Supporting Information:

Kinetics of a Fast Reversible Alkene Radical Cation Cyclization Reaction

John H. Horner, Martin Newcomb

The University of Illinois at Chicago, 845 West Taylor St. Chicago IL 60607

Contents:

S2 General Procedures and Instrumentation:

Reactions of 1 and Analysis for 9, 10, 11, 12, and 13:
Figure S1. GCMS chromatogram of the hydrocarbon fraction from the photolysis of $\mathbf{1}$ in DCM with $\mathrm{PhSH}=0.5 \mathrm{M}$.

Tables S1 to S6. Yields of $\mathbf{9 , 1 0}$, and $\mathbf{1 1}$ determined by HPLC
Tables S7-S15. Observed Rates as a function of Temperature for LFP of $\mathbf{1}$
Synthetic Schemes S1, S2 and S3
Synthetic Procedures and Spectral Data for Compounds S1, S2, S3, 1, S4, 9, 10, S5, trans-S6, cis-S6, trans-S7, cis-S7, 11,12, and 13

Tables S16 to S25. B3LYP/6-316(d) Energies and Cartesian Coordinates for 10, 5, 14+•, 14, 15+••, 15, 16+, 16, 17+, 17

Table S26. Enthalpies of formation of neutral precursors, B3LYP/ 6-31G(d) isodesmic reaction enthalpies, and estimated enthalpies of formation of alkene radical cations 5, 4, 3, 14+••, and $\mathbf{1 5}^{+\bullet}$

Table S27. Enthalpies of formation of neutral precursors, B3LYP/ 6-31G(d) isodesmic reaction enthalpies, and enthalpies of formation of cations $\mathbf{1 6}+$, and $\mathbf{1 7 +}$, plus estimated enthalpies of formation for distonic radical cations 6 and 7.

Table S28. Comparison of Experimental and Calculated Enthalpies of Formation for Simple Alkenes as a Test of the DFT / Isodesmic Methodology used in Scheme 3 to Estimate the Enthalpies of Formation of Species 3, 4, and 5.

References for Supporting Information
NMR Spectra

General Procedures and Instrumentation:. Reactions involving water-sensitive reagents were performed under a nitrogen atmosphere. THF and dichloromethane were purified using a commercial column purification apparatus ${ }^{\mathrm{S} 1, \mathrm{~S} 2}$ Diisopropylamine and triethylamine were purified prior to use by distillation after stirring over calcium hydride. Column chromatography was carried out using Silicycle Ultra Pure Silica Gel (200-425 mesh) ($60 \AA$). $\alpha, \alpha, \alpha-$ Trifluorotoluene (anhydrous), methanol, acetonitrile, diethyl ether, benzene, thiophenol, and other reagents were purchased from Aldrich Chemical Company and used as received. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 or 500 MHz with CDCl_{3} solutions unless specified otherwise. Chemical shifts are reported in ppm (δ) downfield from internal TMS at $0.00 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 or 125 MHz with chemical shifts referenced to internal TMS at 0.00 ppm or to the solvent peak at $77.00 \mathrm{ppm} .{ }^{13} \mathrm{C}$ multiplicities (C), $(\mathrm{CH}),\left(\mathrm{CH}_{2}\right),\left(\mathrm{CH}_{3}\right)$ were obtained from DEPT-135 and DEPT-90 spectra. High resolution mass spectra were recorded by the University of Illinois at Chicago Research Resources Center. HPLC analyses were carried out on an Agilent 1100 HPLC system equipped with a photodiode array detector and using a Supelcosil LC-18 column ($25 \mathrm{~mm} \times 4.6 \mathrm{~mm}$) $(5 \mu \mathrm{~m})$. GCMS analyses were carried out on an Agilent 6890 N gas chromatograph equipped with a DB1701 capillary column ($30.0 \mathrm{~m} \times 0.25$ $\mathrm{mm} \times 0.25 \mu \mathrm{~m}$), interfaced to an Agilent 5973 mass selective detector running in scan mode with electron impact ionization (70 Ev).

Laser flash photolysis studies of $\mathbf{1}$ were carried out on an Applied Photophysics LKS50 laser kinetic spectrometer. The third harmonic ($355 \mathrm{~nm}, 7 \mathrm{~ns}$ duration, 40 to 60 mJ / pulse) from a Continuum Surelite 1 laser was used in all LFP studies. Data from the photomultiplier was digitized using an Agilent infinium oscilloscope (Model 54845a). When possible, oversampling ($64 / 1$) was used to improve S / N. Samples of $\mathbf{1}$ were prepared in the appropriate solvent, and the concentration of $\mathbf{1}$ was adjusted to give an absorbance of 0.2 to 0.5 at 355 nm . The samples (typically 250 mL) were placed in a jacketed addition funnel and deoxygenated by a slow flow of helium. The temperature of the solution was adjusted by circulating a temperature regulated methanol / water mixture through the external jacket with a circulating pump. The sample was equilibrated at the desired temperature for 10 to 20 min and then allowed to flow through a flow cuvette at a rate of 5 to $20 \mathrm{~mL} / \mathrm{min}$. Sample temperatures were measured by a thermocouple inserted into the cuvette just above the laser and analyzing light paths. For low temperature data the sample and cuvette were enclosed in a box equipped with quartz windows that was purged with nitrogen in order to minimize water condensation on optical surfaces.

Reactions of 1 and Analysis for 9, 10, 11, 12, and 13: Photolyses of PTOC ester 1 were carried out in 8 mm (i.d.) pyrex reaction tubes, capped with a rubber septum. The tube was purged for at least 5 min with a continuous flow of N_{2}. The solvent (TFT, DCM, benzene, or ACN), thiophenol, and, in some cases, TFE, was added to the reaction tube to make a volume of $700 \mu \mathrm{~L}$. The solution was deoxygenated for 2 to 4 min . by agitating the solution while passing a gentle stream of N_{2} through the solution using a syringe needle. The solution was then shielded from light, the PTOC ester 1 solution ($300 \mu \mathrm{~L}, 0.033 \mathrm{M}$) was added, and the solution was further deoxygenated for 2 to 3 min as described above. The syringe needle was withdrawn, and the solution was then irradiated with a 150 W tungsten floodlamp at a distance of ca. 24 inches for 1 to 1.5 h . The reaction mixtures were analyzed directly by HPLC. Mixtures of methanol, acetonitrile, and water were used as eluant (typically 70:20:10, respectively) for 10 min ., followed by a gradient (1 min) to a 70:30 mixture of methanol:acetonitrile, followed by further elution to 30 min .

Calibration curves for $\mathbf{9}$ and $\mathbf{1 0}$ were constructed by injecting samples ($2 \mu \mathrm{~L}$ and $5 \mu \mathrm{~L}$) of known concentration ($1,2,3,4,5$ and 10 mM). Chromatograms were extracted from the PDA data at $250,260,270$, and 280 nm . Plots of peak area vs sample concentration typically yielded straight lines with $\mathrm{r}^{2}>0.999$. For reactions in TFT, TFT / 0.5% TFE, TFT / $1 \% \mathrm{TFE}$, and DCM, the yields of $\mathbf{9}$ and $\mathbf{1 0}$ from each reaction were determined by comparison of the calibration curves with peak areas for $\mathbf{9}$ and $\mathbf{1 0}$ from chromatograms at 250, 260, 270, and 280 nm of quadruplicate injections ($2 \times 2 \mu \mathrm{~L}$ and $2 \times 5 \mu \mathrm{~L}$). In the benzene and acetonitrile cases, single or
duplicate injections were used (2,5 or $10 \mu \mathrm{~L}$). The cyclic products $\mathbf{1 1}$ and $\mathbf{1 2}$ coeluted on HPLC and absorbed weakly beyond 240 nm . Since calibration curves prepared for $\mathbf{1 1}$ and $\mathbf{1 2}$ at 222 nm were similar and GC studies showed the $\mathbf{1 1}$ to be the major cyclic component ($>90 \%$), the calibration curve for 11 was used to quantitate the yield of cyclic product.

The identities of the hydrocarbon products $\mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}$, and $\mathbf{1 3}$ were further verified by GCMS. Reactions run in $\operatorname{DCM}(\mathrm{PhSH}=0.1,0.3,0.5$ and 0.7 M$)$ as described above were analyzed by HPLC, and then chromatographed on silica (Hexanes) to remove 9 and other polar components. The solvent was removed by rotary evaporator, and the resulting material was taken up in DCM and analyzed by GCMS. The major component (approximately 75\%) of this hydrocarbon mixture was established to be $\mathbf{1 0}$ as determined by identical retention times and mass spectra with an authentic sample of $\mathbf{1 0}$. Identical retention times as verified by coinjection, and identical mass spectra with independently prepared authentic samples of, 11, 12, and $\mathbf{1 3}$ established the presence these cyclic compounds in the product mixture. The acyclic diene $\mathbf{1 0}$ and the cyclic alkene products $\mathbf{1 1}$ and $\mathbf{1 2}$ comprised 88% of the hydrocarbon fraction when $\mathrm{PHSH}=0.1 \mathrm{M}$ and 96% when $\mathrm{PhSH}=0.5 \mathrm{M}$.

Figure S1. Portion of the GCMS chromatogram of the hydrocarbon fraction from the photolysis of $\mathbf{1}$ in DCM with $\mathrm{PhSH}=0.5 \mathrm{M}$.

Table S1. Yields of $\mathbf{9}, \mathbf{1 0}$, and $\mathbf{1 1}$ determined by HPLC for photolysis of PTOC $\mathbf{1}$ in TFT.

[PhSH]	9	10	11
3.0000	45.9300	31.2800	3.3500
3.0000	45.5500	30.8600	3.3500
3.0000	45.1200	31.8200	3.0600
3.0000	46.0800	31.7600	3.0600
2.5000	46.3500	31.8600	3.1400
2.5000	47.7500	32.9300	3.1800
2.5000	46.3600	31.9000	3.4600
2.5000	44.7600	30.6800	3.4500
2.0000	49.4000	33.9200	4.7700
2.0000	47.7600	32.0400	4.4200
2.0000	48.3100	32.7400	4.4500
2.0000	48.2500	33.3900	4.7100
1.5000	44.8600	34.6400	4.4600
1.5000	44.3700	33.5400	4.2000
1.5000	43.9500	33.9300	4.4300
1.5000	43.5100	32.9600	4.2000
1.0000	42.3700	34.4300	5.7700
1.0000	42.5900	33.7100	5.8000
1.0000	41.9700	35.5700	5.0900
1.0000	41.9500	33.8100	5.7600
0.9000	41.0900	38.4400	4.5900
0.9000	40.3000	36.8000	5.1800
0.9000	40.7000	38.0500	4.5500
0.9000	41.0000	37.6100	5.3090
0.8000	41.2000	38.4000	5.9800
0.8000	40.2600	38.2200	6.0000
0.8000	41.3900	38.6000	6.1200
0.8000	40.5900	38.6900	6.2800
0.7000	39.4600	41.1200	6.0000
0.7000	39.1400	40.7600	5.3200
0.7000	40.4500	41.3100	6.3000
0.7000	40.5400	41.5300	6.4500
0.6000	35.9200	40.7000	6.1900
0.6000	35.6400	39.5900	5.9600
0.6000	34.6000	38.3700	6.0100
0.6000	33.6000	37.2000	5.9900
0.5000	35.7100	45.0300	8.2100
0.5000	33.7700	42.5800	7.6000
0.5000	34.6100	43.5100	6.9500
0.5000	31.1300	41.1500	6.1500
0.4000	29.7400	44.5300	6.1900
0.4000	28.9800	42.9600	6.2200
0.4000	29.4000	42.3500	6.8600
0.4000	28.2900	40.6500	6.9100
0.3000	27.1200	48.4700	7.9000
0.3000	26.6000	47.3900	7.9200
0.3000	25.5100	45.8900	7.5700
0.3000	24.7700	44.2500	7.5600
0.2000	20.9500	51.6500	8.8000
0.2000	20.6300	50.9600	8.7900
0.2000	19.8100	50.3200	7.7100
0.2000	19.3100	49.0000	8.9000
0.1000	13.0100	55.2700	11.1900
0.1000	13.3400	54.8200	10.8000
0.1000	13.2500	54.4100	11.4900
0.1000	13.0700	55.5800	11.3200
0.0500	6.9100	53.1100	11.1100
0.0500	7.0600	53.6000	11.3400
0.0500	7.2900	54.2900	11.3800
0.0500	7.3700	53.9600	11.3700

Table S2. Yields of $\mathbf{9}, \mathbf{1 0}$, and $\mathbf{1 1}$ determined by HPLC for photolysis of PTOC $\mathbf{1}$ in TFT / 0.5\% TFE.

[PhSH]	9	10	11
2.0000	26.6500	52.1900	6.4000
2.0000	27.3300	51.8400	6.6600
2.0000	27.3900	51.7100	7.1700
2.0000	27.4200	51.4900	7.0700
1.7500	33.0600	69.5000	9.3600
1.7500	33.6200	69.9800	9.5800
1.7500	33.9300	68.9000	10.2800
1.7500	34.0500	68.8600	10.2300
1.7500	29.4700	67.8400	9.4500
1.7500	30.4200	67.9400	8.8100
1.7500	30.4900	68.1000	8.8000
1.7500	29.5000	68.0200	9.1900
1.5000	23.1200	55.6000	8.4100
1.5000	22.9800	55.1300	8.3400
1.5000	23.6700	55.2400	9.1700
1.5000	23.9400	55.2500	9.1600
1.5000	23.5400	54.7800	9.1500
1.5000	24.7500	53.2400	11.7800
1.5000	25.5600	53.2000	10.0400
1.5000	25.5000	53.0400	9.6900
1.2500	31.0800	67.2700	12.7700
1.2500	30.1500	65.6300	14.1300
1.2500	31.0500	65.3500	12.7800
1.2500	30.4100	66.3100	10.4100
1.2500	27.4300	68.6800	10.2200
1.2500	26.4600	69.2300	9.5200
1.2500	26.3200	69.3400	9.3000
1.2500	27.4100	69.1400	10.3200
1.0000	23.1800	57.0400	13.6600
1.0000	23.8500	60.5100	9.9900
1.0000	27.1600	65.2300	12.5500
1.0000	27.1700	65.1900	12.4400
1.0000	22.7500	58.6200	10.0900
1.0000	26.5200	66.1700	11.6800
1.0000	26.3700	65.7400	11.0100
1.0000	28.6700	67.0100	12.1800
1.0000	29.3600	67.0100	13.2300
1.0000	28.6700	67.0100	12.1800
1.0000	22.8500	56.2200	10.7300
1.0000	28.2300	66.5300	11.9800
1.0000	29.3100	66.9500	13.1800
0.9000	21.8300	58.5800	10.3100
0.9000	22.4800	58.0000	10.3100
0.9000	22.7500	58.2000	11.2300
0.9000	22.7600	58.1600	11.2400
0.8000	22.9900	67.5400	12.4100
0.8000	22.8700	66.8300	12.6400
0.8000	23.4700	67.8400	13.5200
0.8000	25.0300	68.2200	13.9300
0.7000	20.7500	59.2800	13.0200
0.7000	20.1600	59.2200	12.3800
0.7000	20.8900	59.2500	13.4400
0.7000	21.0000	59.3300	13.4100
0.6000	19.6600	60.9800	14.1900
0.6000	19.7000	61.2500	14.2400
0.6000	19.2200	60.8800	13.0200
0.6000	18.8500	60.9800	13.1200
0.5000	17.5200	60.9900	13.5100
0.5000	17.5800	61.0100	13.5200
0.5000	17.8100	61.0200	14.8600
0.5000	17.8600	61.0500	14.6100
0.4000	14.8800	68.4700	15.8400

0.4000	14.8600	68.0100	15.6100
0.4000	15.5100	68.3200	16.7200
0.4000	15.5100	68.3700	16.8000
0.3000	11.7100	69.8700	18.1000
0.3000	11.7100	69.3000	18.0800
0.3000	12.2800	69.7200	19.5600
0.3000	12.2100	69.6100	19.5500
0.2000	9.3100	66.9700	19.4800
0.2000	9.1400	66.7300	19.2500
0.2000	9.3500	66.5200	20.4200
0.2000	9.4100	66.6400	20.4600
0.1000	4.9100	61.5600	19.4100
0.1000	4.9900	61.4200	20.0900
0.1000	5.5600	61.5400	20.9200
0.1000	5.5700	61.4900	21.5700

Table S3. Yields of $\mathbf{9}, \mathbf{1 0}$, and $\mathbf{1 1}$ determined by HPLC for photolysis of PTOC $\mathbf{1}$ in TFT / 1.0 \% TFE.

[PhSH]	9	10	11
2.0000	12.8600	68.2000	7.0600
2.0000	12.7800	67.5200	6.8100
2.0000	13.3400	67.5700	7.3700
2.0000	13.4100	67.5600	7.4700
2.0000	14.6400	85.3000	7.5500
2.0000	14.6000	84.5500	7.5600
2.0000	15.2700	83.4500	8.2400
2.0000	15.2600	83.2800	8.1800
1.7500	12.6900	79.5300	9.6400
1.7500	12.6600	79.0400	9.6500
1.7500	13.3300	78.7900	10.3400
1.7500	13.5400	79.4000	10.4200
1.5000	10.0000	66.2500	7.3500
1.5000	10.0300	65.7600	7.7000
1.5000	10.5100	65.7300	8.3800
1.5000	10.5300	67.1100	8.4700
1.5000	12.9300	83.3500	9.8100
1.5000	12.8400	82.4300	9.7300
1.5000	13.4100	82.0700	10.7000
1.5000	13.4600	81.9200	10.6900
1.0000	10.7700	81.3600	13.9300
1.0000	10.6700	81.2500	12.2600
1.0000	11.0300	79.9900	13.0300
1.0000	11.1100	79.4600	13.0500
0.9000	10.6000	81.6600	13.1100
0.9000	10.3800	81.4200	13.2400
0.9000	10.5400	80.4400	14.2900
0.9000	10.6800	80.4300	14.4000
0.8000	11.3500	77.4900	15.4300
0.8000	11.3500	77.3700	15.5200
0.8000	10.7400	77.3100	14.4300
0.8000	10.8200	77.4300	14.3100
0.7000	10.8000	78.2400	16.2400
0.7000	10.5700	78.1500	16.2100
0.7000	10.0900	78.2900	14.9000
0.7000	9.9800	78.8100	14.9000
0.6000	9.0600	77.7900	15.8200
0.6000	9.3700	77.9400	17.6400
0.6000	9.2000	77.9400	18.2300
0.6000	9.1500	78.5700	12.2100
0.5000	8.3800	76.7900	16.9800
0.5000	8.3700	76.9600	17.0600
0.5000	8.8000	76.8000	18.3700
0.5000	8.7900	76.8700	20.3500
0.4000	7.9700	78.6700	18.9000
0.4000	8.0100	78.9100	18.7900
0.4000	8.3700	78.7000	20.3500
0.4000	8.3000	78.9400	20.6700
0.3000	4.2400	68.9200	17.0400
0.3000	4.2400	67.9400	19.1000
0.3000	4.4300	69.2800	17.8900
0.3000	4.4500	69.1000	17.1700
0.2000	3.2200	65.1100	19.1000
0.2000	3.2300	65.0100	19.0900
0.2000	3.4800	64.9600	20.2000
0.2000	3.4700	65.1000	20.3100

Table S4. Yields of $\mathbf{9 , 1 0}$, and $\mathbf{1 1}$ determined by HPLC for photolysis of PTOC 1 in Dichloromethane.

[PhSH]	9	10	11
3.0000	35.6000	57.5000	10.0000
3.0000	35.7000	56.9000	10.8000
3.0000	36.0000	57.1000	10.8000
3.0000	34.7200	56.7800	9.8900
2.5000	28.7000	51.8000	11.3200
2.5000	28.9000	51.8000	11.2000
2.5000	28.6000	52.4000	10.0000
2.5000	28.4000	52.3000	10.9000
2.0000	25.5000	57.6000	14.3000
2.0000	25.5000	57.5000	13.8000
2.0000	25.5000	56.7000	13.6000
2.0000	27.0000	56.5000	13.9000
1.7500	22.8200	54.8800	13.4200
1.7500	22.8700	55.0000	13.4400
1.7500	22.0900	55.0800	12.4600
1.7500	22.5400	55.6800	12.5400
1.5000	20.2000	57.6100	14.0200
1.5000	20.4000	56.4800	15.4700
1.5000	20.3800	56.5400	15.4000
1.5000	20.1500	57.4300	15.1800
1.0000	15.7800	61.1700	18.1100
1.0000	15.7900	61.3800	18.0800
1.0000	15.9800	59.9300	18.1200
1.0000	15.9400	60.1600	18.2200
0.8100	13.4900	59.0600	19.5700
0.8100	13.2000	58.8900	19.5600
0.8100	13.1800	59.8200	18.3700
0.8100	13.1100	59.5400	18.3000
0.7000	12.4100	59.6300	20.1900
0.7000	13.2900	64.3900	20.0000
0.7000	12.2700	61.4100	19.1100
0.7000	12.4700	60.1300	20.2600
0.6000	10.4300	59.8600	21.3200
0.6000	10.6200	61.8500	21.3900
0.6000	10.6300	61.8200	21.0200
0.6000	10.5400	61.7100	21.3400
0.5000	8.1400	53.9200	17.7900
0.5000	8.7800	54.4300	18.0100
0.5000	8.2400	54.3400	22.3100
0.5000	8.4200	52.8500	17.8800
0.4000	7.3700	60.0900	23.4400
0.4000	7.3000	61.7600	23.0800
0.4000	7.2600	61.4300	23.0100
0.4000	7.2600	59.4800	23.3100
0.3000	6.0200	60.3100	24.2400
0.3000	5.9000	58.2900	24.5400
0.3000	5.7900	58.1100	24.1000
0.3000	5.6200	59.0500	23.5400
0.2000	3.3500	44.8800	22.1100
0.2000	3.2700	48.6200	21.5900
0.2000	3.0800	45.7800	19.2500
0.2000	3.3800	44.7300	22.0100
0.1000	2.4200	71.7800	36.8600
0.1000	2.4300	72.2000	31.3400
0.1000	2.9100	74.1100	35.0000
0.1000	2.4800	69.8700	32.7700

Table S5. Yields of $\mathbf{9 , 1 0}$, and $\mathbf{1 1}$ determined by HPLC for photolysis of PTOC $\mathbf{1}$ in Benzene.

$[\mathrm{PhSH}]$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
3.0000	51.8600	27.6900	3.3800
3.0000	55.3500	30.3900	3.9000
2.5000	37.8600	15.7500	5.0200
2.5000	41.1600	22.4000	5.6500
2.5000	51.4600	30.9400	4.2000
2.5000	55.5900	30.2000	3.9700
2.0000	63.4100	41.4400	3.5200
2.0000	62.9800	37.6100	3.4500
1.5000	57.5400	41.4100	4.5600
1.5000	61.0400	45.6700	3.4500
1.0000	48.8100	49.0600	3.7900
1.0000	54.0500	54.4800	4.0500
1.0000	62.6600	58.4900	4.5000
1.0000	62.4000	54.3300	5.4000
0.5000	49.9900	64.2800	5.2200
0.5000	57.1100	76.4400	5.1500
0.1000	16.8400	71.6600	9.4800
0.1000	16.7400	70.5200	9.3000
0.0800	11.8700	49.9200	5.9100
0.0800	11.9100	49.0500	6.0400
0.0600	8.3600	59.6900	9.2700
0.0600	8.3300	59.4300	9.2800
0.0420	5.2700	53.1500	4.0300
0.0420	5.3500	53.3000	3.5500
0.0200	2.8100	58.9600	4.3300
0.0200	2.9300	58.9000	4.1000

Table S6. Yields of $\mathbf{9}, \mathbf{1 0}$, and $\mathbf{1 1}$ determined by HPLC for photolysis of PTOC $\mathbf{1}$ in Acetonitrile.

$[\mathrm{PhSH}]$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$
2.0000	12.5400	75.2600	9.8300
2.0000	10.9600	64.9200	9.7200
1.5000	9.3000	63.6600	10.9000
1.5000	10.4500	72.0400	11.4900
1.2500	10.1900	80.8400	12.5500
1.2500	9.3700	73.9400	12.3100
1.0000	9.3300	82.8000	14.0200
1.0000	8.8500	77.3500	13.6400
0.7700	6.9800	70.8100	10.7900
0.7700	6.9800	71.1200	10.7600
0.5000	5.2100	74.7100	14.5200
0.5000	5.2900	75.6800	14.2900
0.5000	4.5700	74.5500	14.2200
0.4000	4.3000	70.9600	14.0600
0.4000	4.4300	70.6200	13.8000

Table S7. Observed Rate Constants as a function of Temperature for LFP of $\mathbf{1}$ in TFT. ${ }^{\text {a }}$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$k_{\text {obs }}$
-0.8	1.18 ± 0.05
-0.8	1.15 ± 0.04
9.8	1.65 ± 0.04
9.8	1.61 ± 0.04
18.9	2.20 ± 0.05
19.5	2.26 ± 0.02
19.5	2.15 ± 0.02
30.5	3.28 ± 0.03
30.5	3.29 ± 0.04
39.4	4.73 ± 0.11
39.4	5.03 ± 0.14
49.1	6.77 ± 0.27
49.1	7.31 ± 0.11

${ }^{\text {a }}$ Rate constants in units of $10^{5} \mathrm{~s}^{-1}$.

Table S8. Observed Rate Constants as a Function of Temperature for LFP of $\mathbf{1}$ in TFT / 0.5% TFE. ${ }^{\text {a }}$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$k_{\text {obs }}$
10.5	18.7 ± 0.6
10.5	22.1 ± 1.5
19.8	27.0 ± 1.6
19.8	24.9 ± 1.2
29.8	30.6 ± 1.7
29.8	29.0 ± 1.4
39.5	36.2 ± 3.1
39.5	32.5 ± 3.0
49.3	40.8 ± 0.9
49.3	39.0 ± 0.9

${ }^{a}$ Rate constants in units of $10^{5} \mathrm{~s}^{-1}$.

Table S9. Observed Rate Constants as a Function of Temperature for LFP of $\mathbf{1}$ in TFT / 0.0125 M 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanol. ${ }^{\text {a }}$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$k_{\text {obs }}$
-29.0	2.00 ± 0.09
-29.0	2.03 ± 0.1
-20.7	2.40 ± 0.07
-20.7	2.45 ± 0.08
-9.7	3.02 ± 0.04
-9.7	2.97 ± 0.05
-1.5	3.47 ± 0.07
-1.5	3.59 ± 0.03
7.6	4.28 ± 0.05
7.6	4.29 ± 0.05
9.5	4.83 ± 0.04
9.5	5.00 ± 0.09
18.8	5.23 ± 0.02
18.8	5.35 ± 0.06
20.2	6.43 ± 0.07
20.2	6.13 ± 0.05
30.1	7.53 ± 0.12
30.1	7.62 ± 0.15
38.6	9.10 ± 0.23
38.6	8.94 ± 0.17
47.6	11.1 ± 0.34
47.6	10.8 ± 0.41
2	

${ }^{\text {a }}$ Rate constants in units of $10^{5} \mathrm{~s}^{-1}$.

Table S10. Observed Rate Constants as a Function of Temperature for LFP of $\mathbf{1}$ in TFT / 0.025 M 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanol. ${ }^{\text {a }}$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	k_{obs}
-30.2	3.75 ± 0.2
-19.7	5.18 ± 0.4
-19.7	5.11 ± 0.4
-11.8	5.96 ± 0.4
-11.8	5.95 ± 0.4
-2.3	7.34 ± 0.2
-2.3	6.98 ± 0.3
8.5	7.72 ± 0.4
8.5	7.65 ± 0.4
9.2	7.99 ± 0.3
9.2	8.11 ± 0.2
14.6	8.45 ± 0.2
18.7	9.11 ± 0.4
18.7	8.95 ± 0.2
32.1	11.2 ± 0.1
32.1	11.2 ± 0.1
41.2	12.8 ± 0.1
41.2	12.9 ± 0.2
51.3	14.4 ± 0.2
51.3	14.3 ± 0.2

${ }^{2}$ Rate constants in units of $10^{5} \mathrm{~s}^{-1}$.

Table S11. Observed Rate Constants as a Function of Temperature for LFP of $\mathbf{1}$ in TFT / 0.05 M 2,2,3,3,4,4,5,5-octafluoropentanol. ${ }^{\text {a }}$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$k_{\text {obs }}$
-3.5	16.6 ± 0.9
-3.5	16.8 ± 1.0
6.5	19.7 ± 1.0
6.5	19.8 ± 0.8
9.2	20.8 ± 0.5
9.2	20.2 ± 1.0
19.2	24.0 ± 0.6
19.2	23.4 ± 0.7
31.5	26.3 ± 1.0
31.5	26.8 ± 0.6
41.5	28.6 ± 0.4
41.5	30.1 ± 1.0
51.7	32.8 ± 0.9
51.7	31.1 ± 0.4

${ }^{a}$ Rate constants in units of $10^{5} \mathrm{~s}^{-1}$.

Table S12. Observed Rate Constants as a Function of Temperature for LFP of $\mathbf{1}$ in TFT / 0.1 M 2,2,3,3,4,4,5,5-octafluoropentanol. ${ }^{\text {a }}$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$k_{\text {obs }}$
9.3	68.9 ± 1.4
9.3	71.3 ± 1.2
19.4	68.7 ± 0.7
19.4	69.6 ± 1.2
31.0	72.2 ± 0.8
31.0	68.6 ± 1.0
41.4	72.4 ± 2.0
41.4	69.2 ± 0.9
52.0	71.4 ± 1.9
52.0	68.5 ± 1.5

${ }^{a}$ Rate constants in units of $10^{5} \mathrm{~s}^{-1}$.

Table S13. Observed Rate Constants as a Function of Temperature for LFP of $\mathbf{1}$ in TFT / 0.2 M 2,2,3,3,4,4,5,5-octafluoropentanol. ${ }^{\text {a }}$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$k_{\text {obs }}$
1.4	328 ± 7
1.4	298 ± 6
9.3	238 ± 3
9.3	243 ± 3
19.4	267 ± 7
19.4	209 ± 5
30.9	218 ± 4
30.9	227 ± 3
42.1	202 ± 3
42.1	209 ± 3
52.7	187 ± 3
52.7	192 ± 4

${ }^{2}$ Rate constants in units of $10^{5} \mathrm{~s}^{-1}$.

Table S14. Observed Rate Constants as a Function of Temperature for LFP of $\mathbf{1}$ in Acetonitrile. ${ }^{\text {a }}$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$k_{\text {obs }}$
9.8	28.2 ± 1.7
9.8	27.6 ± 1.5
19.6	36.0 ± 1.6
19.6	38.9 ± 2.0
29.1	52.9 ± 1.8
29.1	50.5 ± 2.2
39.2	70.9 ± 2.3
39.2	71.2 ± 2.1
48.0	83.9 ± 1.0
48.0	88.8 ± 3.0

${ }^{a}$ Rate constants in units of $10^{5} \mathrm{~s}^{-1}$.

Table S15. Observed Rate Constants as a Function of Temperature for LFP of $\mathbf{1}$ in Acetonitrile / $5 \% \mathrm{TFE}{ }^{\text {a }}$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{k}_{\text {obs }}$
11.4	42.3 ± 1.6
11.4	39.8 ± 1.4
20.0	60.1 ± 2.9
20.0	59.6 ± 3.3
29.5	81.3 ± 4.1
29.5	82.4 ± 5.5
39.8	105 ± 2.6
39.2	105 ± 2.5
47.5	133 ± 1.4
47.5	133 ± 2.3
${ }^{\text {a }}$ Rate constants in units of $10^{5} \mathrm{~s}^{-1}$.	

Scheme S1

a) LDA/THF (-78 $\left.{ }^{\circ} \mathrm{C}\right)$, then 6,6-diphenyl-5-hexenal; b) $\mathrm{Et} 3 \mathrm{~N} / \mathrm{DCM}\left(0^{\circ} \mathrm{C}\right), \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}$;
c) TFA / DCM d) 2,2 '-dithio-bis(pyridine N-oxide), n - $\mathrm{Bu}_{3} \mathrm{P}$

Scheme S2

a) i - $\mathrm{PrMgBr} / \mathrm{THF}\left(0^{\circ} \mathrm{C}\right)$; b) $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{DCM}\left(0^{\circ} \mathrm{C}\right), \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}$;
c) isopropyltriphenylphosphonium iodide / LiHMDS / THF $\left(0^{\circ} \mathrm{C}\right)$.

Scheme S3

a) $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN} / \mathrm{Benzene}($ reflux $\left.) ; ~ b\right) ~ \mathrm{MeLi} / \mathrm{THF}\left(0^{\circ} \mathrm{C}\right)$; c) $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{DCM}\left(0^{\circ} \mathrm{C}\right), \mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}$; d) p - $\mathrm{TsOH} /$ Benzene, $\left(80^{\circ} \mathrm{C}\right)$.
t-Butyl 3-hydroxy-2,2-dimethyl-8,8-diphenyl-7-heptenoate (S1). t-Butyl 2-
methylpropanoate $(1.4 \mathrm{~g}, 0.01 \mathrm{~mol})$ in THF $(10 \mathrm{~mL})$ was added to a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of LDA (0.012 moles) in THF (25 mL). After stirring at $-78^{\circ} \mathrm{C}$ for $45 \mathrm{~min}, 6,6$-diphenyl-5-hexenal $(2.50 \mathrm{~g}, 0.01 \mathrm{~mol})$ was added, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was added to water and extracted with diethyl ether. The ether extracts were washed with brine and dried over MgSO_{4}. After solvent removal by rotary evaporator, the crude product was chromatographed on silica gel ($6 / 1$ hexanes / ethyl acetate) to give a clear oil ($2.60 \mathrm{~g}, 67 \%$)
 $2.15(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .7 .10-7.40(\mathrm{~m}$, $10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 20.8\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{3}\right), 29.6\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right)$, $47.3(\mathrm{C}), 76.6(\mathrm{CH}), 80.8(\mathrm{C}), 126.77(\mathrm{CH}), 126.84(\mathrm{CH}), 127.2(\mathrm{CH}), 128.0(\mathrm{CH}), 128.1(\mathrm{CH})$, $129.8(\mathrm{CH}), 129.9(\mathrm{CH}), 140.2(\mathrm{C}), 141.7(\mathrm{C}), 142.8(\mathrm{C}), 177.0(\mathrm{C})$. HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$, 483.2406; found, 483.2387.

t-Butyl 3-methanesulsonyloxy-2,2-dimethyl-8,8-diphenyl-7-heptenoate (S2).

Methanesulfonyl chloride $(0.77 \mathrm{~mL}, 0.01 \mathrm{~mol})$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{S 1}(2.6$ $\mathrm{g}, 0.0066 \mathrm{~mol})$ and triethylamine ($1.4 \mathrm{~mL}, 0.01 \mathrm{~mol}$) in dichloromethane $(30 \mathrm{~mL})$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was washed successively with cold dilute HCl (5\%), cold NaHCO_{3} (sat. aq), and brine. The resulting solution was dried over MgSO_{4}, and
solvent was removed by rotary evaporator. The crude product was chromatographed on silica gel ($4: 1$, hexanes / ethyl acetate) to give an oil $(2.7 \mathrm{~g}, 87 \%)$. ${ }^{1} \mathrm{H}$ NMR: $\delta 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3$ H), $1.40(\mathrm{~s}, 9 \mathrm{H}), 1.45-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H})$, $4.94(\mathrm{dd}, J=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.40(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 19.5$ $\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{3}\right), 29.5\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 38.9\left(\mathrm{CH}_{3}\right), 47.6(\mathrm{C}), 81.2$ $(\mathrm{C}), 87.2(\mathrm{CH}), 126.90(\mathrm{CH}), 126.93(\mathrm{CH}), 127.2(\mathrm{CH}), 128.1(\mathrm{CH}), 128.2(\mathrm{CH}), 128.8(\mathrm{CH})$, $129.8(\mathrm{CH}), 140.1(\mathrm{C}), 142.3(\mathrm{C}), 142.5(\mathrm{C}), 174.2(\mathrm{C})$. HRMS (EI): Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{SO}_{5}[\mathrm{M}]^{+}$, 472.2283; found: 472.2265.

3-Methanesulfonyloxy-2,2-dimethyl-8,8-diphenyl-7-heptenoic acid (S3). A solution of S2 $(1.22 \mathrm{~g}, 0.0021 \mathrm{~mol})$ and trifluoroacetic acid $(1.4 \mathrm{~g}, 0.012 \mathrm{~mol})$ in dichloromethane (15 mL) was stirred for 15 h . The solution was washed with water and brine and dried over MgSO_{4}. Solvent was removed by rotary evaporation to give a viscous oil ($0.81 \mathrm{~g}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.19$ ($\mathrm{s}, 3 \mathrm{H}$), $1.27(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.78(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 4.95(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.40(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 20.7\left(\mathrm{CH}_{3}\right), 21.5$ $\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 38.9\left(\mathrm{CH}_{3}\right), 47.0(\mathrm{C}), 86.7(\mathrm{CH}), 126.95(\mathrm{CH})$, $126.98(\mathrm{CH}), 127.2(\mathrm{CH}), 128.1(\mathrm{CH}), 128.2(\mathrm{CH}), 128.8(\mathrm{CH}), 129.9(\mathrm{CH}), 140.1(\mathrm{C}), 142.4$ (C), 142.5 (C), 181.2 (C). HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{SO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}, 439.1555$; found, 439.1549 .
(1H)-2-Thioxo -1-pyridyl 3-methanesulsonyloxy-2,2-dimethyl-8,8-diphenyl-7heptenoate (1). Tributylphosphine ($0.82 \mathrm{~mL}, 0.0033 \mathrm{~mol}$) was added to a mixture of $\mathbf{S 3}$ (0.92 $\mathrm{g}, 0.0022 \mathrm{~mol}$) and 2, '-dithio-bis (pyridine- N -oxide) $(0.83 \mathrm{~g}, 0.0033 \mathrm{~mol}$) in dichloromethane $(15 \mathrm{~mL})$, which was cooled to $0^{\circ} \mathrm{C}$ and shielded from light. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then washed with NaHCO_{3} (sat. aq) and brine. The solution was dried over MgSO_{4}. The solvent was removed by rotary evaporator, and the resulting crude product was chromatographed on silica gel (2:1, hexanes / ethyl acetate) to give a yellow solid ($1.02 \mathrm{~g}, 89 \%$). Mp 100-103 ${ }^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.80(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H})$, $5.10(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{td}, J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.40(\mathrm{~m}$, $11 \mathrm{H}), 7.65(\mathrm{dd}, J=8.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 19.6\left(\mathrm{CH}_{3}\right), 22.3$ $\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 39.0\left(\mathrm{CH}_{3}\right), 47.5(\mathrm{C}), 85.5(\mathrm{CH}), 112.7(\mathrm{CH}), 127.01$ $(\mathrm{CH}), 127.03(\mathrm{CH}), 127.18(\mathrm{CH}), 128.1(\mathrm{CH}), 128.3(\mathrm{CH}), 128.5(\mathrm{CH}), 129.8(\mathrm{CH}), 133.6(\mathrm{CH})$, 137.3 (CH), 138.1 (CH), 139.9 (C), 142.4 (C), 142.6 (C), 170.7 (C), 175.9 (C). HRMS (ESI): Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}, 526.17164$; found, 526.17180.

2-Methyl-8,8-diphenyl-7-octen-3-ol (S4). A solution of 6,6-diphenyl-5-hexenal (1.0g, $0.004 \mathrm{~mol})$ in THF (5 mL) was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of isopropylmagnesium bromide freshly prepared under a nitrogen atmosphere from 2-bromopropane ($1.0 \mathrm{~g}, 0.0078 \mathrm{~mol}$) and $\mathrm{Mg}(1.0 \mathrm{~g}, 0.041 \mathrm{~mol})$ in THF $(30 \mathrm{~mL})$. After 2 h , water was added, and the mixture was extracted with diethyl ether. The ether extracts were washed with brine and dried over MgSO_{4}. The solvent was removed by rotary evaporator. The crude product was chromatographed on silica gel ($5: 1$, hexanes / ethyl acetate) to give a clear oil ($0.66 \mathrm{~g}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta 0.88$ (d, $J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.90 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.40-1.75(\mathrm{~m}, 5 \mathrm{H}), 2.13(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.40(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 17.0\left(\mathrm{CH}_{3}\right)$, $18.8\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{3}\right), 33.6(\mathrm{CH}), 76.3(\mathrm{CH}), 126.58(\mathrm{CH}), 126.64$ $(\mathrm{CH}), 127.0(\mathrm{CH}), 127.8(\mathrm{CH}), 127.9(\mathrm{CH}), 129.6(\mathrm{CH}), 129.7(\mathrm{CH}), 140.0(\mathrm{CH}), 141.5(\mathrm{C})$, 142.5 (C). HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}[\mathrm{M}]^{+}, 294.1984$; found, 294.1979.

2-Methyl-3-methanesulfonyloxy-8,8-diphenyl-7-octene (9). Methanesulfonyl chloride $(250 \mu \mathrm{~L}, 0.0033 \mathrm{~mol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{S} 4(0.64 \mathrm{~g}, 0.0033 \mathrm{~mol})$ and triethylamine $(460 \mu \mathrm{~L}, 0.0033 \mathrm{~mol})$ in dichloromethane $(15 \mathrm{~mL})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then washed successively with cold dilute $\mathrm{HCl}(5 \%), \mathrm{NaHCO}_{3}$ (sat, aq) and brine. After drying over MgSO_{4}, the solvent was removed by rotary evaporator, and the crude product was chromatographed on silica gel (4:1, hexanes / ethyl acetate) to give an oil ($0.44 \mathrm{~g}, 54 \%$). ${ }^{1} \mathrm{H}$

NMR: $\delta 0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.97$ (septet of doublets, $J=6.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.10-7.40 (m, 10 H$).{ }^{13} \mathrm{C}$ NMR: $\delta 17.4\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 30.5\left(\mathrm{CH}_{2}\right)$, $31.4(\mathrm{CH}), 38.6\left(\mathrm{CH}_{3}\right), 88.3(\mathrm{CH}), 126.76(\mathrm{CH}), 126.82(\mathrm{CH}), 127.0(\mathrm{CH}), 127.9(\mathrm{CH}), 128.0$ $(\mathrm{CH}), 128.8(\mathrm{CH}), 129.7(\mathrm{CH}), 139.9(\mathrm{CH}), 142.1(\mathrm{C}), 142.4(\mathrm{C})$. HRMS (EI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{SO}_{3}[\mathrm{M}]^{+}, 372.1759$; found, 372.1765 .

1,1-Diphenyl-7-methyl-1,6-octadiene (10). n - $\mathrm{BuLi}(3.0 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 0.0048 $\mathrm{mol})$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of hexamethyldisilazane ($0.81 \mathrm{~g}, 0.005 \mathrm{~mol}$) in THF $(20 \mathrm{~mL})$. After stirring for 10 min at $0^{\circ} \mathrm{C}$, isopropyltriphenylphosphonium iodide ($2.1 \mathrm{~g}, 0.0049$ mol) was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . 6,6-Diphenyl-5-hexenal $(1.1 \mathrm{~g}$, 0.0044 mol) was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was poured into hexane and filtered through silica gel. The solvent was removed by rotary evaporator, and the crude product was chromatographed on silica gel (hexanes) to give a clear oil ($0.43 \mathrm{~g}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.46$ (pentet, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.50 (br s, 3 H), 1.65 (br s, 3 H), 1.95 $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{t}$ of septets, $J=7.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.40(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 17.7\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{2}\right), 29.5$ $\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 124.4(\mathrm{CH}), 126.72(\mathrm{CH}), 126.78(\mathrm{CH}), 127.2(\mathrm{CH}), 128.03(\mathrm{CH}), 128.05$ $(\mathrm{CH}), 129.9(\mathrm{CH}), 130.1(\mathrm{CH}), 131.6(\mathrm{CH}), 140.3(\mathrm{CH}), 141.6(\mathrm{C}), 142.9(\mathrm{C})$. HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24}[\mathrm{M}]^{+}, 276.1878$; found, 276.1901.

Ethyl 7,7-diphenyl-2-(phenylselenyl)-6-heptenoate (S5). A solution of ethyl 7,7-diphenyl-6-heptenoate ($3.07 \mathrm{~g}, 0.01 \mathrm{~mol}$) in THF $(15 \mathrm{~mL})$ was added slowly to a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of LDA (0.012 mol) in THF / hexanes (27 mL). The solution was stirred for 1 h at -78 ${ }^{\circ} \mathrm{C}$. Diphenyldiselenide $(3.7 \mathrm{~g}, 0.012 \mathrm{~mol})$ in THF $(15 \mathrm{~mL})$ was added, and the mixture was stirred as it warmed slowly to room temperature. Water was added, and the mixture was extracted with diethyl ether. The extracts were washed with brine and dried over MgSO_{4}. Solvent was removed by rotary evaporator, and the crude product was chromatographed on silica gel ($10: 1$, hexanes / ethyl acetate) to give an oil ($4.12 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR: $\delta 1.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3$ H), $1.53(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.53$ (dd, $J=8.4,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.40(\mathrm{~m}, 13 \mathrm{H}), 7.55(\mathrm{~m}, 2$ H). ${ }^{13} \mathrm{C}$ NMR: $\delta 14.0\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 43.3(\mathrm{CH}), 60.8\left(\mathrm{CH}_{3}\right), 126.72$ $(\mathrm{CH}), 126.76(\mathrm{CH}), 127.0(\mathrm{CH}), 127.7(\mathrm{C}), 127.9(\mathrm{CH}), 128.0(\mathrm{CH}), 128.2(\mathrm{CH}), 128.78(\mathrm{CH})$, $128.81(\mathrm{CH}), 129.7(\mathrm{CH}), 135.5(\mathrm{CH}), 139.9(\mathrm{C}), 142.0(\mathrm{C}), 142.4(\mathrm{C}), 172.7$ (C). HRMS (EI): Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{SeO}_{2}[\mathrm{M}]^{+}, 464.1255$; found, 464.1273.

Ethyl (cis-2-diphenylmethyl)cyclopentanecarboxylate and ethyl (trans-2-

 diphenylmethyl)cyclopentanecarboxylate (cis-S6 and trans- S6). A solution of S5 (0.96 g, $0.0021 \mathrm{~mol})$ and tributyltin hydride $(4.0 \mathrm{~g}, 0.014 \mathrm{~mol})$ in benzene $(100 \mathrm{~mL})$ was heated to reflux. AIBN $(50 \mathrm{mg})$ in benzene $(10 \mathrm{~mL})$ was added over 5 min . After 40 min , a second portion of AIBN (70 mg) was added. After heating at reflux for 1 h , the solvent was removed by rotary evaporator, and the crude product was chromatographed on silica gel (hexanes and then 10:1, hexanes / ethyl acetate). Two isomeric cyclic products were isolated, in order of elution, cis-S6 ($0.18 \mathrm{~g}, 58 \%$) and trans-S6 ($0.060 \mathrm{~g}, 19 \%$).cis-S6: ${ }^{1} \mathrm{H}$ NMR: $\delta 1.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H})$, $1.85(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{td}, J=7.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{dq}, J=10.7$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dq}, J=10.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.30(\mathrm{~m}, 10 \mathrm{H})$. ${ }^{13}$ C-NMR: $\delta 13.9\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 45.9(\mathrm{CH}), 48.3(\mathrm{CH}), 53.7(\mathrm{CH})$, $59.7\left(\mathrm{CH}_{2}\right), 126.07(\mathrm{CH}), 126.15(\mathrm{CH}), 127.7(\mathrm{CH}), 127.9(\mathrm{CH}), 128.3(\mathrm{CH}), 128.4(\mathrm{CH}), 144.2$ (C), 145.2 (C), 175.8 (C). HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}]^{+}, 308.1776$; found, 308.1788.
trans-S6: ${ }^{1} \mathrm{H}$-NMR: $\delta 1.00(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{dq}, J=13.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~m}$, $1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ $(\mathrm{dq}, J=11.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dq}$, $J=10.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.32(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 14.0\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right)$,
$32.5\left(\mathrm{CH}_{2}\right), 47.4(\mathrm{CH}), 49.7(\mathrm{CH}), 58.5(\mathrm{CH}), 60.1\left(\mathrm{CH}_{2}\right), 126.15(\mathrm{CH}), 126.25(\mathrm{CH}), 128.0$ $(\mathrm{CH}), 128.3(\mathrm{CH}), 128.4(\mathrm{CH}), 144.0(\mathrm{C}), 144.5(\mathrm{C}), 176.7(\mathrm{C})$. HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$, 331.1674; found, 331.1687.

Assignment of stereochemistry to cis and trans-S6. NOE difference spectroscopy was used to assign the relative stereochemistry of the two $\mathbf{S 6}$ isomers. Irradiation of $\mathrm{H}-1$ in the second eluting isomer resulted in a $>5 \%$ enhancement of the diphenylmethyl C-H indicating that these hydrogens are in close proximity. Molecular mechanics (MM2) calculations on trans-S6 reveal that these hydrogens are held in a 1,3-diaxial type relationship at an internuclear distance of only ca. $2.5 \AA$. Based on the observation of the large NOE enhancement between these two hydrogens, the stereochemistry of the second eluting isomer was assigned as trans. Similar NOE difference experiments on the first eluting isomer revealed no similar enhancement. Molecular mechanics (MM2) calculations on cis-S6 reveal in this isomer that $\mathrm{H}-1$ and the diphenylmethyl C-H are ca $3.5 \AA$ apart, consistent with the absence of any NOE. On this basis, cis stereochemistry was assigned to the first eluting isomer. The identities of $\mathrm{H}-1, \mathrm{H}-2$, and the diphenylmethyl C-H protons in cis-S6 and trans-S6 were established by ${ }^{1} \mathrm{H}$-COSY experiments.
trans-2-(Diphenylmethyl)cyclopentyl-2-propanol (trans-S7). MeLi ($4.4 \mathrm{~mL}, 1.6 \mathrm{M}$ in ether, 0.007 mol$)$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of trans-S6 $(0.86 \mathrm{~g}, 0.0028 \mathrm{~mol})$ in THF $(20 \mathrm{~mL})$. After 20 min , water was added, and the mixture was extracted with diethyl ether. The ether extracts were dried over MgSO_{4}, and the solvent was removed by rotary evaporator. The product was chromatographed on silica gel ($6: 1$, hexanes / ethyl acetate) to give an oil (0.58 g , 67%). ${ }^{1} \mathrm{H}$ NMR: $\delta 0.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.85(\mathrm{~m}, 2$ $\mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.38(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 25.2\left(\mathrm{CH}_{2}\right)$, $25.3\left(\mathrm{CH}_{3}\right), 28.9\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{2}\right), 44.4(\mathrm{CH}), 53.5(\mathrm{CH}), 57.2(\mathrm{CH}), 72.9(\mathrm{C})$, $126.0(\mathrm{CH}), 126.4(\mathrm{CH}), 128.3(\mathrm{CH}), 128.4(\mathrm{CH}), 128.6(\mathrm{CH}), 129.1(\mathrm{CH}) 144.4(\mathrm{C}), 144.6(\mathrm{C})$. HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 276.1878$; found, 276.1879.
cis-2-(Diphenylmethyl)cyclopentyl-2-propanol (cis-S7). $\mathrm{MeLi}(4.1 \mathrm{~mL}, 1.6 \mathrm{M}$ in ether, $0.0065 \mathrm{~mol})$ was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of cis-S6 $(0.67 \mathrm{~g}, 0.0022 \mathrm{~mol})$ in THF (25 mL). After 20 min , water was added, and the mixture was extracted with diethyl ether. The ether extracts were dried over MgSO_{4}, and the solvent was removed by rotary evaporator. The product was chromatographed on silica gel ($6: 1$, hexanes / ethyl acetate) to give an oil (0.46 g , 72%). ${ }^{1} \mathrm{H}$ NMR: $\delta 0.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.65$ $(\mathrm{m}, 4 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{tt}, J=11.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.10-7.40 (m, 10 H$).{ }^{13} \mathrm{C}$ NMR: $\delta 22.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{3}\right), 28.6\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{3}\right)$, $47.9(\mathrm{CH}), 51.0(\mathrm{CH}), 52.4(\mathrm{CH}), 74.3(\mathrm{C}), 125.6(\mathrm{CH}), 125.9(\mathrm{CH}), 127.5(\mathrm{CH}), 127.7(\mathrm{CH})$, $128.1(\mathrm{CH}), 128.5(\mathrm{CH}) 145.1(\mathrm{C}), 146.3(\mathrm{C})$. HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, 276.1878; found, 276.1888.
trans-2-Diphenylmethyl-1-(2-propenyl)cyclopentane (11). A solution of trans-S7 (0.50 $\mathrm{g}, 0.0017 \mathrm{~mol})$ and triethylamine $(0.4 \mathrm{~mL}, 0.0028 \mathrm{~mol})$ in dichloromethane $(10 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Methanesulfonyl chloride $(0.32 \mathrm{~mL}, 0.0041 \mathrm{~mol})$ was added, and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. The reaction mixture was washed successively with cold dilute $\mathrm{HCl}(5 \%)$, cold NaHCO_{3} (sat. aq), and brine. The resulting solution was dried over MgSO_{4}, and solvent was removed by rotary evaporator. The crude product was chromatographed on silica gel (hexanes) to give an oil ($0.17 \mathrm{~g}, 36 \%) .{ }^{1} \mathrm{H}$ NMR: $\delta 1.00$ (sextet, $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.48-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.54$ ($\mathrm{s}, 3 \mathrm{H}$), $1.79(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=9.6,1 \mathrm{H}), 4.43(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.10-7.30(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 20.3\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{2}\right)$, $31.2\left(\mathrm{CH}_{2}\right)$, $32.1\left(\mathrm{CH}_{2}\right), 46.6(\mathrm{CH}), 51.4(\mathrm{CH}), 56.9(\mathrm{CH}), 109.7\left(\mathrm{CH}_{2}\right) 125.90(\mathrm{CH}), 125.94(\mathrm{CH}), 128.0$ $(\mathrm{CH}), 128.2(\mathrm{CH}), 128.5(\mathrm{CH}), 128.7(\mathrm{CH}), 144.6(\mathrm{C}), 144.9(\mathrm{C}), 148.8(\mathrm{C})$. HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24}[\mathrm{M}]^{+}, 276.1878$, found: 276.1873.
cis-2-Diphenylmethyl-1-(2-propenyl)cyclopentane (12). A solution of cis-S7 (0.46 g, $0.0016 \mathrm{~mol})$ and triethylamine ($0.35 \mathrm{~mL}, 0.0024 \mathrm{~mol}$) in dichloromethane $(20 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Methanesulfonyl chloride $(0.19 \mathrm{~mL}, 0.0024 \mathrm{~mol})$ was added, and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. The reaction mixture was washed successively with cold dilute $\mathrm{HCl}(5 \%)$, cold NaHCO_{3} (sat. aq), and brine. The resulting solution was dried over MgSO_{4}, and solvent was removed by rotary evaporator. The crude product was chromatographed on silica gel (hexanes) to give an oil ($0.15 \mathrm{~g}, 36 \%)$. ${ }^{\mathrm{I}} \mathrm{H}$ NMR: $\delta 1.35-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.68(\mathrm{~m}, 2 \mathrm{H})$, $1.70-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.93(\mathrm{~m} 1 \mathrm{H}), 2.62(\mathrm{td}, J=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{tt}, J=11.6,7.3 \mathrm{~Hz}, 1$ H), $3.76(\mathrm{~d}, J=11.7,1 \mathrm{H}$, $, 4.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.08-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.26(\mathrm{~m}, 6$ H), 7.30-7.36 (m, 2 H$).{ }^{13} \mathrm{C}$ NMR: $\delta 23.4\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{3}\right), 30.7\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 47.8$ $(\mathrm{CH}), 48.5(\mathrm{CH}), 53.7(\mathrm{CH}), 112.3\left(\mathrm{CH}_{2}\right) 125.8(\mathrm{CH}), 125.9(\mathrm{CH}), 127.8(\mathrm{CH}), 128.1(\mathrm{CH})$, $128.2(\mathrm{CH}), 128.3(\mathrm{CH}), 144.9(\mathrm{C}), 146.0(\mathrm{C}), 147.4(\mathrm{C})$. HRMS (EI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24}[\mathrm{M}]^{+}$, 276.1878; found, 276.1866.

3a,9a-trans-9,9a-trans-4,4-dimethyl-2,3,3a,4,9,9a-hexahydro-9-phenylbenz[f]indene (13). A solution of trans-S7 $(0.2 \mathrm{~g}, 0.00041 \mathrm{~mol})$ and p-toluenesulfonic acid $(0.2 \mathrm{~g})$ in benzene was heated at reflux for 20 min . The mixture was washed with NaHCO_{3} (sat. aq), and brine. The resulting solution was dried over MgSO_{4}, and the solvent was removed by rotary evaporator. The crude product was chromatographed on silica gel (hexanes) to give a white solid (0.105 g , 92%). The physical and spectroscopic properties were in agreement with literature reported data. ${ }^{S 3}$

Computational Studies: All structures were fully optimized at the B3LYP/6-31G(d) level of theory using Gaussiam $98 .{ }^{\text {S4 }}$ Zero point calculations were carried out at the B3LYP/6$31 \mathrm{G}(\mathrm{d})$ level on the optimized structures. The calculated energies and Cartesian coordinates of the final structures for species $\mathbf{1 0}, \mathbf{5}, \mathbf{1 4 + \bullet}, \mathbf{1 4}, \mathbf{1 5 +}, \mathbf{1 5}, \mathbf{1 6 +}, \mathbf{1 6}, 17+$, and 17 are given in tables S16 to S27.

The accuracy of using B3LYP/6-31G* level DFT calculations combined with isodesmic reactions for estimating enthalpies of radical cations was evaluated using simple alkenes with accurately known ionization energies. The enthalpies of formation of the radical cations of propene, 2-methylpropene, 2-methyl-2-butene, and styrene were estimated using the isodesmic reactions of the alkene plus ethylene radical cation going to the alkene radical cation plus ethylene. The structure of each alkene and its corresponding radical cation was minimized at the B3LYP/6-31G* level of theory, and the enthalpy change was calculated using Eq S1, where $\Delta \mathrm{H}(\mathrm{rxn})$ is the calculated enthalpy change for the reaction in $\mathrm{kcal} / \mathrm{mole}$ and the values of H are the sum of electronic and thermal enthalpies for each species from the Gaussian 98 output. The enthalpy of formation for the radical cation was then calculated using Eq S2. The results are given in table S28.

$$
\begin{align*}
& \Delta \mathrm{H}(\mathrm{rxn})=627.5095 \times[\mathrm{H}(\text { ethene })+\mathrm{H}(\text { Alkene }+\bullet)-\mathrm{H}(\text { Alkene })-\mathrm{H}(\text { Ethene }+\bullet)] \tag{S1}\\
& \Delta \mathrm{H}_{\mathrm{f}}(\text { alkene }+\bullet)=\Delta \mathrm{H}(\mathrm{rxn})-\Delta \mathrm{H}_{\mathrm{f}}(\text { ethane })+\Delta \mathrm{H}_{\mathrm{f}}(\text { ethene }+\bullet)+\Delta \mathrm{H}_{\mathrm{f}}(\text { alkene }) \tag{S2}
\end{align*}
$$

Table S16. B3LYP/6-316(d) Energies and Cartesian Coordinates for 10:

E (RB+HF-LYP)				-814.672615716
Zero-point correction				0.390650
Thermal correction to Energy				0.411280
Thermal correction to Enthalpy				0.412224
Thermal correction to Gibbs Free Energy				0.337435
Sum of electronic and zero-point Energies				-814.281966
Sum of electronic and thermal Energies				-814.261336
Sum of electronic and thermal Enthalpies				-814.260392
Sum of electronic and thermal Free Energies				-814.335181
Atom Type	X	Y	Z	
C	2.1512	-2.4973	0.3654	
C	3.1356	-3.4751	0.5014	
C	2.4588	-1.2237	-0.1449	
H	1.1332	-2.7114	0.6784	
C	4.4556	-3.1995	0.1401	
C	3.7962	-0.9572	-0.4885	
C	1.4013	-0.1868	-0.3307	
H	2.8726	-4.4501	0.9040	
C	4.7810	-1.9344	-0.3532	
C	1.7838	1.2308	-0.0532	
C	0.1647	-0.5445	-0.7394	
H	5.2245	-3.9594	0.2510	
H	4.0602	0.0225	-0.8756	
C	1.5913	2.2412	-1.0091	
C	2.3653	1.5830	1.1772	
C	-1.0623	0.3142	-0.8738	
H	5.8058	-1.7068	-0.6357	
H	$5.1170 \mathrm{e}-3$	-1.5979	-0.9722	
C	2.7161	2.9037	1.4515	
C	1.9481	3.5634	-0.7382	
C	-2.2490	-0.2450	-0.0633	
H	1.1721	1.9811	-1.9770	
H	2.5355	0.8115	1.9231	
H	-0.8564	1.3423	-0.5587	
H	-1.3614	0.3658	-1.9332	
C	2.5077	3.9002	0.4946	
C	-3.5355	0.5862	-0.2376	
H	3.1545	3.1557	2.4137	
H	1.7938	4.3285	-1.4949	
H	-1.9739	-0.2789	0.9997	
H	-2.4482	-1.2832	-0.3623	
C	-4.6654	0.0915	0.6253	
H	2.7860	4.9291	0.7067	
H	-3.3116	1.6307	0.0302	
H	-3.8155	0.5979	-1.2973	
C	-5.8491	-0.4192	0.2519	
H	-4.4671	0.1529	1.6975	
C	-6.8537	-0.8735	1.2851	
C	-6.3059	-0.5915	-1.1765	
H	-6.4849	-0.7284	2.3055	
H	-7.8012	-0.3249	1.1851	
H	-7.0981	-1.9380	1.1598	
H	-5.5643	-0.2698	-1.9112	
H	-7.2286	-0.0231	-1.3603	
H	-6.5465	-1.6442	-1.3812	

Table S17. B3LYP/6-316(d) Energies and Cartesian Coordinates for 5:

Table S18. B3LYP/6-316(d) Energies and Cartesian Coordinates for 14+•:

Table S19. B3LYP/6-316(d) Energies and Cartesian Coordinates for 14:

E (RB+HF-LYP)				-619.332235281
Zero-point correction				0.272179
Thermal correction to Energy				0.286221
Thermal correction to Enthalpy				0.287165
Thermal correction to Gibbs Free Energy				0.230111
Sum of electronic and zero-point Energies				-619.060056
Sum of electronic and thermal Energies				-619.046014
Sum of electronic and thermal Enthalpies				-619.045070
Sum of electronic and thermal Free Energies				-619.102125
Atom Type	X	Y	Z	
C	3.1386	-1.4371	-0.8098	
C	3.1514	-2.2772	0.3040	
C	2.1120	-0.5053	-0.9743	
H	3.9246	-1.5094	-1.5571	
C	2.1260	-2.1844	1.2484	
C	1.0799	-0.3934	-0.0288	
H	3.9500	-3.0030	0.4329	
H	2.0968	0.1335	-1.8529	
C	1.0983	-1.2585	1.0793	
C	-0.0244	0.5992	-0.1937	
H	2.1258	-2.8364	2.1181	
C	-1.4214	0.0778	-0.1233	
C	0.1977	1.9144	-0.4054	
H	0.3001	-1.1963	1.8138	
C	-2.4478	0.8189	0.4883	
C	-1.7519	-1.1707	-0.6798	
C	1.5052	2.6588	-0.3981	
H	-0.6771	2.5439	-0.5738	
C	-3.0616	-1.6467	-0.6490	
C	-3.7580	0.3432	0.5202	
C	1.4578	3.8865	0.5290	
H	-2.2071	1.7666	0.9617	
H	-0.9742	-1.7655	-1.1497	
H	2.3256	1.9994	-0.0986	
H	1.7381	3.0026	-1.4181	
C	-4.0721	-0.8913	-0.0508	
H	-3.2934	-2.6105	-1.0951	
H	-4.5322	0.9328	1.0048	
H	1.2789	3.5873	1.5678	
H	2.4028	4.4401	0.4929	
H	0.6551	4.5744	0.2366	
H	-5.0921	-1.2652	-0.0216	

Table S20. B3LYP/6-316(d) Energies and Cartesian Coordinates for 15+•:

Table S21. B3LYP/6-316(d) Energies and Cartesian Coordinates for 15:

Table S22. B3LYP/6-316(d) Energies and Cartesian Coordinates for 16+:

E (RB+HF-LYP)				-815.033535223
Zero-point correction				0.404754
Thermal correction to Energy				0.424184
Thermal correction to Enthalpy				0.425128
Thermal correction to Gibbs Free Energy				0.356274
Sum of electronic and zero-point Energies				-814.628782
Sum of electronic and thermal Energies				-814.609352
Sum of electronic and thermal Enthalpies				-814.608407
Sum of electronic and thermal Free Energies				-814.677261
Atom Type	X	Y	Z	
C	-0.7166	3.6280	-0.7663	
C	-1.9592	2.9655	-0.1479	
C	0.4720	2.7362	-0.3440	
H	-0.6179	4.6658	-0.4337	
H	-0.8185	3.6482	-1.8568	
C	-1.6381	1.4339	-0.3599	
C	-0.1271	1.3536	0.0552	
H	-2.0264	3.1862	0.9227	
H	-2.9012	3.2574	-0.6211	
H	1.0130	3.1664	0.5033	
H	1.1989	2.6263	-1.1541	
C	0.5679	0.1310	-0.5946	
C	-2.5827	0.5951	0.3828	
H	-1.7270	1.2228	-1.4311	
H	-0.0838	1.2491	1.1436	
C	-0.2311	-1.1468	-0.3681	
C	2.0367	-7.4100e-4	-0.1739	
C	-3.5807	-0.2304	-0.3203	
C	-2.7198	0.6968	1.8579	
H	0.5680	0.3140	-1.6771	
C	-0.4982	-1.6327	0.9279	
C	-0.7414	-1.8618	-1.4633	
C	2.9878	-0.3331	-1.1479	
C	2.4675	0.1703	1.1490	
H	-3.6969	0.0409	-1.3719	
H	-4.5461	-0.2323	0.1986	
H	-3.2264	-1.2812	-0.2923	
H	-1.8470	1.1082	2.3651	
H	-3.5709	1.3745	2.0450	
H	-3.0011	-0.2646	2.2974	
C	-1.5199	-3.0028	-1.2752	
C	-1.2736	-2.7778	1.1210	
C	3.8120	$8.5850 \mathrm{e}-3$	1.4876	
C	4.3318	-0.4964	-0.8120	
H	-0.0597	-1.1375	1.7895	
H	-0.5264	-1.5196	-2.4726	
H	2.6742	-0.4684	-2.1806	
H	1.7644	0.4390	1.9335	
C	-1.7998	-3.4595	0.0212	
C	4.7482	-0.3265	0.5089	
H	-1.9053	-3.5429	-2.1353	
H	-1.4535	-3.1461	2.1271	
H	4.1269	0.1486	2.5177	
H	5.0518	-0.7531	-1.5836	
H	-2.3979	-4.3543	0.1664	
H	5.7942	-0.4497	0.7731	

Table S23. B3LYP/6-316(d) Energies and Cartesian Coordinates for 16:

E(RB+HF-LYP)	-814.673045350		
Zero-point correction	0.393924		
Thermal correction to Energy	0.412796		
Thermal correction to Enthalpy	0.413740		
Thermal correction to Gibbs Free Energy	0.345207		
Sum of electronic and zero-point Energies	-814.279122		
Sum of electronic and thermal Energies	-814.260249		
Sum of electronic and thermal Enthalpies	-814.259305		
Sum of electronic and thermal Free Energies	-814.327839		

Table S24. B3LYP/6-316(d) Energies and Cartesian Coordinates for 17+:

Table S25. B3LYP/6-316(d) Energies and Cartesian Coordinates for 17:

E (RB+HF-LYP)				-814.684657011
Zero-point correction				0.393551
Thermal correction to Energy				0.412716
Thermal correction to Enthalpy				0.413660
Thermal correction to Gibbs Free Energy				0.345054
Sum of electronic and zero-point Energies				-814.291106
Sum of electronic and thermal Energies				-814.271941
Sum of electronic and thermal Enthalpies				-814.270997
Sum of electronic and thermal Free Energies				-814.339603
Atom Type	X	Y	Z	
C	0.1734	1.3969	-0.1506	
C	-0.3756	2.1030	-1.2334	
C	0.5503	2.1252	0.9908	
C	0.4190	-0.0800	-0.2261	
C	-0.5681	3.4839	-1.1681	
C	0.3524	3.5035	1.0609	
C	1.8517	-0.4827	-0.0430	
C	-0.5538	-0.9854	-0.4705	
H	-0.6362	1.5645	-2.1403	
H	1.0017	1.6001	1.8284	
C	-0.2103	4.1890	-0.0183	
C	2.2477	-1.3264	1.0072	
C	2.8450	0.0173	-0.9011	
C	-0.3102	-2.4674	-0.7492	
C	-2.0579	-0.6922	-0.5822	
H	-0.9906	4.0095	-2.0209	
H	0.6425	4.0443	1.9582	
C	3.5872	-1.6765	1.1821	
C	4.1833	-0.3364	-0.7327	
C	-1.7000	-3.1269	-0.7256	
C	-2.6562	-2.0024	-1.1618	
C	-2.6931	-0.2127	0.7611	
H	-0.3598	5.2642	0.0338	
H	1.4962	-1.6987	1.6986	
H	2.5604	0.6896	-1.7063	
H	0.1371	-2.5638	-1.7503	
H	0.3944	-2.9363	-0.0585	
H	-2.2298	0.1255	-1.2897	
C	4.5600	-1.1864	0.3094	
C	-4.1219	0.3086	0.5414	
C	-2.6613	-1.2539	1.8893	
H	3.8709	-2.3274	2.0053	
H	4.9339	0.0551	-1.4146	
H	-1.7585	-4.0068	-1.3754	
H	-1.9406	-3.4603	0.2899	
H	-2.6700	-1.9399	-2.2577	
H	-3.6893	-2.1777	-0.8438	
H	-2.0856	0.6399	1.0892	
H	5.6036	-1.4582	0.4444	
H	-4.1437	1.1029	-0.2144	
H	-4.5314	0.7212	1.4713	
H	-4.8009	-0.4869	0.2101	
H	-3.2978	-2.1188	1.6652	
H	-3.0311	-0.8133	2.8229	
H	-1.6449	-1.6183	2.0760	

Table S26. Enthalpies of Formation of Neutral Precursors ($\Delta H_{\mathrm{f}}^{298}$ (Neutral)), B3LYP/ 6-31G(d) Isodesmic Reaction Enthalpies ($\Delta H^{298}(\mathrm{Rxn})$), and Enthalpies of Formation of Alkene Radical Cations 5, 4, 3, 14+••, and 15+•. All values are in $\mathrm{kcal} / \mathrm{mole}$.

$\begin{gathered} \text { Neutral } \\ + \\ \mathrm{C}_{2} \mathrm{H}_{4}+{ }^{\mathrm{a}} \end{gathered}$	Radical Cation	$\Delta H_{\mathrm{f}}^{298}(\text { Neutral })^{\text {b }}$	$\Delta H^{298}(\mathrm{Rxn})^{\text {c }}$	$\begin{aligned} & \Delta H_{\mathrm{f}}^{298}(\text { Radical } \\ & \text { Cation })^{\mathrm{d}, \mathrm{e}} \end{aligned}$
	$\longrightarrow \begin{gathered} \mathbf{5} \\ + \\ \mathrm{C}_{2} \mathrm{H}_{4} \end{gathered}$	46.1	-72.1	217
	$\longrightarrow \begin{gathered} \mathbf{4} \\ + \\ \mathrm{C}_{2} \mathrm{H}_{4} \\ \hline \end{gathered}$	46.1	f	221
	$\longrightarrow \begin{gathered} \mathbf{3} \\ + \\ \mathrm{C}_{2} \mathrm{H}_{4} \\ \hline \end{gathered}$	46.1	f	240
	$\longrightarrow \begin{gathered} \mathbf{1 4 + \bullet} \\ + \\ \mathrm{C}_{2} \mathrm{H}_{4} \\ \hline \end{gathered}$	46.0	-67.9	221
	$\longrightarrow \begin{gathered} \mathbf{1 5 + \bullet} \\ + \\ \mathrm{C}_{2} \mathrm{H}_{4} \\ \hline \end{gathered}$	-25.2	-48.5	169

(a) Energies and ZPE values calculated by us for ethylene and the ethylene radical cation are in agreement with those reported by Carsky and Bally (ref. S5). (b) S.E. Stein, and R.L. Brown, "Structures and Propeties Group Additivity Model" in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, June 2005, National Institute of Standards and Technology,
 where the values of H are the sum of electronic and thermal enthalpies $(298 \mathrm{~K})$. (d) $\Delta \mathrm{H}_{\mathrm{f}}{ }^{298}($ Radical Cation $)=\Delta \mathrm{H}(\mathrm{Rxn})-\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)+\Delta \mathrm{H}_{\mathrm{f}}$ (Neutral) $+\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{C}_{2} \mathrm{H}_{4}+\bullet\right)$, where all $\Delta \mathrm{H}$ values are at 298 K . (e) Use of this methodology on a test set of simple alkenes with known ionization potentials (propene, isobutene, 2-methyl-2-butene, 2-methyl-2-pentene, and styrene gave an average error of $\pm 2 \mathrm{Kcal} / \mathrm{mole}$. (f) Substitution of $\Delta H(R x n)$ for ionization of $\mathbf{1 5}$ and $\mathbf{1 4}$ gives estimates of ΔH_{f} for the localized radical cations $\mathbf{3}$ and $\mathbf{4}$ respectively.

Table S27. Enthalpies of formation of Neutral Precursors, B3LYP/ 6-31G(d) Isodesmic Reaction Enthalpies, and Enthalpies of Formation of Cations 16+, and 17+, plus Estimated Enthalpies of Formation for Distonic Radical Cations 6 and 7. All values are in $\mathrm{kcal} / \mathrm{mol}$.

	$\Delta \mathrm{H}_{\mathrm{f}}(\text { Neutral })^{\text {a }}$	$\Delta \mathrm{H}^{298}(\mathrm{Rxn})^{\text {b }}$	$\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{Ion})^{\text {c }}$	$\Delta \mathrm{H}_{\mathrm{f}}$ (Distonic Radical Ion)
$\underset{\substack{\text { Me } \\+\mathrm{Me}_{3} \mathrm{C}+}}{\mathbf{1 6}} \underset{\substack{\text { Isobutene }}}{\mathbf{1 6 +}} \xrightarrow{\mathrm{BDE}} \mathbf{6}$	35.9	-20.0	191	$219{ }^{\text {d }}$
$\begin{aligned} & \mathbf{1 7}+\mathrm{Me}_{3} \mathrm{C}+--->17++\mathrm{Me}_{3} \mathrm{CH} \\ & \mathrm{BDE} \\ & --->7 \end{aligned}$	30.4	-23.6	181	$225^{\text {e }}$

[^0]Table S28. Comparison of Experimental and Calculated Enthalpies of Formation for Simple Alkenes as a Test of the DFT / Isodesmic Methodology used in Scheme 3 to Estimate the Enthalpies of Formation of Species 3, 4, and 5.

Alkene	IE^{a}	$\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{kcal} / \mathrm{mole})^{\mathrm{b}}$	$\Delta \mathrm{H}(\mathrm{rxn})^{\mathrm{c}}$ $(\mathrm{kcal} / \mathrm{mole})$	$\Delta \mathrm{H}_{\mathrm{f}}($ alkene $+\bullet)$ $(\mathrm{kcal} / \mathrm{mole})$	Error $(\mathrm{kcal} / \mathrm{mole})$
Ethene	10.51	254.9		----	------
Propene	9.73	229.3	-18.7	228.5	-0.7
2-methylpropene	9.22	208.3	-31.1	207.3	-1.0
2-methyl-2- butene	8.69	190.5	-44.0	188.8	-1.7
Styrene	8.46	230.3	-50.6	226.9	-3.4

(a) IE values were taken from P.J. Linstrom and W.G. Mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov). (b) Values for the experimental enthalpies of formation of the alkene radical cations were derived from the IE values with the following relationship $\Delta \mathrm{H}_{\mathrm{f}}($ alkene $+\bullet)=$ $(23.06 \times \mathrm{IE})+\Delta \mathrm{H}_{\mathrm{f}}($ alkene $)$. (c) $\Delta \mathrm{H}(\mathrm{rxn})$ calculated from Eq. S1 (d) Enthalpy of formation calculated using Eq. S2.

References for Supporting Information.

(S1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520.
(S2) Glass Contour Systems, Laguna Beach, CA 92652.
(S3) Ishii, H.; Yamaoka, R.; Imai, Y.; Hirano, T.; Maki, S.; Niwa, H.; Hashizume, D.; Iwasaki, F.; Ohashi, M. Tetrahedron Lett. 1998, 39, 9501-9504.
(S4) Gaussian 98, Revision A.9, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery Jr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M; Gill, P. M. W.; Johnson, B; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M; Replogle, E. S; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 1998.
(S5) Hrouda, V.; Carsky, P.; Ingr, M.; Chval, Z.; Sastry, G. N.; Bally, T. J. Phys. Chem. A 1998, 102, 9297-9307.

${ }^{1}$ H-NMR Spectrum of 1

${ }^{13} \mathbf{C}$-NMR Spectrum of 1 .

${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{S} 1$

${ }^{13}$ C-NMR Spectrum of S1

${ }^{1}$ H-NMR Spectrum of S2

${ }^{13}$ C-NMR Spectrum of S2

${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{S 3}$

${ }^{13}$ C-NMR Spectrum of S3

${ }^{1} \mathrm{H}$-NMR Spectrum of S4.

${ }^{1} \mathrm{H}$-NMR Spectrum of S4.

${ }^{1} \mathrm{H}$-NMR Spectrum of 9 .

S3

${ }^{13}$ C-NMR Spectrum of 9 .

${ }^{1} \mathrm{H}$-NMR Spectrum of 10 .

${ }^{13}$ C-NMR Spectrum of 10 .

${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{S 5}$.

${ }^{13}$ C-NMR Spectrum of S5.

${ }^{1}$ H-NMR Spectrum of cis-S6.

${ }^{13}$ C-NMR Spectrum of cis-S6.

${ }^{1}$ H-NMR Spectrum of trans-S6.

${ }^{13}$ C-NMR Spectrum of trans-S6.

${ }^{1}$ H-NMR Spectrum of cis-S7.

${ }^{13}$ C-NMR Spectrum of cis-S7.

${ }^{1}$ H-NMR Spectrum of trans-S7.

${ }^{13}$ C-NMR Spectrum of trans-S7.

${ }^{1} \mathrm{H}$-NMR Spectrum of 11 .

${ }^{13}$ C-NMR Spectrum of 11 .

${ }^{1} \mathrm{H}$-NMR Spectrum of 12 .

${ }^{13}$ C-NMR Spectrum of 12 .

[^0]: (a) Cohen, N.; Benson S.W, Chem. Rev. 1993, 93, 2419-2438. (b) $\Delta \mathrm{H}_{298}(\mathrm{Rxn})=627.5095\left[\left(\mathrm{H}_{298}(\mathrm{ion})+\mathrm{H}_{298}\right.\right.$ (isobutene) $-\left(\mathrm{H}_{298}\right.$ (neutral) $)+\mathrm{H}_{298}$ $(\mathrm{Me} 3 \mathrm{C}+))$], where the H_{298} values are the thermally corrected enthalpies. (c) Isodesmic reaction Enthalpy calculated from $\Delta \mathrm{H}_{\mathrm{f}} 298(\mathrm{ion})=\Delta \mathrm{H}_{298}$ $(\mathrm{Rxn})-\mathrm{H}($ isobutene $)+\mathrm{H}($ Neutral $)+\mathrm{H}\left(\mathrm{Me}_{3} \mathrm{C}+\right)$, where the values of H are the sum of electronic and thermal enthalpies (298 K). (d) Calculated assuming a bond dissociation energy of $80 \mathrm{kcal} /$ mole for conversion of $\mathbf{1 6 +}$ to $\mathbf{6}$. (e) Calculated assuming a bond dissociation energy of 96 $\mathrm{kcal} / \mathrm{mole}$ for the conversion of $\mathbf{1 7 +}$ to 7 .

