.67 (s, 1H), 8.51 (d, 1H, J = 5.2 Hz),

S20

7.47 (d, 2H, J = 8.4 Hz), 7.30 (d, 1H, J = 5.2 Hz), 7.03 (d, 2H, J = 8.8 Hz), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDCb) d 160.1, 150.1, 147.7, 147.1, 130.3, 130.1, 128.7, 125.2 113.8, 55.3; MS m/z 221 (M+2, 28) 219 (M⁺, 100), 204 (15); HRMS calcd for C₁₂H₁₀NOCl 219.0451, found 219.0454.

4-(3-Chloro-pyridin-4-yl)-benzonitrile (19p). Prepared according to representative procedure 5 from **15g** (0.5 g, 4.4 mmol) and 4-bromobenzonitrile (0.88 g, 4.84 mmol). Flash chromatography (EtOAc/MeOH 8/2) and recrystallization (hexanes/EtOAc) yielded **19p** (55% yield) as colourless crystals: mp 136-138 °C (hexanes/EtOAc); IR (KBr disk) ?_{max} 2227, 1587, 1474, 1400 cm⁻¹; ¹H NMR (400.3 MHz, CDC\b) d 8.75 (s, 1H), 8.61 (d, 1H, J = 3.6 Hz), 7.81 (d, 2H, J = 8.0 Hz), 7.61 (d, 2H, J = 8.0), 7.30 (d, 1H, J = 4.8 Hz); ¹³C NMR (100 MHz, CDC\b) d 150.2, 148.0, 145.6, 140.8, 132.2, 129.75, 129.67, 124.7, 118.2, 112.8; MS *m/z* 216 (M+2, 31) 214 (M⁺, 100), 179 (18); HRMS calcd for C₁₂H₇N₂Cl 214.0298, found 214.0300.

3-Chloro-4-(4-nitrophenyl)-pyridine (19q). Prepared according to representative procedure 5 from **15g** (0.5 g, 4.4 mmol) and 1-bromo-4-nitrobenzene (0.98 g, 4.84 mmol). Flash chromatography (CH₂Cl₂/MeOH 9.5/0.5) and recrystallization (hexanes/EtOAc) yielded **19q** (43% yield) as yellow flakes, mp 156-157 °C (hexanes/EtOAc); IR (KBr disk) ?_{max} 3016, 1596, 1582, 1511, 1467, 1350 cm⁻¹; ¹H NMR (400.3 MHz, CDCl₃) d 8.77 (s, 1H), 8.62 (d, 1H, J = 5.2 Hz), 8.38 (d, 1H, 8.8 Hz), 7.68 (d, 2H, J = 8.4), 7.32 (d, 1H, J = 4.8 Hz); ¹³C NMR (101 MHz, CDCl₃) d 150.3, 148.05,

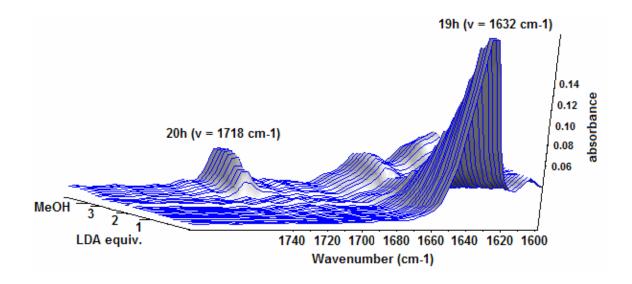
148.01, 145.4, 142.6, 130.0, 129.8, 124.8, 123.7; MS *m*/*z* 236 (31), 235 (10), 234 (100); HRMS calcd for C₁₁H₇N₂O₂Cl 234.0196, found 234.0194.

2-Fluoro-3-(3-methoxy-phenyl)-pyridine (19r). Prepared according to representative procedure 3 from **15h** (0.5 g, 5.15 mmol) and 3-bromoanisole (1.06 g, 5.66 mmol). Kugelrohr distillation of the crude residue (135 °C/0.5 mmHg) furnished **19r** (66% yield) as a colourless oil: IR (thin film) ?_{max} 3059, 3002, 2940, 2836, 1603, 1584, 1460, 1437, 1413, 1233, 1019, 782 cm⁻¹; ¹H NMR (400.3 MHz, CDC\b) δ 8.19 (dt, 1H, *J* = 4.8 Hz and 1.5 Hz), 7.86 (ddd, 1H, *J*_{1,3(H-F)} = 9.7 Hz and *J* = 7.5, 2.0 Hz), 7.37 (t, 1H, *J* = 7.8 Hz), 7.26 (ddd, 1H, *J*_{1,2} = 7.5, *J*_{1,2} = 4.8 and *J*_{1,4(H-F)} = 1.8 Hz), 7.14 (d, 1H, *J* = 7.6 Hz), 7.13 (d, 1H, *J* = 2.7 Hz), 6.95 (dd, 1H, *J* = 8.3, 2.7 Hz); ¹³C NMR (100 MHz, CDC\b) δ 160.4 (d, *J* = 240.7 Hz), 159.7, 146.3 (d, *J* = 14.6 Hz), 140.7 (d, *J* = 5.1 Hz), 135.2 (d, *J* = 5.1 Hz), 129.7, 123.8 (d, *J* = 28.5 Hz), 121.8 (d, *J* = 4.4 Hz), 121.2 (d, *J* = 2.9 Hz), 114.6 (d, *J* = 3.6 Hz), 113.9, 55.3; MS *m*/z 203 (100), 173 (37), 172 (15), 160 (32); HRMS calcd for C₁₂H₁₀NOF 203.0746, found 203.0752

3-(3-Chloro-phenyl)-2-fluoro-pyridine (19s). Prepared according to representative procedure 3 from **15h** (0.5 g, 5.15 mmol) and 1-bromo-3-chlorobenzene (1.08 g, 5.66 mmol). Kugelrohr distillation of the crude residue (125 ° C/0.5 mmHg) furnished **19s** (73% yield) as colourless flakes: mp 57-60 °C (of bulb-to-bulb distilled material which crystallized); IR (KBr disk) ?_{max} 3055, 1610, 1572, 1441, 1398, 778, 692 cm⁻¹; ¹H NMR (400.3 MHz, CDCb) δ 8.25 (d, 1H, *J* = 4.8 Hz), 7.88 (t, 1H, *J* = 8.0 Hz), 7.58 (s, 1H), 7.40-7.51 (m, 3H), 7.32 (t, 1H, *J* = 5.6 Hz); ¹³C NMR (100 MHz, CDCb) δ 160.1 (d, *J* =

240.7 Hz), 146.9 (d, J = 14.6 Hz), 140.6 (d, J = 4.4 Hz), 135.6 (d, J = 5.1 Hz), 134.6, 130.0, 128.8 (d, J = 2.9 Hz), 128.5; MS *m*/*z* 209 (33); 207 (100), 172 (23); HRMS calcd for C₁₁H₇NFCl 207.0251, found 207.0255.

Diethyl-carbamic acid 4-(4-methoxy-phenyl)-pyridin-3-yl ester (19t). A 50 mL flame-dried round bottom flask was charged with 15f (0.5 g, 2.6 mmol), THF (5 mL) and B(O'Pr)₃ (3.1 mmol, 0.72 mL). A stock solution of LDA (4.10 mL, 2.9 mmol, 0.7M), prepared as in general procedure 3, was added to this mixture cooled to -78 °C and the reaction was allowed to reach 0 °C over 30 min. N-Methyldiethanolamine (0.37 g, 3.1 mmol) was added and the mixture was stirred for 2 h at 0 °C. After complete in vacuo evaporation of the solvent, in a glove-bag filled with nitrogen, Pd(OAc)₂ (29 mg, 0.13 mmol), S-Phos (0.107 g, 0.26 mmol), K₂CO₃ (1.10 g, 7.8 mmol), CuI (49 mg, 0.26 mmol) were added to the residue. A water condenser was fitted to the flask and 4bromoanisole (0.32 g, 1.7 mmol) and degassed ethanol (15 mL) were added through a septum sealing at the top of the condenser. The mixture was refluxed for 3h, cooled and subjected to filtration. The solvent was evaporated to dryness and the residue, suspended in water, was extracted with CH₂Cl₂ (4 x 10 mL). The combined organic extract was washed with brine (40 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Purification of this residue by flash column chromatography (hexanes/EtOAc/MeOH 16/4/0.5) yielded **19t** (0.47 g, 64%) as clear oil: IR (thin film) ?max 1718 cm⁻¹; ¹H NMR (400.3 MHz, CDCb) δ 8.46 (m, 2H), 7.40 (d, 2H, J = 8.0 Hz), 7.30 (d, 1H, J = 4.4 Hz), 6.95 (d, 2H, J = 8.0 Hz), 3.84 (s, 3H), 3.32-3.34 (m, 4H), 1.05-1.15 (m, 6H); ¹³C NMR (100 MHz, CDCb) § 159.9, 153.4, 146.4, 145.3, 142.1, 129.9, 127.6, 124.4, 113.9, 55.3, 42.2, 41.8, 14.0, 13.1; MS m/z 301 (M+H, 5), 300 (29), 100 (100), 72 (37); HRMS calcd for $C_{17}H_{20}N_2O_3$ 300.1474, found 300.1413.

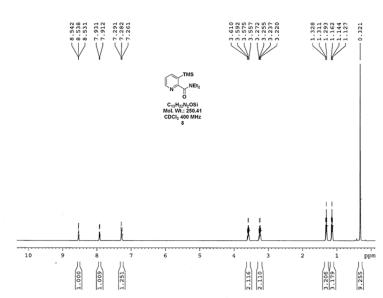

9-Oxo-9H-indeno[2,1-b]pyridine -7-carbonitrile (20b). Prepared according to representative procedure 4 from **19b** (0.25 g, 0.90 mmol) in 40 mL of dry THF. To this solution cooled to -78 °C LDA (2.6 mL, 1.8 mmol) was added dropwise and the reaction was allowed to reach -10 ° over 90 min, then quenched with NH₄Cl. Purification of the crude (Hexanes/EtOAc 1/9) yielded 102 mg of **20b** (55%) as a yellow solid: mp 205-207 (hexanes/dichloromethane); IR (KBr) ?_{max} 2230, 1729, 1612, 800, 753, 584 cm⁻¹; ¹H NMR (300. MHz, CD₃CN) δ 8.82-8.65 (m, 2H), 7.68 (d, 1H, *J* = 8.2 Hz), 7.54 (dd, 1H, *J* = 4.8, 1.0 Hz), 7.22 (d, 1H, *J* = 2.3 Hz), 7.15 (dd, 1H, J = 8.2, 2.3 Hz), 3.89 (s, 3H); ¹³C NMR (100 MHz, CDC\b) δ 190.1, 152.9, 152.0, 145.1, 139.1, 138.5, 132.5, 129.0, 127.9, 127.6, 121.8, 117.6, 113.7; MS *m*/*z* 207 (M+H, 5), 206 (100), 178 (23), 152 (14), 151 (4); HRMS calcd for C₁₃H₆N₂O 206.0480, found 206.0489.

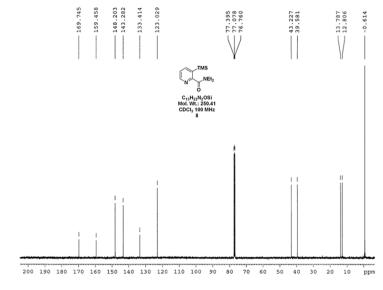
7-Methoxy-2-azafluorenone (20e). Prepared according to representative procedure 4 from **19e** (0.167 g, 0.59 mmol) in 27 mL of dry THF. To this solution cooled to -40 °C LDA (2.5 mL, 1.8 mmol) was added dropwise and the reaction was allowed to reach 10 °C over 2 h, then quenched with NH₄Cl. Purification of the crude (CH₂Cl₂/MeOH 9.85/0.15) yielded 70 mg of **20e** (56%) as a yellow solid. This compound exhibits spectral data consistent with those reported in literature.⁶

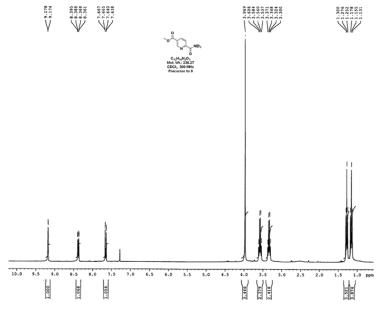
8-Methoxy-2-azafluorenone (20h). Prepared according to representative procedure 4 from 19h (0.250 g, 0.88 mmol) in 40 mL of dry THF. To this solution cooled to -40 °C LDA (3.8 mL, 2.64 mmol) was added dropwise and the reaction was allowed to reach 10 °C over 2 h, then quenched with NH₄Cl. Purification of the crude (CH₂Cl₂/MeOH 9.85/0.15) yielded 115 mg of 20h (63%) as a yellow solid. This compound exhibits spectral data consistent with those reported in literature.⁶

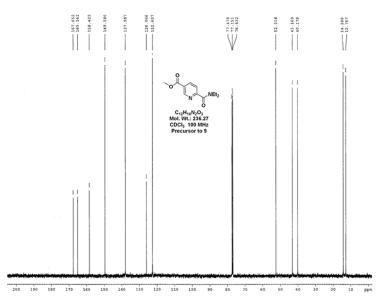
React IR Study for the Directed Remote Metalation of 19h.

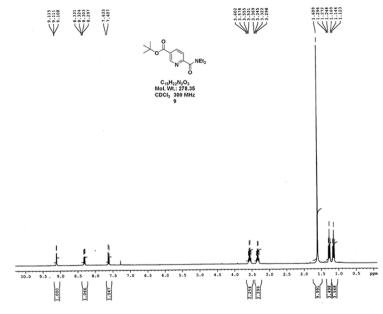
A stock solution of LDA (10 mL, 1M) was prepared by addition of *n*-BuLi (10 mmol, 4.3 mL, 2.30M) to a solution of DIPA (10 mmol, 1.4 mL) in dry THF (9.0 mL) at 0 °C. A 100 mL two-neck flask containing a small stirring bar was fitted to the IR probe while the other neck was sealed with a rubber septum through which a temperature probe was inserted. Anhydrous THF (2.5 mL) was added and a background spectrum was acquired at -7 °C. **19h** (200 mg, 0.70 mmol) dissolved in THF (0.5 mL) was injected and, after briefly stirring, spectra (averages of 120 scans) were acquired every 2 min. LDA (2.1 mL, 2.1 mmol) was slowly added (ca. 0.1 mL/5 min) at -7 °C and the consumption of **19h** was monitored. When further additions of LDA caused no change in the amide carbonyl absorption band, $v 1632 \text{ cm}^{-1}$ (C=O), a few drops of ice-cold MeOH were slowly added to the mixture causing the appearance of the fluorenone carbonyl band, $v 1718 \text{ cm}^{-1}$. In a control experiment, the addition of THF (2.1 mL) rather than a THF solution of LDA did not greatly reduce the absorption band of **19h**, neither did the addition of MeOH cause the appearance of relevant signals at v 1718 cm⁻¹.

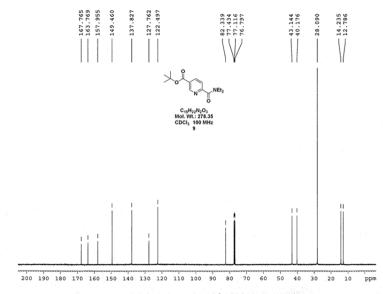

¹ Watson, S. C.; Eastham, J.F. J. Organometallic Chem. 1967, 9, 165-168.

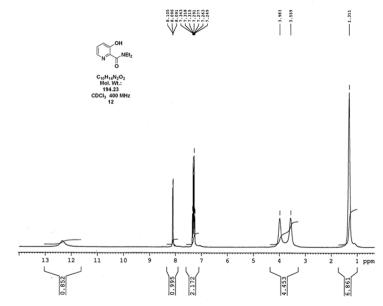

² Villacampa, M.; de la Cuesta, E.; Avendaño, C. *Tetrahedron* **1995**, *51*, 1259-1264.

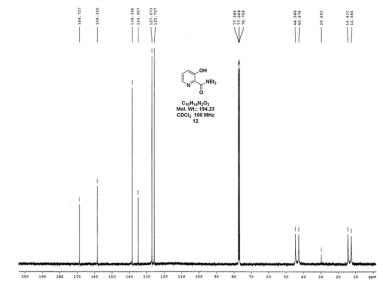

³ Meth-Cohn, O. J. Chem. Soc., Chem. Commun. 1986, 9, 695-697.

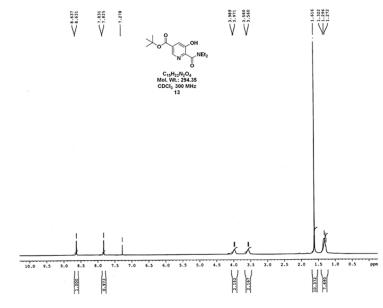

⁴ Fisher, G.; Fuller, J.C.; Harrison, J.; Alvarez, S.G.; Burkhardt, E.R.; Goralski, C.T.; Singaram, B. J. Org. Chem. **1994**, *59*, 6378-6385. ⁵ Although this compound is known (Butler, D. E.; Dodd, J. H.; Moos, W. H.; Tecle, H. Warner-Lambert Co., US Patent No. 4745123, **1988**) no characterization data has been reported.

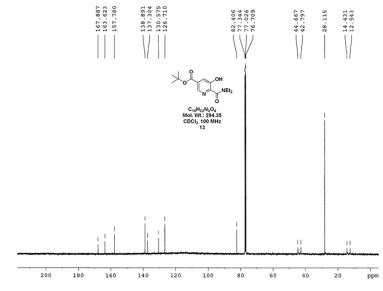

⁶ Shiao, M.-J.; Peng, C.-J.; Wang, J.-S.; Ma, Y.-T. J. Chin. Chem. Soc. **1992**, *39*, 173-176

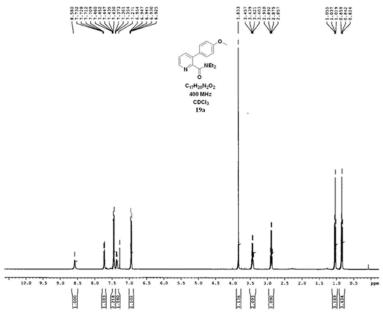


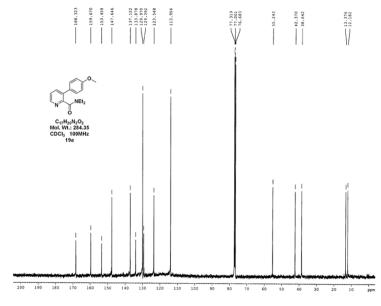


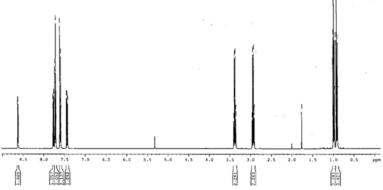


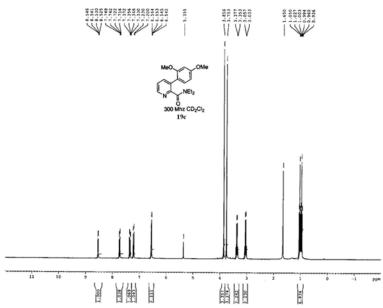




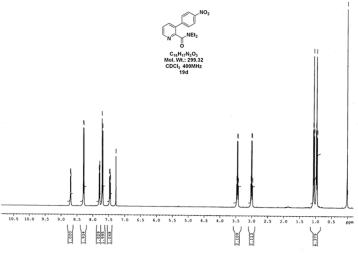


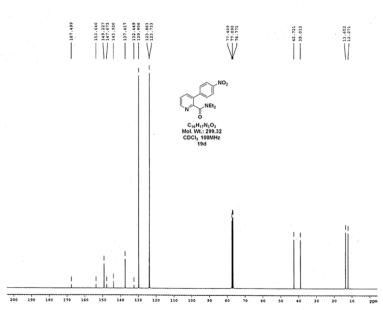


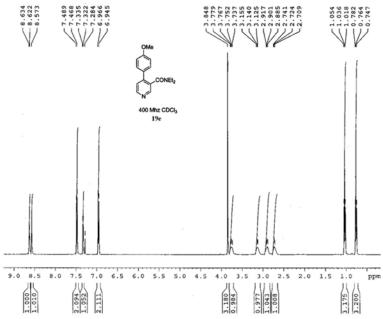


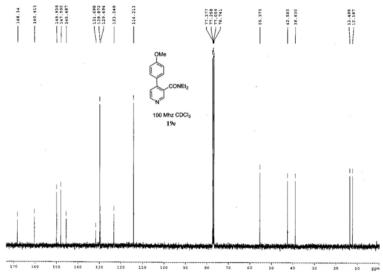

1.762

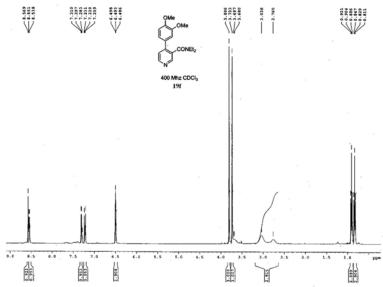
200 1		
180		
170		167.997
160		
150	The second s	154.342 149.529
140		142.645
130		
120		119.043
110		995.011
100		(
90		N
80	z CD ₂ Ci,	NEt ₂
70	2	CN
60		14 H H
50		21.20
40		40.132
30		800 - A 6
20		
10		12.485
ppn		

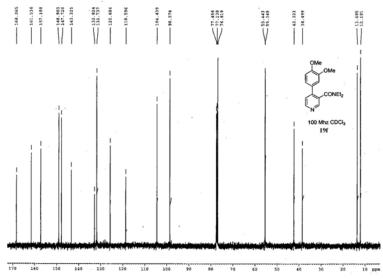


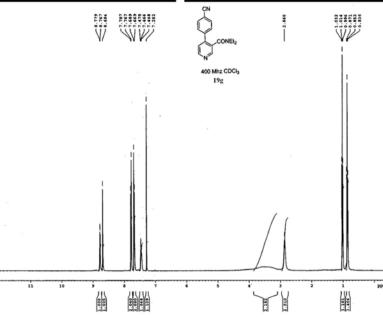

		ppm
13.995		10
		20
NTN - 00		30
53.459		40
54.000		50
N		60
0 NEt ₂		70
100 MH		0 80
98.911		
104.801		0 1
		1
123.272		120
132.231		130
		140
155.244 147.871		150
158.086		160
168.728	I.	170
		180
		190
		200

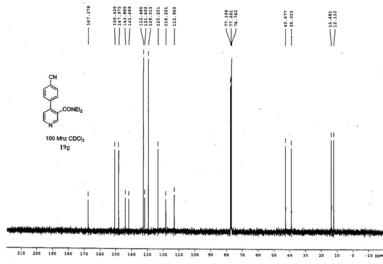


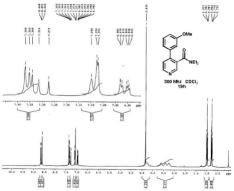


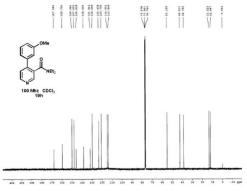


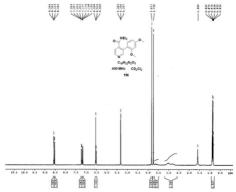


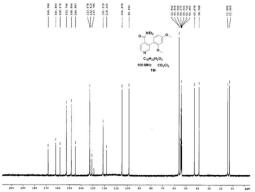


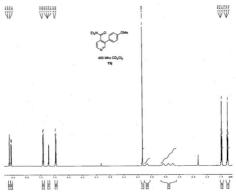


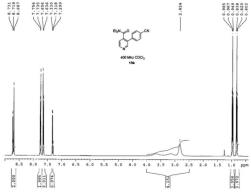


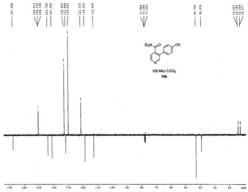


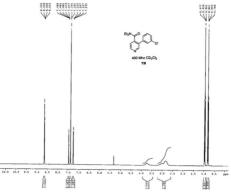


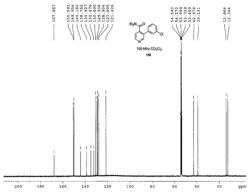


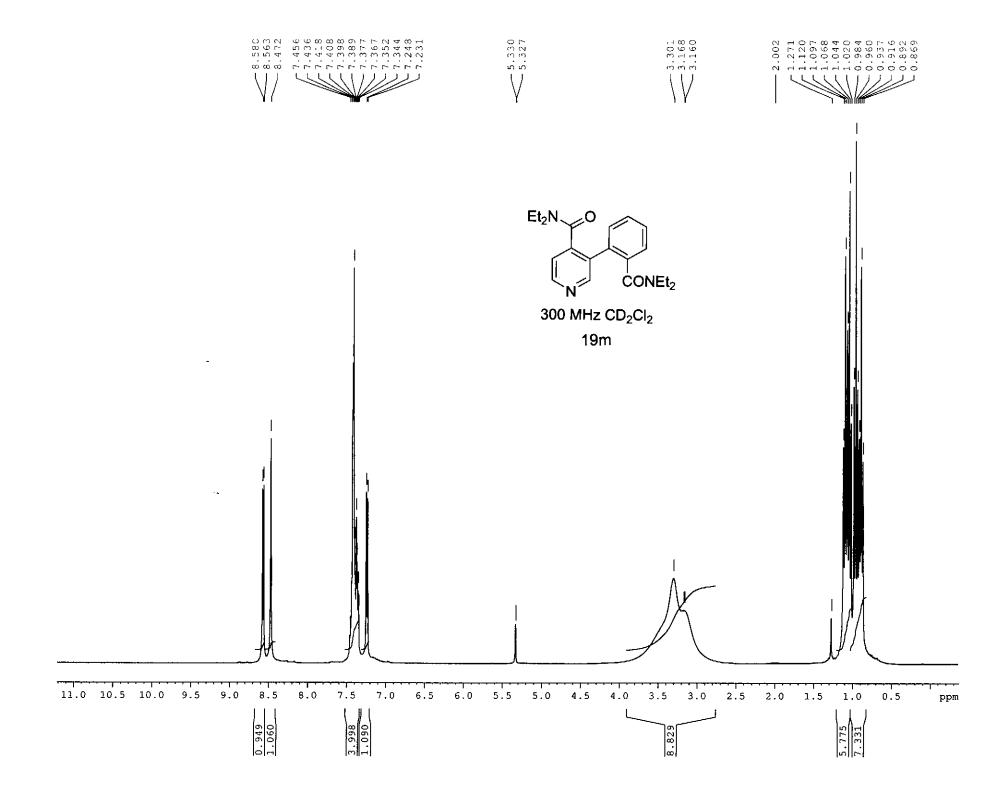


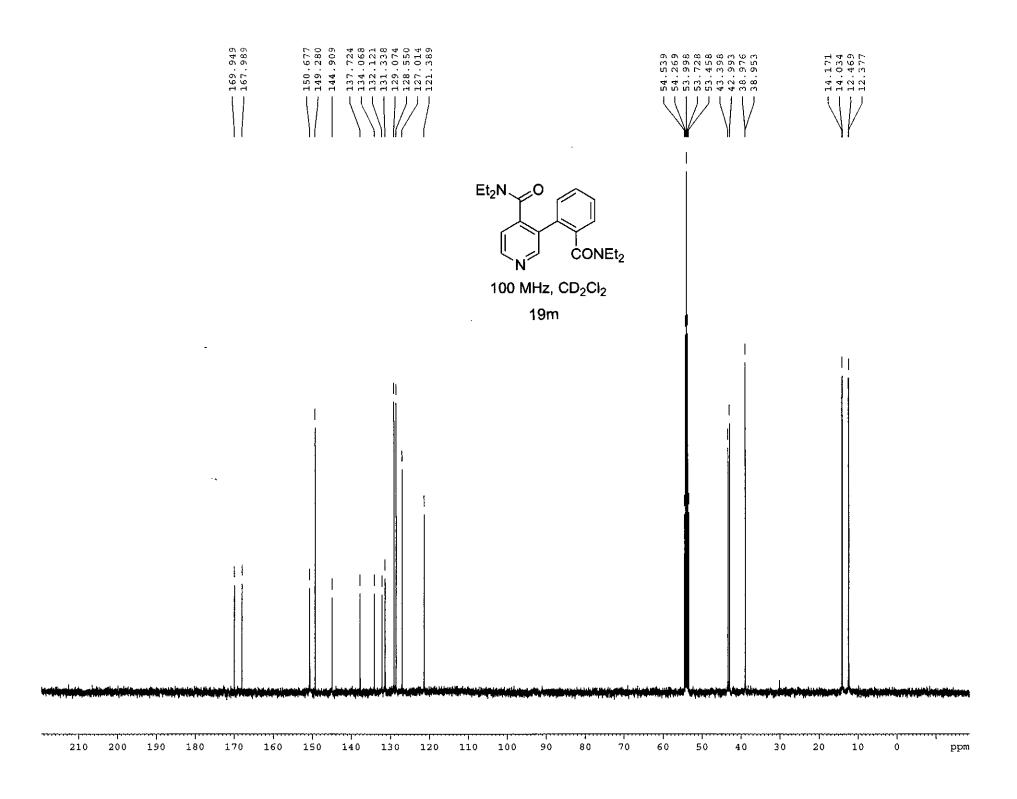


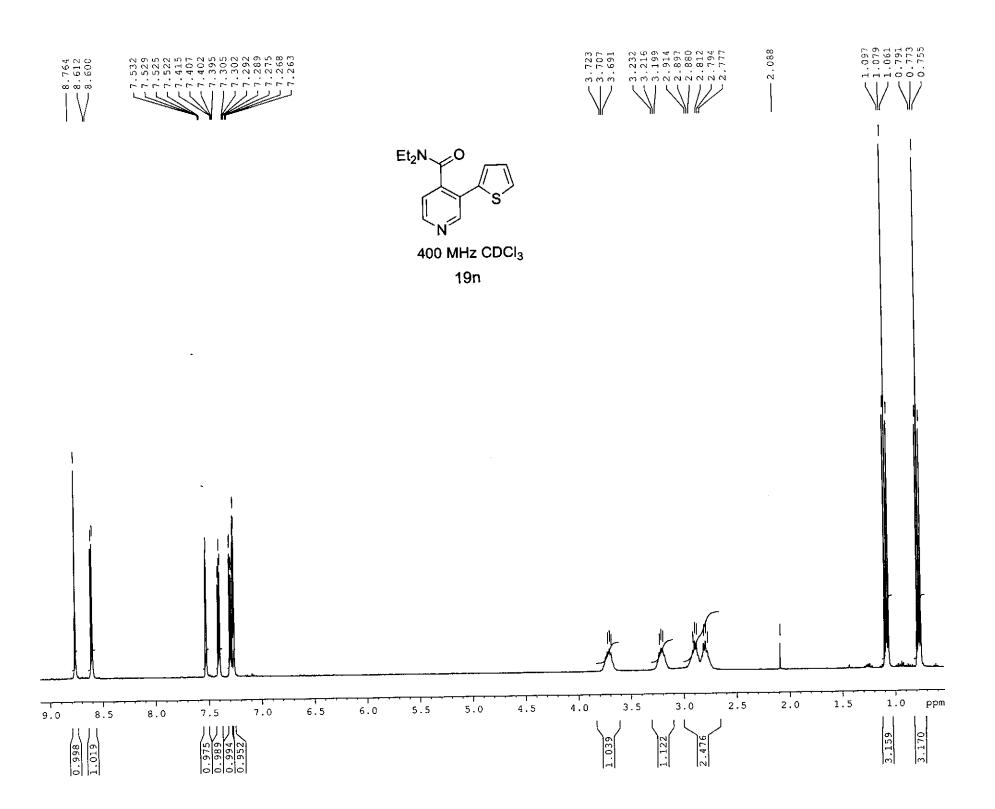


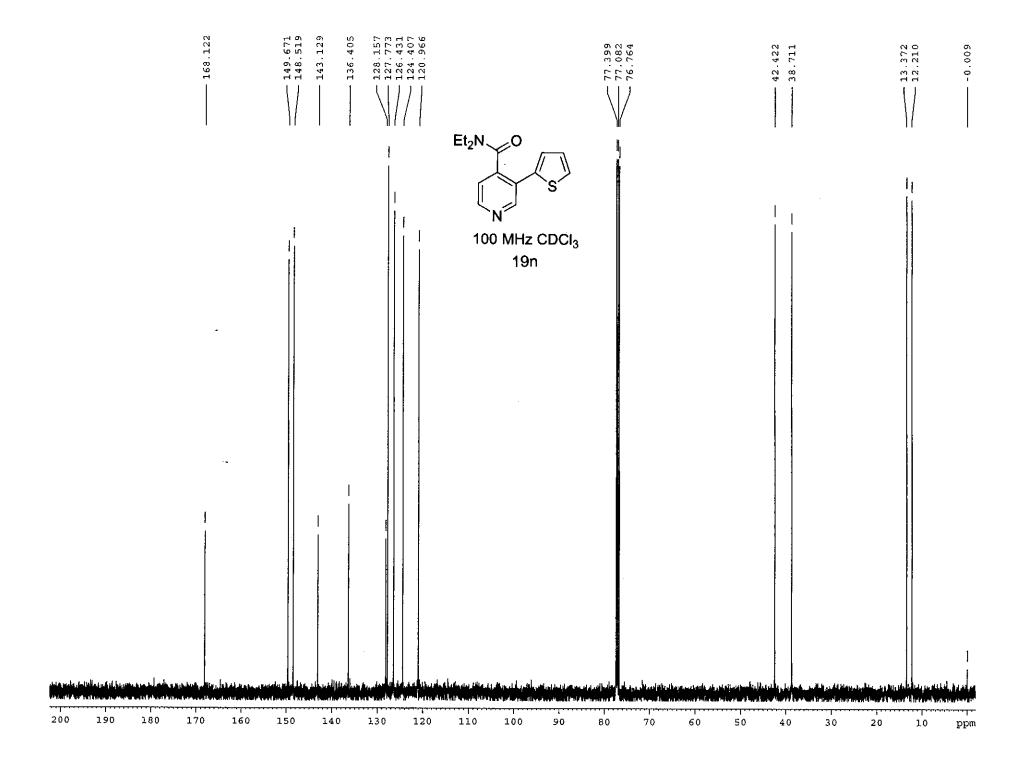


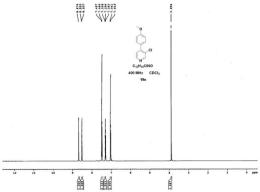

200			
190	54) -		
180			
170		I	- 169.129
160			- 159.651
150	1	and the second s	110.000
140			550.051 -
130		-	111.000
120			- 121.085
110		!	114.162
100	100 M	N ₂	
90	ihu CDy 19j	0	
80	a	¥	12.00
70			ł
60			. w.m
50			
40		11	11.11
30			
20			
10			12.12
ppe	-		

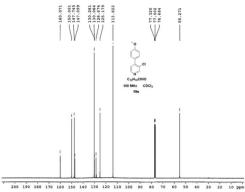

-

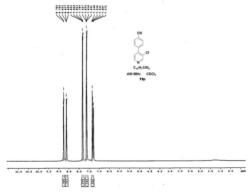


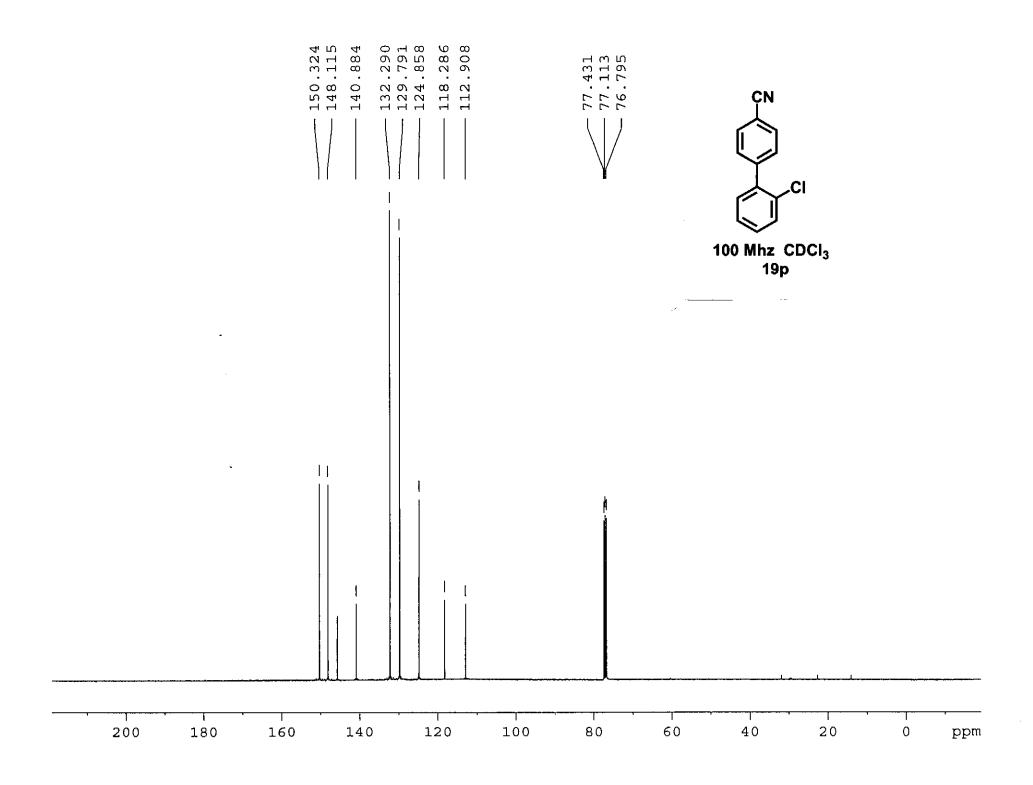


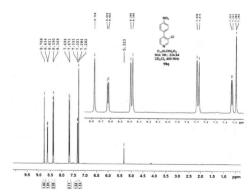


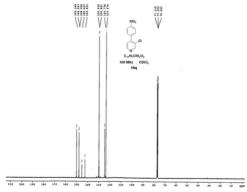


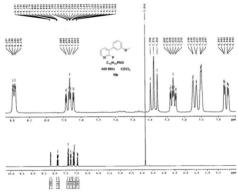


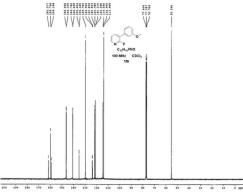


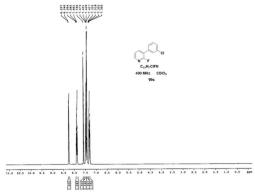


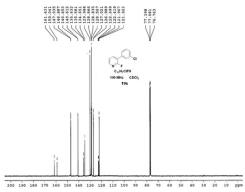


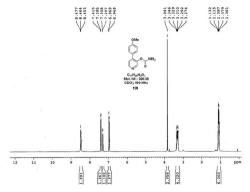


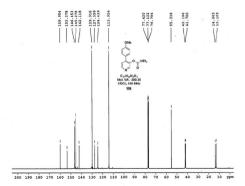


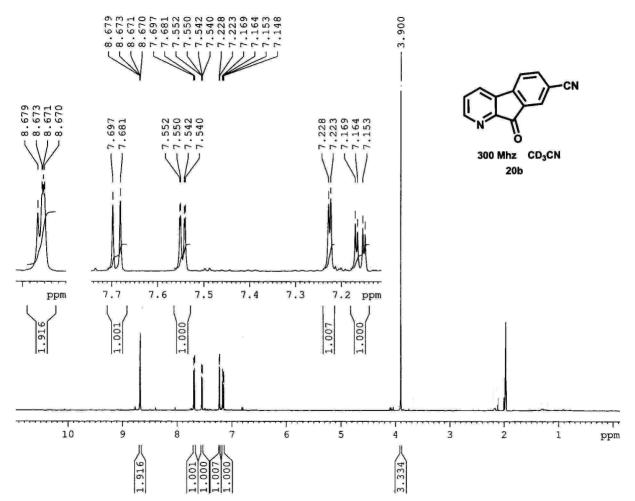


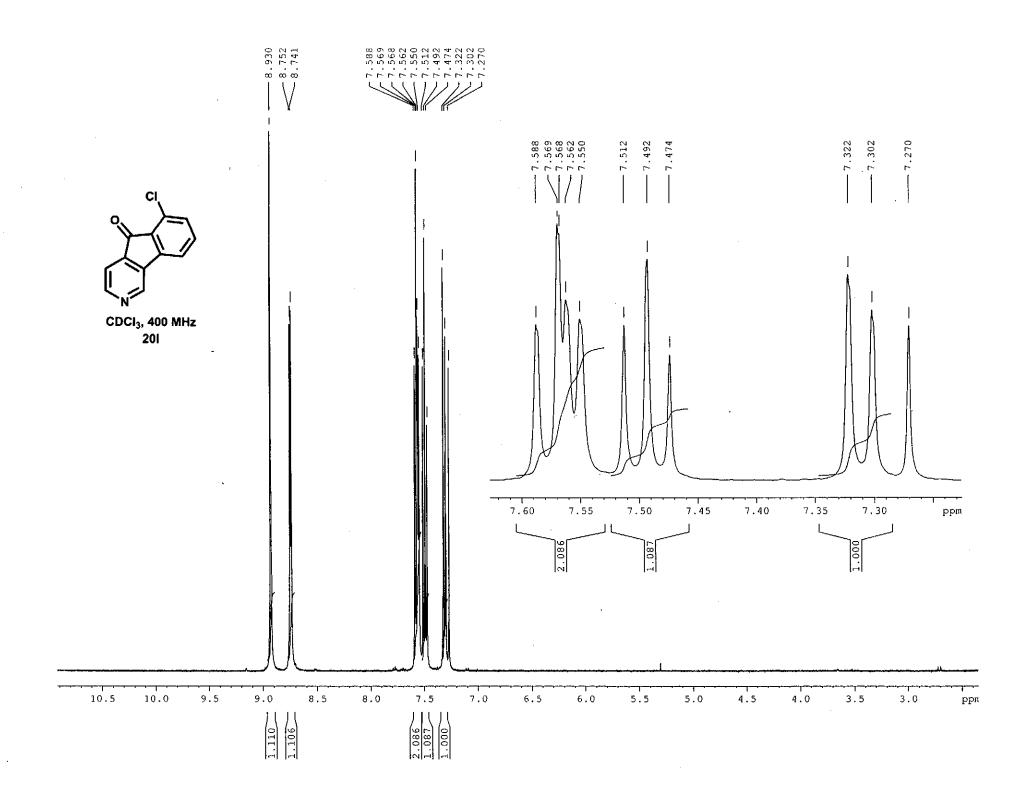


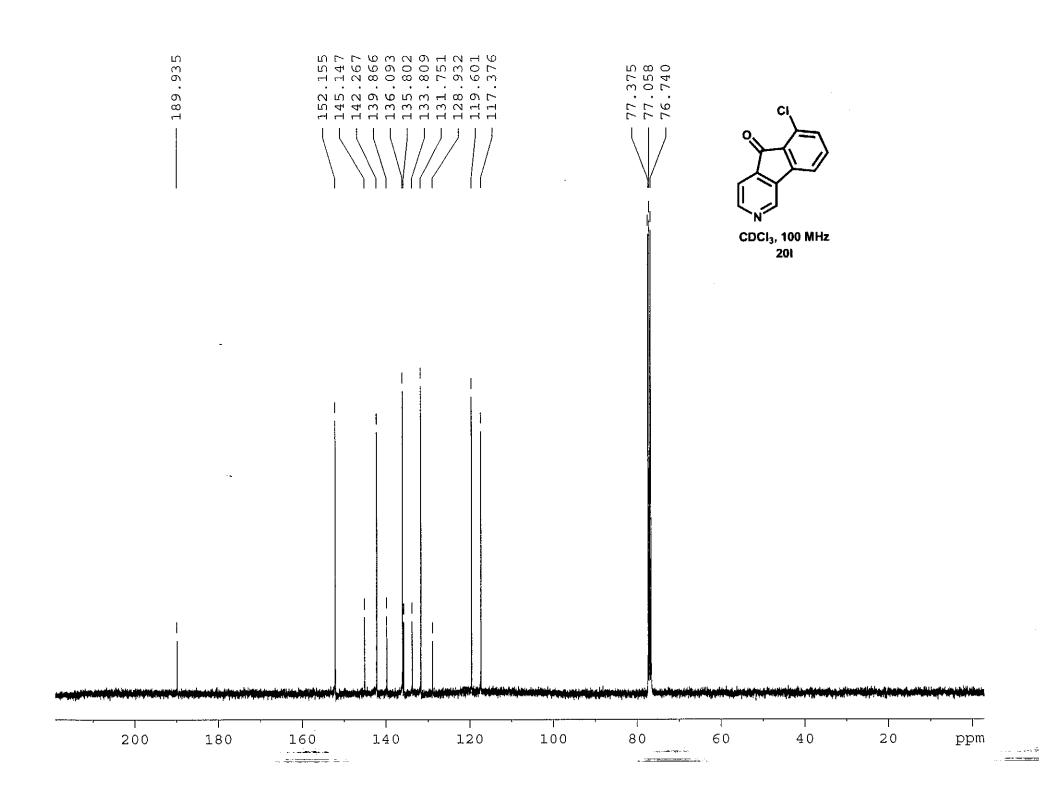












		ı					ĺ	100 N	Ihz C 20b	Ľ	CN	
ng sidigida yan Basilahan I Sani Ina di san sida 17 Ban juri kan san sa juri sa			240-00-3/1640 1991 Y 17 1991	90	- °x - x -	Մերություններին Ամեթությունը 						

