SUPPORTING INFORMATION

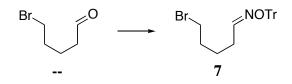
Carbocyclization by Radical Closure onto *O*-Trityl Oximes: Dramatic Effect of Diphenyl Diselenide

Derrick L. J. Clive,* Mai P. Pham and Rajendra Subedi

Chemistry Department, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

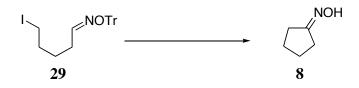
derrick.clive@ualberta.ca

Experimental procedures for:

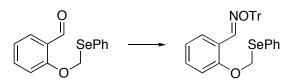

Experimental procedures for 7-11, 12 (from 11), 13-17, 19-27-30, 32-33, 34 (from 22), 35, 37, 39, 41-45, 47, 49, 51, 53-54, 56-58, 60-62, *trans*-2-[(2-bromocyclohexyl)oxy]acetaldehyde *O*-(phenylmethyl)oxime, *O*-benzyl-*N*-[(3aα,7aα)octahydrobenzofuran-3-yl]hydroxylamine S2

S29

References and footnotes

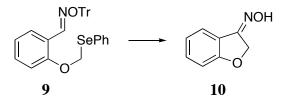

NMR spectra of 7, 9-32, 34-38, 41-42, 47, 49, 51, 53-54, 56-58, 60-62, trans-[(2-iodocyclohexyl)oxy]acetaldehyde, acetic acid (1-iodomethyl)pent-4-enyl ester, acetic acid 1-(iodomethyl)-4-oxobutyl ester, trans-2-[(2-bromocyclohexyl)oxy]acetaldehyde O-(phenyl-methyl)oxime, O-benzyl-N-[3a α ,7a α)-octahydrobenzofuran-3-yl]hydroxylamine S30

5-Bromopentanal O-(Triphenylmethyl)oxime (7).

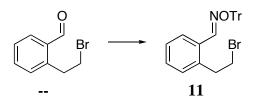

The general procedure for making *O*-trityl oximes was followed, using TrONH₂ (850 mg, 3.08 mmol) and 5-bromopentanal¹⁴ (505 mg, 3.08 mmol) in THF (10 mL). Flash chromatography of the residue over silica gel (1.7 x 35 cm), using 5% EtOAc-hexane, gave 7 (1.07 g, 82%) as a foam, which was a 1:1 mixture of *Z* and *E* isomers (¹³C NMR): FTIR (CH₂Cl₂ cast) 3056, 3022, 2935, 1596, 1491 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.43-1.54 (m, 1 H), 1.60-1.71 (m, 2 H), 1.81-1.93 (m, 1 H), 2.11-2.15 (m, 1 H), 2.53-2.60 (m, 1 H), 3.22 (t, *J* = 6.7 Hz, 1 H), 3.38 (t, *J* = 6.7 Hz, 1 H), 6.71 (t, *J* = 6.0 Hz, 0.42 H), 7.49-7.34 (m, 15 H), 7.52 (t, *J* = 6.0 Hz, 0.5 H); ¹³C NMR (CDCl₃, 125.7 MHz) 24.7 (t), 24.8 (t), 25.5 (t), 28.5 (t), 31.4 (t), 32.3 (t), 33.2 (t), 33.4 (t), 90.3 (s), 90.4 (s), 126.9 (d), 127.0 (d), 127.4 (d), 127.5 (d), 128.8 (d), 129.1 (d), 144.4 (s), 144.5 (s), 150.1 (d), 151.2 (d); exact mass (electrospray) *m/z* calcd for C₂₄H₂₄⁷⁹BrNNaO 444.0938, found 444.0943.

Cyclopentanone Oxime (8).

General procedure B for radical cyclization was followed using **29** (353.3 mg, 0.7535 mmol), PhSeSePh (47 mg, 0.15 mmol) and Hünig's base (0.52 mL, 3.014 mmol) in THF (20 mL), Bu₃SnH (0.24 mL, 0.892 mmol) in THF (5 mL) and ABC (184 mg, 0.753 mmol) in THF (5 mL). After evaporation of the solvent, flash chromatography of the residue over silica gel (1.5 x 30 cm), using 30% EtOAc-hexane, gave cyclopentanone oxime (**8**)²⁵ (0.0689, 92%).

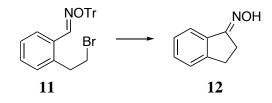

2-[(Phenylseleno)methoxy]benzaldehyde O-(Triphenylmethyl)oxime (9).

The general procedure for making *O*-trityl oximes was followed, using TrONH₂ (193 mg, 0.702 mmol) and 2-[(phenylseleno)methoxy]benzaldehyde¹⁵ (204.6 mg, 0.7007 mmol) in THF (5 mL). Flash chromatography of the residue over silica gel (1.7 x 30 cm), using 7% EtOAchexane, gave **9** (362 mg, 95%) as a foam, which appeared to be a single isomer (¹H and ¹³C NMR): FTIR (CH₂Cl₂ cast) 3056, 3032, 1599, 1577, 1484, 1448 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 5.66 (s, 2 H), 6.82-6.91 (m, 2 H), 7.20-7.63 (m, 22 H), 8.52 (s, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 68.7 (t), 91.1 (s), 114.2 (d), 122.3 (d), 123.2 (s), 127.1 (d), 127.5 (d), 127.9 (d), 129.4 (d), 129.5 (s), 130.5 (d), 133.8 (d), 144.4 (d), 144.6 (s), 154.8 (s); exact mass (electrospray) *m*/*z* calcd for C₃₃H₂₇NNaO₂⁸⁰Se 572.1104, found 572.1100.


The oxime geometry was not determined.

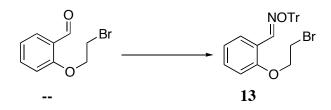
3(2H)-Benzofuranone Oxime (10).²⁶

General procedure A for radical cyclization was followed, using **9** (238 mg, 0.434 mmol) in THF (30 mL), Bu₃SnH (510.0 mg, 1.737 mmol) in THF (10 mL), ABC (11 mg, 0.043 mmol) in THF (10 mL), and *i*-Pr₂NEt (230 mg, 1.74 mmol). Flash chromatography of the residue over silica gel (1.7 x 20 cm), using 10% EtOAc-hexane, gave **10** (59.2 mg, 91%) as a crystalline solid, which was a single isomer of unestablished geometry: mp 158-161 °C; FTIR 3131, 3046, 2841, 1666, 1605, 1591, 1481 cm⁻¹; ¹H NMR (CD₂Cl₂, 400 MHz) δ 5.18 (s, 2 H), 6.86-7.11 (m, 2 H), 7.32-7.4 (m, 1 H), 7.58-7.60 (m, 1 H), 7.98 (s, 1 H); ¹³C NMR (CDCl₃, 125.7 MHz) δ 70.6 (t), 111.4 (d), 119.6 (s), 121.5 (d), 121.9 (d), 132.7 (d), 158.3 (s), 165.5 (s); exact mass *m/z* calcd for C₈H₇NO₂ 149.0476, found 149.0477.


2-(2-Bromoethyl)benzaldehyde O-(Triphenylmethyl)oxime (11).

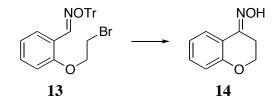
The general procedure for making *O*-trityl oximes was followed, using TrONH₂ (1.094 g, 3.978 mmol) and 2-(2-bromoethyl)benzaldehyde¹⁶ (1.06 g, 4.97 mmol) in THF (15 mL). Flash chromatography of the residue over silica gel (4 x 32 cm), using 5% EtOAc-hexane, gave **11** (1.75 g, 94%) as a foam, which was a single isomer: FTIR (CH₂Cl₂ cast) 3057, 3022, 1957, 1597, 1490 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.01-3.18 (m, 4 H), 7.11-7.45 (m, 19 H), 8.41 (s, 1 H); ¹³C NMR (CDCl₃, 125.7 MHz) δ 32.9 (t), 37.5 (t), 91.3 (s), 127.1 (d), 127.2 (d), 127.5 (d), 127.8 (d), 129.1 (d), 129.2 (d), 130.4 (s), 130.5 (d), 131.5 (d), 137.4 (s), 144.3 (s), 149.1 (d); exact mass (electrospray) *m/z* calcd for C₂₈H₂₄⁷⁹BrNNaO 492.0938 found 492.0928.

The oxime geometry was not determined.


2,3-Dihydro-1*H*-inden-1-one Oxime (12) (from 11).^{22,23}

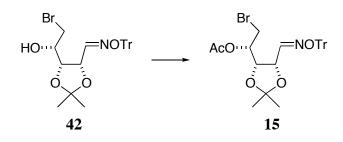
General procedure A for radical cyclization was followed, using **11** (211 mg, 0.449 mmol) in THF (30 mL), Bu₃SnH (524 mg, 1.81 mmol) in THF (8 mL), ABC (11 mg, 0.045 mmol) in THF (8 mL), and *i*-Pr₂NEt (232 mg, 1.81 mmol). Flash chromatography of the residue over silica gel (1.7 x 18 cm), using 10% EtOAc-hexane, gave **12** (57.3 mg, 87%) as a crystalline solid, which was a single isomer: mp 148-150 °C (Lit.²² mp 153-154 °C); FTIR (CH₂Cl₂ cast) 3064, 2861, 1654, 1598, 1479, 1460 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 2.92-3.01 (m, 2 H), 3.05-3.18 (m, 2 H), 7.20-7.41 (m, 3 H), 7.64-7.67 (m, 1 H), 9.15 (s, 1 H); ¹³C NMR (CDCl₃, 125.7 MHz) δ 26.0 (t), 28.6 (t), 121.5 (d), 125.5 (d), 126.9 (d), 130.3 (d), 135.8 (s), 148.3 (s), 163.9 (s); exact mass *m/z* calcd for C₉H₉NO 147.0684, found 147.0682.

The ¹³C NMR spectrum (DMSO-d₆) of the so-called *E*-isomer has been reported;²³ but the spectrum of our material, also in DMSO-d₆, is different from the reported spectrum. Our sample had: ¹³C NMR (DMSO-d₆, 125.7 MHz) δ 25.4 (t), 27.8 (t), 120.4 (d), 125.6 (d), 126.7 (d), 129.5 (d), 136.4 (s), 147.5 (s), 160.8 (s). A sample crystallized from a mixture of *i*-PrOH and hexane gave material suitable for X-ray analysis, which established the *E*-geometry.

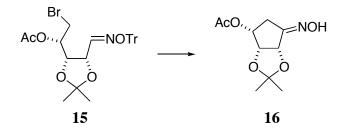

2-(2-Bromoethoxy)benzaldehyde O-(Triphenylmethyl)oxime (13).

The general procedure for making *O*-trityl oximes was followed, using TrONH₂ (180 mg, 0.654 mmol) and 2-(2-bromoethoxy)benzaldehyde¹⁷ (150 mg, 0.654 mmol) in THF (10 mL). Flash chromatography of the residue over silica gel (1.7 x 30 cm), using 5% EtOAc-hexane, gave **13** (289 mg, 92%) as a foam, which appeared to be a single isomer (¹H and ¹³C NMR): FTIR (CH₂Cl₂ cast) 3056, 3033, 1599, 1488, 1448, 1421 cm⁻¹; ¹H NMR CDCl₃, 200 MHz) δ 3.66 (t, *J* = 9.0 Hz, 2 H), 4.31 (t, *J* = 9.0 Hz, 2 H), 6.81-7.59 (m, 19 H), 8.65 (s, 1 H); ¹³C NMR (CDCl₃, 50.3 MHz) δ 28.9 (t), 68.3 (t), 91.1 (s), 112.3 (d), 121.5 (d), 121.9 (s), 127.1 (d), 127.3 (d), 127.5 (d), 127.9 (d), 129.3 (d), 130.7 (d), 144.3 (d), 144.5 (s), 155.9 (s); exact mass (electrospray) *m/z* calcd for C₂₈H₂₄⁷⁹BrNNaO 508.0888, found 508.08828.

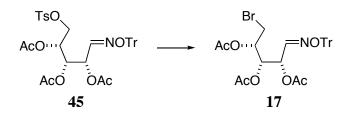
The oxime geometry was not determined.


2,3-Dihydro-4H-1-benzopyran-4-one Oxime (14).²⁷

General procedure A for radical cyclization was followed, using **13** (151.7 mg, 0.3121 mmol) in THF (20 mL), Bu₃SnH (340.0 mg, 1.248 mmol) in THF (5 mL), ABC (8 mg, 0.03 mmol) in THF (5 mL), and *i*-Pr₂NEt (200 mg, 1.56 mmol). Flash chromatography of the residue over silica gel (1.7 x 18 cm) gave **14** (46.1 mg, 92%) as a crystalline solid: mp 139-141 °C (lit.²⁷ 138 °C); FTIR (CH₂Cl₂ cast) 3263, 2988, 2922, 1958, 1647 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.99 (t, *J* = 7.0 Hz, 2 H), 4.22 (t, *J* = 7.0 Hz, 2 H), 6.84-6.88 (m, 2 H), 7.21-7.26 (m, 1 H), 7.67-7.81 (m, 1 H), 8.85 (br s, 1 H); ¹³C NMR (CDCl₃, 125.7 MHz) δ 23.6 (t), 64.9 (t), 117.7 (d), 118.2 (s), 121.4 (d), 123.9 (d), 131.1 (d), 150.0 (s), 156.6 (s); exact mass *m/z* calcd for C₉H₉NO₂ 163.0633, found 163.0632.

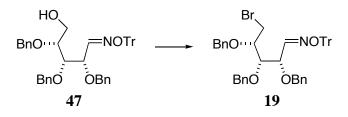

Although the compound is known,²⁷ its geometry was not reported, and we did not establish the geometry. In a separate experiment triphenylmethane (78 mg, 56%) was isolated.

4-O-Acetyl-5-bromo-5-deoxy-2,3-O-(1-methylethylidene)-D-ribose O-(Triphenylmethyl)oxime (15).

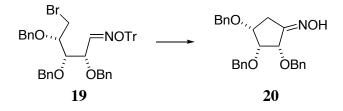

Ac₂O (0.1 mL, 1 mmol) was added to a stirred solution of 42 (265.4 mg, 0.5214 mmol) in pyridine (1.0 mL), and stirring was continued overnight. Water (10 mL) was added and the solution was extracted with Et₂O (2 x 10 mL). The combined organic extracts were washed with saturated aqueous NaHCO₃ (3 x 10 mL), water (2 x 10 mL) and brine (2 x 10 mL), dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (1.7 x 32 cm), using 5% EtOAc-hexane, gave 15 (270 mg, 96%) as a foam, which was a 4.3:1 mixture of isomers (¹H NMR): FTIR (CH₂Cl₂ cast) 3057, 3034, 2987, 1749, 1491 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.31 and 1.40 (two singlets, 3 H in all), 1.43 and 1.49 (two singlets, 3 H in all), 1.59 and 1.78 (two singlets, 3 H in all), 3.44-3.58 (two overlapping m, 2 H), 4.31-4.39 (m, 0.84 H), 4.61-4.72 (m, 1 H), 4.88-4.99 (m, 1 H), 5.46-5.51 (m, 0.22 H), 6.83 (d, J = 5.0 Hz, 0.69 H), 7.17-7.35 (m, 15 H), 7.42 (d, J = 8.0 Hz, 0.86 H); ¹³C NMR (CDCl₃, 125.7 MHz) δ 20.4 (q), 20.5 (q), 25.3 (q), 25.4 (q), 27.7 (q), 32.1 (t), 32.3 (t), 69.1 (d), 69.7 (d), 71.1 (d), 74.7 (d), 76.02 (d), 76.06 (d), 91.1 (s), 91.9 (s), 109.8 (s), 110.0 (s), 127.1 (d), 127.3 (d), 127.53 (d), 127.56 (d), 127.6 (d), 127.8 (d), 129.14 (d), 129.18 (d), 129.19 (d), 129.2 (d), 143.7 (s), 143.9 (s), 146.5 (d), 146.9 (d), 169.5 (s), 169.7 (s); exact mass (electrospray) m/z calcd for C₂₉H₃₀⁷⁹BrNNaO₅ 574.1205, found 574.1202.

[4*R*-(3aα,4β,6aα)]-Tetrahydro-2,2-dimethyl-6-hydroximino-4*H*-cyclopenta-1,3dioxol-4-yl Acetate (16).

General procedure A for radical cyclization was followed, using **15** (250.0 mg, 0.4537 mmol) in THF (30 mL), Bu₃SnH (0.49 mL, 1.814 mmol) in THF (10 mL), ABC (11 mg, 0.067 mmol) in THF (10 mL), and *i*-Pr₂NEt (237.4 mg, 1.814 mmol). As some starting material was present after the arbitrary reflux period (TLC control), further portions of Bu₃SnH (0.07 mL, 0.24 mmol), and ABC (8 mg, 0.03 mmol), each in THF (4 mL), were added slowly (4 h) as before, and refluxing was continued for 2 h after the addition. Flash chromatography of the residue over silica gel (1.7 x 20 cm), using 40% EtOAc-hexane, gave **16** (96.0 mg, 93%) as a crystalline solid, which was a single isomer: mp 151-154 °C; FTIR 3358, 2991, 2980, 2945, 1736 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 1.33 (s, 3 H), 1.51 (s, 3 H), 2.15 (s, 3 H), 2.51-2.74 (m, 1 H), 3.11-3.32 (m, 1 H), 4.73-4.88 (m, 2 H), 7.62 (s, 1 H), δ 4.89-5.12 (m, 1 H); ¹³C NMR (CD₂Cl₂, 50.3 MHz) δ 22.5 (q), 26.7 (q), 28.2 (q), 30.4 (t), 72.0 (d), 79.5 (d), 80.3 (d), 114.7 (s), 159.6 (s), 172.2 (s); exact mass (electrospray) *m*/*z* calcd for C₁₀H₁₅NNaO₅ 252.0847, found 252.0848.

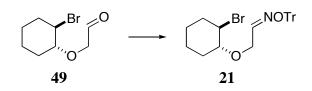

The oxime geometry was not established.

DMF (10 mL) was added to a stirred mixture of LiBr (dried at 100 °C, 140 mg, 1.55 mmol) and **45** (266 mg, 0.387 mmol). The solution was stirred for 8 h, Et₂O (20 mL) was added, and the mixture was washed with water (4 x 10 mL). The ether extract was washed with water (2 x 10 mL), dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel (1.7 x 30 cm), using 15% EtOAc-hexane, gave **17** (198 mg, 86%) as a foam. The material, which was used with only partial characterization (¹H NMR), appeared to be a single isomer: ¹H NMR (CDCl₃, 300 MHz) δ 1.98 and 2.01 (two singlets, 9 H), 3.24-3.58 (m, 2 H), 5.01-5.16 (m, 1 H), 5.34-5.46 (m, 1 H), 5.48-5.51 (m, 1 H), 7.01-7.49 (m, 15 H), 7.52 (d, *J* = 7 Hz, 1 H).

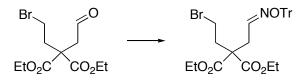

The oxime geometry was not determined.

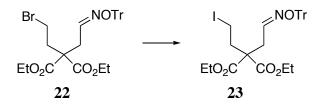
5-Bromo-5-deoxy-2,3,4-tris-*O*-(phenylmethyl)-D-ribose *O*-(Triphenylmethyl)oxime (19).

Ph₃P (90 mg, 0.34 mmol) was added to a stirred and cooled (ice-water) solution of **47** (115 mg, 0.169 mmol) in pyridine (5 mL), and then CBr₄ (70 mg, 0.2 mmol) was added in one portion. The mixture was heated at 65 °C for 2 h, cooled, and diluted with MeOH (5 mL). Evaporation of the solvent, and flash chromatography of the residue over silica gel (1.7 x 20 cm), using 10% EtOAc-hexane, gave **19** (109 mg, 86%) as a foam, which was a 6:1 mixture of isomers (¹H NMR): FTIR (CH₂Cl₂ cast) 3060, 3030, 2866, 1958, 1597 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.34-3.43 (m, 1 H), 3.53-3.74 (m, 2 H), 3.79-4.08 (m, 2 H), 4.19-5.30 (m including several AB q, 6 H), 6.88 (d, *J* = 7 Hz, 0.13 H), 7.22-7.46 (m, 30 H), 7.68 (d, *J* = 7 Hz, 0.77 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 33.6 (t), 33.7 (t), 70.7 (t), 71.71 (d), 71.73 (t), 72.2 (t), 72.5 (t), 73.4 (t), 74.7 (t), 76.5 (d), 77.1 (d), 77.2 (d), 79.8 (d), 80.8 (d), 90.8 (s), 127.1 (d), 127.2 (d), 127.5 (d), 127.6 (d), 127.64 (d), 127.7 (d), 127.75 (d), 127.81 (d), 127.9 (d), 129.3 (d), 128.17 (d), 128.2 (d), 128.31 (d), 128.35 (d), 149.3 (d); exact mass (electrospray) *m/z* calcd for C₄₅H₄₂⁷⁹BrNNaO₄ 762.2194, found 762.2183.


[2S-(2a,3a,4a)]-2,3,4-Tris(phenylmethoxy)cyclopentanone Oxime (20).

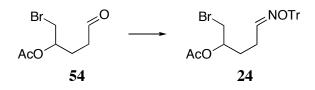
General procedure A for radical cyclization was followed, using **19** (260 mg, 0.351 mmol) in THF (25 mL), Bu₃SnH (0.21 mL, 0.702 mmol) in THF (5 mL), ABC (5 mg, 0.02 mmol) in THF (5 mL), and *i*-Pr₂NEt (90 mg, 0.71 mmol). As a considerable amount of starting material was present after the arbitrary reflux period (TLC control), further portions of Bu₃SnH (0.21 mL, 0.702 mmol) and ABC (5.9 mg, 0.024 mmol), each in THF (5 mL), were added slowly (10 h) as before. As a considerable amount of starting material was still present after the arbitrary reflux period of Bu₃SnH (0.21 mg, 0.702 mmol) and ABC (5 mg, 0.024 mmol), each in THF (5 mL), were added slowly (10 h) as before. As a considerable amount of starting material was still present after the arbitrary reflux period (TLC control), further portions of Bu₃SnH (0.21 mg, 0.702 mmol) and ABC (5 mg, 0.02 mmol), further portions of Bu₃SnH (0.21 mg, 0.702 mmol) and ABC (5 mg, 0.02 mmol), further portions of Bu₃SnH (0.21 mg, 0.702 mmol) and ABC (5 mg, 0.02 mmol), further portions of Bu₃SnH (0.21 mg, 0.702 mmol) and ABC (5 mg, 0.02 mmol), further portions of Bu₃SnH (0.21 mg, 0.702 mmol) and ABC (5 mg, 0.02 mmol), each in THF (5 mL), were added slowly (10 h) as before. Flash


chromatography of the residue over silica gel (1.7 x 20 cm), using 30% EtOAc-hexane, gave **20** (132 mg, 91%) as a crystalline solid, which was a mixture of *Z* and *E* isomers (¹H NMR): mp 145-147 °C; FTIR (CH₂Cl₂ cast) 3228, 3087, 3062, 2869, 1495 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.48-2.92 [m, including a doublet of doublets at δ 2.54 (dd, *J* = 17.0, 6.3 Hz), 2 H in all], 3.76-3.97 [m, including a triplet at δ 3.8 (*J* = 4.6 Hz), 2 H in all], 4.16 (d, *J* = 4 Hz, 1 H), 4.53-4.84 (m, 6 H), 7.03-7.61 (m, 15 H), 7.78-8.87 (br s, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 30.5 (t), 33.7 (t), 71.41 (t), 71.47 (t, shows only in expanded spectrum), 71.5 (t), 71.6 (t), 72.5 (t), 72.7 (t), 73.4 (d), 75.2 (d), 75.3 (d), 77.0 (d), 78.4 (d), 127.5 (d), 127.59 (d), 127.6 (d), 127.71 (d), 127.75 (d), 127.86 (d), 127.89 (d), 128.14 (d), 128.16 (d), 128.22 (d), 128.28 (d), 128.3 (d), 137.8 (s), 138.1 (s), 138.18 (s), 138.2 (s), 138.21 (s), 138.4 (s), 158.6 (s), 160.1 (s); exact mass *m*/*z* calcd for C₂₆H₂₇NO₄ 417.1940, found 417.1943.

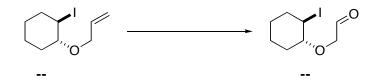


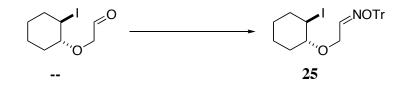
The general procedure for making *O*-trityl oximes was followed, using TrONH₂ (651 mg, 2.37 mmol) and **49** (523 mg, 2.36 mmol) in THF (8 mL). Flash chromatography of the residue over silica gel (1.7 x 35 cm), using 5% EtOAc-hexane, gave **21** (1.06 g, 94%) as a foam, which was a 1:1 mixture of *Z* and *E* isomers (¹H NMR): FTIR (CH₂Cl₂ cast) 3056, 3033, 2860, 1597, 1491 cm⁻¹; ¹H NMR (CD₂Cl₂, 300 MHz) δ 1.10-1.43 (m, 3 H), 1.58-2.03 (m, 4 H), 2.11-2.41 (m, 1 H), 3.11-3.23 (m, 0.6 H), 3.34-3.43 (m, 0.46 H), 3.81-4.20 (m, 2 H), 4.64 (apparent t, *J* = 4 Hz, 1 H), 6.98 (t, *J* = 5 Hz, 0.5 H), 7.14-7.40 (m, 15 H), 7.69 (t, *J* = 5 Hz, 0.5 H); ¹³C NMR (CDCl₃, 125.7 MHz) δ 23.3 (t), 25.49 (t), 25.5 (t), 25.51 (t), 31.0 (t), 35.6 (t), 35.7 (t), 55.1 (d), 55.3 (d), 64.6 (t), 66.2 (t), 80.7 (d), 82.5 (d), 90.7 (s), 91.0 (s), 127.0 (d), 127.2 (d), 127.4 (d), 127.5 (d), 128.8 (d), 129.1 (d), 129.2 (d), 144.1 (s), 144.2 (s), 147.8 (d), 151.1 (d); exact mass (electrospray) *m*/*z* calcd for C₂₇H₂₈⁷⁹BrNNaO₂ 500.1195, found 500.1199.

Diethyl (2-Bromoethyl)[2-[(triphenylmethoxy)imino]ethyl]propanedioate (22).



The general procedure for making *O*-trityl oximes was followed, using TrONH₂ (260 mg, 0.943 mmol) and **51** (290 mg, 0.943 mmol) in THF (10 mL). Flash chromatography of the residue over silica gel (1.7 x 30 cm), using 10% EtOAc-hexane, gave **22** (512 mg, 97%) as a foam, which was a mixture of *Z* and *E* isomers (¹H NMR): FTIR (CH₂Cl₂ cast) 3533, 3087, 2980, 2936, 1958, 1731, 1597 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.17 (t, *J* = 7.0 Hz) and 1.22 (t, *J* = 7.0 Hz) (6 H in all), 2.24 (t, *J* = 8.0 Hz, 1.3 H), 2.44 (t, *J* = 8.0 Hz, 0.7 H), 2.73-2.80 (m, 1.3 H), 3.11-3.18 (m, 2 H), 3.30-3.38 (m, 0.72 H), 4.04-4.23 (m, 4 H), 6.71 (dt, *J* = 5.5, 0.8 Hz, 0.36 H), 7.19-7.32 (m, 15 H), 7.50 (dt, *J* = 6.0, 0.6 Hz, 0.8 H); ¹³C NMR (CDCl₃, 125.7 MHz) δ 14.0 (q), 14.1 (q), 26.7 (t), 26.9 (t), 30.1 (t), 33.2 (t), 35.9 (t), 37.2 (t), 55.9 (s or t), 56.2 (s or t), 61.9 (s or t), 62.1 (s or t), 90.7 (s), 91.1 (s), 127.10 (d), 127.13 (d), 127.5 (d), 127.8 (d), 128.9 (d), 129.0 (d), 144.1 (s), 144.2 (s), 145.9 (d), 146.0 (d), 169.5 (s), 169.6 (s); exact mass (electrospray) *m/z* calcd for C₃₀H₃₂⁷⁹BrNNaO₅ 588.1356, found 588.1361.


Bromide **22** (365 mg, 0.645 mmol) was added to a stirred solution of NaI (200 mg, 1.29 mmol) in dry acetone (10 mL), and the mixture was refluxed for 24 h and cooled. Saturated aqueous Na₂S₂O₃ was added to the mixture which was then extracted with Et₂O (2 x 10 mL). The combined organic extracts were washed with brine (1 x 10 mL), dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (1.7 x 30 cm), using 8% EtOAchexane, gave **23** (342 mg, 83%) as a foam, which was a 3.8:1 mixture of isomers (¹H NMR): FTIR (CH₂Cl₂ cast) 3532, 3057, 2979, 1958, 1730, 1597 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.20 (t, *J* = 7.1 Hz), 1.24 (t, *J* = 7.1 Hz) (6 H in all), 2.31-2.98 (m, 5 H), 3.03-3.18 (m, 1 H), 4.01-4.23 (m, 4 H), 6.71 (t, *J* = 5 Hz, 0.18 H), 7.21-7.35 (m, 15 H), 7.49 (t, *J* = 5 Hz, 0.70 H); ¹³C NMR (CDCl₃, 125.7 MHz) δ -3.0 (t), -2.8 (t), 13.95 (q), 13.98 (q), 29.7 (s or t), 32.9 (s or t), 37.5 (s or t), 38.7 (s or t), 57.3 (s or t), 57.6 (s or t), 61.8 (s or t), 61.9 (s or t), 90.7 (s), 91.1 (s), 127.1 (d), 127.20 (d), 127.58 (d), 127.64 (d), 129.0 (d), 129.1 (d), 144.2 (s), 146.0 (d), 146.1 (d), 146.9 (s), 169.5 (s), 169.6 (s); exact mass (electrospray) *m/z* calcd for C₃₀H₃₂INNaO₅ 636.1222, found 636.1228.

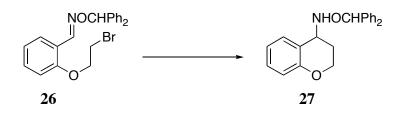

The general procedure for making *O*-trityl oximes was followed, using TrONH₂ (335 mg, 1.22 mmol) and **54** (272 mg, 1.22 mmol) in THF (10 mL). Flash chromatography of the residue over silica gel (1.7 x 32 cm), using 10% EtOAc-hexane, gave **24** (571 mg, 98%) as a foam, which was a 1:1 mixture of *Z* and *E* isomers (¹H NMR): FTIR (CH₂Cl₂ cast) 3057, 3023, 2928, 1958, 1741, 1596 cm⁻¹; ¹H NMR (CD₂Cl₂, 300 MHz) δ 1.71-1.85 (m, 1 H), 1.89-2.09 (m including two s, 4 H), 2.11-2.31 (m, 1 H), 2.44-2.72 (m, 1 H), 3.23-3.34 (m, 1 H), 3.42-3.59 (m, 1 H), 4.78-5.10 (m, 1 H), 6.78 (t, *J* = 6 Hz, 0.5 H), 7.11-7.42 (m, 15 H), 7.60 (t, *J* = 6 Hz, 0.5 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 20.8 (q), 20.9 (q), 22.2 (t), 25.4 (t), 28.82 (t), 28.83 (t), 33.3 (t), 33.8 (t), 71.3 (d), 71.9 (d), 90.4 (s), 90.6 (s), 126.96 (d), 127.1 (d), 127.4 (d), 127.9 (d), 128.9 (d), 129.1 (d), 144.3 (s), 144.4 (s), 149.3 (d), 150.1 (d), 170.1 (s); exact mass (electrospray) *m*/*z* calcd for C₂₆H₂₆⁷⁹BrNNaO₃ 502.0993, found 502.0993.

Trans-[(2-Iodocyclohexyl)oxy]acetaldehyde *O*-(Triphenylmethyl)oxime (25). (a) *Trans*-[(2-Iodocyclohexyl)oxy]acetaldehyde.

O₃ was bubbled through a stirred and cooled (-78 °C) solution of alkene *trans*-1-(allyloxy)-2-iodocyclohexane^{28,29} (504 mg, 1.90 mmol) in CH₂Cl₂ (10 mL) for 1 h and the mixture was then flushed with O₂ for 0.5 h at -78 °C. Ph₃P (1.49 g, 5.68 mmol) was tipped in, the cold bath was removed and the mixture was stirred overnight. Evaporation of the solvent and flash chromatography of the residue over silica gel (3 x 20 cm), using 30% EtOAc-hexane, gave *trans*-[(2-iodocyclohexyl)oxy]acetaldehyde (280 mg, 59%) as a colorless oil: FTIR (CH₂Cl₂ cast) 2934, 2857, 1735, 1446 cm⁻¹; 1H NMR (CDCl₃, 400 MHz) 1.21-1.42 (m, 3 H), 1.49-1.59 (m, 1 H), 1.78-1.87 (m, 1 H), 1.91-2.03 (m, 1 H), 2.09-2.20 (m, 1 H), 2.38-2.48 (m, 1 H), 3.39 (ddd, J = 9.2, 9.2, 4.4 Hz, 1 H), 4.07 (ddd, J = 13.1, 8.9, 4.3 Hz, 1 H), 4.10 (s, 2 H), 9.79 (t, J = 1.1 Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 23.4 (t), 26.9 (t), 31.1 (t), 34.4 (d), 37.8 (t), 75.0 (t), 83.9 (d), 201.0 (d); exact mass *m*/*z* calcd for C₆H₁₀IO (M - C₂H₃O) 224.97765, found 224.97771.

(b) Trans-[(2-Iodocyclohexyl)oxy]acetaldehyde O-(Triphenylmethyl)oxime (25).

TrONH₂ (103 mg, 0.373 mmol) was added in one portion to a stirred solution of *trans*-[(2-iodocyclohexyl)oxy]acetaldehyde (100 mg, 0.373 mmol) in dry CH₂Cl₂ (5 mL) and the mixture was refluxed overnight. Evaporation of the solvent and flash chromatography of the residue over silica gel (3 x 20 cm), using 20% EtOAc-hexane, gave **25** (200 mg, 100%) as an oil, which was a mixture (ca 1:1) of Z and E isomers (¹H NMR): FTIR (CH₂Cl₂ cast) 3086, 3056, 3022, 2935, 2858, 1954, 1811, 1491, 1447, 699; ¹H NMR (CDCl₃, 400 MHz) δ 1.05-2.24 (m, 7 H), 2.29-2.48 (m, 1 H), 3.15 (ddd, *J* = 8.9, 8.9, 4.5 Hz, 1 H), 3.39 (ddd, *J* = 8.9, 8.9, 4.3 Hz, 1 H), 3.86-4.21 (m, 2 H), 4.52-4.68 (m, 1 H), 7.05 (t, *J* = 3.6 Hz, 0.5 H), 7.17-7.40 (m, 15 H), 7.75 (t, *J* = 5.9 Hz, 0.5 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 23.5 (t), 27.06 (t), 27.12 (t), 31.0 (t), 31.1 (t), 34.7 (d), 35.1 (d), 37.87 (t), 37.89 (t), 64.2 (t), 65.8 (t), 81.3 (d), 83.2 (d), 90.7 (s), 90.9 (s), 127.0 (d), 127.2 (d), 127.5 (d), 127.6 (d), 128.9 (d), 129.1 (d), 144.2 (s), 146.8 (s), 147.9 (d), 151.1 (d); exact mass (electrospray) *m/z* calcd for C₂₇H₂₈INO₂ 548.10570, found 548.10578.


2-(2-Bromoethoxy)benzaldehyde O-(Diphenylmethyl)oxime (26).

 $Ph_2CHONH_2^{30}$ (0.0868g, 0.436 mmol) in THF (6 mL) was added dropwise to a stirred solution of 2-(2-bromoethoxy)benzaldehyde¹⁷ (100.0 mg, 0.436 mmol) in THF (2 mL), and the mixture was heated at 65 °C for 4 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 30 cm), using 10% EtOAc-hexane, gave **26** (176 mg, 98%) as an oil which was a single isomer (¹H NMR): FTIR (CH₂Cl₂ cast) 3061, 3029, 1601, 1451, 1249 cm⁻¹;

¹H NMR (CDCl₃, 400 MHz) δ 3.64 (t, *J* = 6.2 Hz, 2 H), 4.32 (t, *J* = 6.2 Hz, 2 H), 6.36 (s, 1 H), 6.80-6.98 (m, 2 H), 7.22-7.44 (m, 11 H), 7.70-7.77 (m, 1 H), 8.67 (s, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 28.9 (t), 68.2 (t), 86.8 (d), 112.3 (d), 121.2 (s), 121.4 (d), 126.7 (d), 127.47 (d), 127.5 (d), 128.3 (d), 131.0 (d), 141.2 (s), 145.1 (d), 155.9 (s); exact mass *m*/*z* calcd for C₂₂H₂₀⁷⁹BrNO₂ 409.06775, found 409.06671.

O-(Diphenylmethyl)-N-(chroman-4-yl)hydroxylamine (27).

General procedure A for radical cyclization was followed, using **26** (67.6 mg, 0.165 mmol) in THF (20 mL), Bu₃SnH (0.18 mL , 0.669 mmol) in THF (2 mL), ABC (0.0041 mg, 0.0017 mmol) in THF (2 mL), and *i*-Pr₂NEt (0.144 mL, 0.83 mmol). Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 30 cm), using 5% EtOAc-hexane, gave hydroxylamine **27** (13.2 mg, 49%) as an oil: FTIR (CH₂Cl₂ cast) 3257, 3061, 3029, 2883, 1951, 1904, 1808, 1608, 1584, 1489, 1454 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.95-2.07 (m, 1 H), 2.22 (dddd, *J* = 14.2, 3.0, 3.0, 3.0 Hz, 1 H), 4.12-4.29 (m, 3 H), 5.30-6.0 (br signal containing s at δ 5.73, 2 H in all), 6.74-6.90 (m, 2 H), 7.10-7.20 (m, 2 H), 7.22-7.42 (m, 10 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 25.7 (t), 53.7 (d), 62.0 (t), 87.4 (d), 117.0 (d), 119.8 (s), 120.1 (d), 127.2 (d), 127.4 (d), 127.60 (d), 127.65 (D), 128.3 (d), 128.4 (d), 129.3(d), 130.3 (d), 141.3 (s), 141.4 (s), 155.7 (s); exact mass (electrospray) *m*/*z* calcd for C₂₂H₂₂NO₂ (M + H) 332.16451, found 332.16431.

Cis-Hexahydrobenzofuran-3(2H)-one oxime (28).

General procedure B for radical cyclization was followed, using **25** (180 mg, 0.343 mmol), PhSeSePh (24.0 mg, 0.077 mmol) and Hünig's base (0.26 mL, 1.49 mmol) in THF (20 mL), Bu₃SnH (0.165 mL, 0.613 mmol) in THF (5 mL) and ABC (92.0 mg, 0.377 mmol) in THF

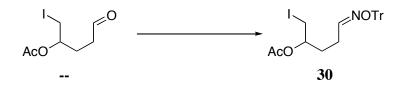
(5 mL). After evaporation of the solvent, flash chromatography of the residue over silica gel (2 x 20 cm), using 20% EtOAc-hexane, gave **28** (4.9 mg, 91%) as an oil which was a mixture (ca 1:2.4) of geometric isomers (¹H NMR): FTIR (CH₂Cl₂, cast) 2934, 2857 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.10-2.11 (m, 8 H), 2.64 (ddd, *J* = 10.3, 5.7, 5.7 Hz, 0.7 H), 3.04 (ddd, *J* = 10.9, 5.1, 5.1 Hz, 0.3 H), 3.91 (ddd, *J* = 3.7, 3.7, 3.7 Hz, 0.3 H), 4.03 (ddd, *J* = 4.5, 4.5, 4.5 Hz, 0.7 H), 4.15-4.66 (two overlapping m, 2 H), 8.38 (s, 0.3 H), 8.54 (s, 0.7 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 20.0 (t), 20.5 (t), 22.95 (t), 23.02 (t), 23.7 (t), 25.5 (t), 27.25 (t), 27.26 (t), 38.8 (d), 40.6 (d), 65.2 (t), 67.0 (t), 77.2 (d), 77.4 (d), 166.3 (s), 166.5 (s); exact mass *m/z* calcd for C₈H₁₃NO₂ 155.09464, found 155.09474.

5-Iodopentanal O-(Triphenylmethyl)oxime (29).

TrONH₂ (460 mg, 1.673 mmol) was added to a solution of 5-iodopentanal^{18,19,20} (355 mg, 1.675 mmol) in CH₂Cl₂ (15 mL) and the mixture was refluxed for 1 h. Evaporation of solvent and flash chromatography of the residue over silica gel (2 x 20 cm), using 20% EtOAchexane, gave 29 (694 mg, 89%) as an oil, which was a mixture of two isomers. The isomers were separated by preparative tlc (silica, 3% EtOAc-hexane, plate developed twice): FTIR (CH₂Cl₂, cast, isomer mixture) 3056, 2930, 1953, 1813, 1596, 1447, 699 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) (less polar isomer, presumably *E*-isomer) & 1.45-1.54 (m, 2 H), 1.58-1.67 (m, 2 H), 2.15 (ddd, J = 7.0, 6.1, 6.1 Hz, 2 H), 3.03 (t, J = 6.8 Hz, 2 H), 7.20-7.38 (m, 15 H), 7.54 (t, J = 5.9 Hz, 1 H); ¹H NMR (CDCl₃, 400 MHz) (more polar isomer, presumably Z-isomer) δ 1.60-1.70 (m, 2 H), 1.82-1.92 (m, 2 H), 2.56 (ddd, *J* = 7.6, 7.6, 5.4 Hz, 2 H), 3.18 (t, *J* = 6.9 Hz, 2 H), 6.72 (t, J = 5.5 Hz, 1 H), 7.20-7.38 (m, 15 H); ¹³C NMR (CDCl₃, 100.6 MHz) (less polar isomer) δ 6.4 (t), 26.8 (t), 28.1 (t), 31.9 (t), 90.2 (s), 126.9 (d), 127.4 (d), 129.1 (d), 144.4 (s), 150.2 (d); ¹³C NMR (CDCl₃, 100.6 MHz) (more polar isomer) δ 6.0 (t), 25.1 (t), 26.9 (t), 32.9 (t), 90.3 (s), 127.0 (d), 127.5 (d), 128.9 (d), 144.5 (s), 151.2 (d); exact mass (electrospray) (less polar isomer) m/z calcd for C₂₄H₂₄INNaO 492.07949, found 492.07974; exact mass (electrospray) (more polar isomer) m/z calcd for C₂₄H₂₄INNaO 492.07949, found 492.07961.

Acetic Acid 1-(Iodomethyl)-4-[(triphenylmethyloxy)imino]butyl Ester (30). (a) Acetic Acid (1-Iodomethyl)pent-4-enyl Ester.

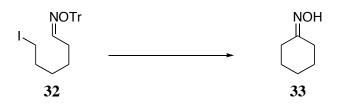
Ac₂O (2.6 mL, 27.41 mmol) and then pyridine (2.22 mL, 27.41 mmol) were added successively to a stirred and cooled (0 °C) portion of 1-iodohex-5-en-2-ol³¹ (774 mg, 3.426 mmol). Stirring at 0 °C was continued for 4 h, the ice bath was left in place, but not recharged, and stirring was continued overnight. The solution was diluted with water, extracted with Et₂O, and washed with saturated aqueous NaHCO₃, water and brine. The combined organic extracts were dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (2 x 30 cm), using 30% EtOAc-hexane, gave acetic acid (1-iodomethyl)pent-4-enyl ester (763.9 mg, 83%) as an oil: FTIR (CH₂Cl₂, cast) 2924, 1740, 1235, 914; ¹H NMR (CDCl₃, 400 MHz) δ 1.68-1.80 (m, 2 H), 2.03-2.14 (m including s at δ at 2.08, 5 H), 3.29 (dddd, *J* = 10.6, 10.6, 10.6, 5.1 Hz, 2 H), 4.70 (dddd, *J* = 10.9, 5.1, 5.1, 5.1 Hz, 1 H), 4.94-5.06 (m, 2 H), 5.76 (dddd, *J* = 16.9, 10.2, 6.6, 6.6 Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 8.1 (t), 21.0 (q), 29.3 (t), 33.3 (t), 71.7 (d), 115.5 (t), 137.0 (d), 170.3 (s); exact mass (electrospray) *m/z* calcd for C₈H₁₃INaO₂ 290.98525, found 290.98494.


(b) Acetic Acid 1-(Iodomethyl)-4-oxobutyl Ester.

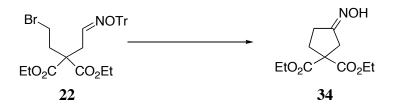
OsO₄ (0.1 M in PhMe, 2.85 mL, 0.285 mmol) was added in one portion to a stirred solution of acetic acid (1-iodomethyl)pent-4-enyl ester (763.9 mg, 2.85 mmol) in water (7 mL) and dioxane (21 mL). The solution was stirred at room temperature under Ar for 20 min. Then NaIO₄ was added in small portions over 20 min. The mixture was stirred at room temperature for an additional 2 h, quenched with water and extracted with EtOAc. The combined organic extracts were washed with brine and dried (MgSO₄). Evaporation of solvent and flash chromatography of the residue over silica gel (2 x 20 cm), using 30% EtOAc-hexane, gave acetic acid 1-(iodomethyl)-4-oxobutyl ester (614 mg, 79%) as an oil: FTIR (CH₂Cl₂, cast) 2830, 1734, 1720, 1235 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.80-2.20 (m including s at δ 2.05, 5 H), 2.42-2.54 (m, 2 H), 3.29 (dddd, *J* = 10.7, 10.7, 10.7, 5.4 Hz, 2 H), 4.73 (dddd, *J* = 5.3, 5.3, 4.2, 4.2 Hz, 1 H), 9.75 (t, *J* = 1.2 Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 7.1 (t), 20.8 (q), 26.5 (t), 39.4

(t), 71.4 (d), 170.1 (s), 200.4 (d); exact mass (electrospray) m/z calcd for C₇H₁₁INaO₃ 292.96452, found 292.96427.

TrONH₂ (623 mg, 2.265 mmol) was added to a stirred solution of acetic acid 1-(iodomethyl)-4-oxobutyl ester (611.4 mg, 2.265 mmol) in CH₂Cl₂ (40 mL) and stirring was continued for 1 h (Ar atmosphere). Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 30 cm), using 15% EtOAc-hexane, gave **30** (892.8 mg, 75%) as a mixture (ca 1:1) of Z and E isomers (¹H NMR): FTIR (CH₂Cl₂, cast) 3057, 1740, 1233, 700 cm⁻ ¹; ¹H NMR (CDCl₃, 400 MHz) (the spectrum of the isomer mixture is too complicated to be informative); one isomer had: δ 1.74 (ddd, J = 7.0, 7.0, 7.0 Hz, 2 H), 2.05 (s, 3 H), 2.17 (ddd, J = 7.0, 7.0, 7.0 Hz, 2 H), 3.01-3.20 (m, 2 H), 4.51 (dddd, J = 5.8, 5.8, 5.8, 5.8 Hz, 1 H), 7.10-7.48 (m, 15 H), 7.55 (t, J = 5.1 Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) (isomer mixture) δ 7.3 (t), 8.1 (t), 21.01 (q), 21.04 (q), 22.3 (t), 25.5 (t), 29.7 (t), 30.5 (t), 30.7 (t), 71.3 (d), 72.0 (d), 90.5 (s), 90.7 (s), 127.1 (d), 127.2 (d), 127.5 (d), 127.6 (d), 127.9 (d), 129.0 (d), 129.2 (d), 144.4 (s), 144.5 (s), 149.4 (d), 150.3 (d), 170.1 (s), 170.2 (s); exact mass (electrospray) *m/z* calcd for C₂₆H₂₆INNaO₃ 550.08497, found 550.08463.


6-Iodohexanal O-(Triphenylmethyl)oxime (32).

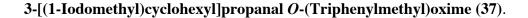
TrONH₂ (426 mg, 1.549 mmol) was added to a stirred solution of 6-iodohexanal^{18,19,20} (350 mg, 1.549 mmol) in CH₂Cl₂ (20 mL) and stirring was continued for 2 h (Ar atmosphere). Evaporation of the solvent and flash chromatography of the residue over silica gel (3 x 30 cm), using 30% EtOAc-hexane, gave **32** (684.1 mg, 91%) as an oil, which was a mixture of two isomers (¹H NMR). These could be separated but only the less polar was obtained pure, and the


isomer mixture was used for radical cyclization: FTIR (CH₂Cl₂, cast) (isomer mixture) 2930, 1597, 699 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) (less polar isomer) δ 1.20-1.50 (m, 4 H), 1.73 (quintet, J = 7.2 Hz, 2 H), 2.15 (q, J = 7.0 Hz, 2 H), 3.09 (t, J = 7.0 Hz, 2 H), 7.20-7.40 (m, 15 H), 7.57 (t, J = 5.9 Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) (less polar isomer) δ 6.8 (t), 25.3 (t), 29.2 (t), 29.5 (t), 33.2 (t), 90.2 (s), 127.0 (d), 127.5 (d), 129.2 (d), 144.6 (s), 150.8 (d); exact mass (electrospray) *m/z* calcd for C₂₅H₂₆INNaO 506.09514, found 506.09458.

Cyclohexanone Oxime (33).²⁵

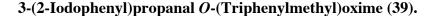
General procedure B for radical cyclization was followed using **32** (666 mg, 1.379 mmol), PhSeSePh (86.0 mg, 0.276 mmol) and Hünig's base (0.96 mL, 5.511 mmol) in THF (25 mL), Bu₃SnH (2.066 mmol) in THF (8 mL) and ABC (336 mg, 1.375 mL) in THF (8 mL). After evaporation of the solvent, flash chromatography of the residue over silica gel (2 x 30 cm), using 30% EtOAc-hexane, gave cyclohexanone oxime (**33**)²⁵ (136 mg, 87%).

3-(Hydroxyimino)cyclopentane-1,1-dicarboxylic Acid Diethyl Ester (34) (from 22).

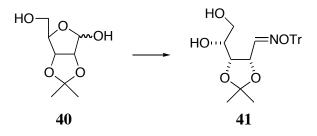


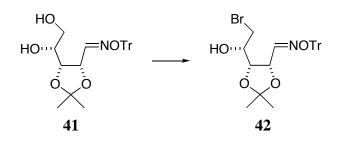
General procedure B for radical cyclization was followed, using **22** (110 mg, 0.194 mmol), PhSeSePh (12.2 mg, 0.0391 mmol) and Hünig's base (0.1 mL. 0.776 mmol) in dry THF (20 mL), Bu₃SnH (0.063 mL, 0.234 mmol) in THF (3 mL) and ABC (47.5 mg, 0.194 mmol) in THF (3 mL). After evaporation of the solvent, flash chromatography of the residue over silica gel (2 x 30 cm), using 30% EtOAc-hexane, gave **34** (36.4 mg, 77%) as a mixture (ca 1:1) of Z and *E* isomers, identical with material made from the iodide.

3-(2-Iodocyclopentyl)propanal O-(Triphenylmethyl)oxime (35).

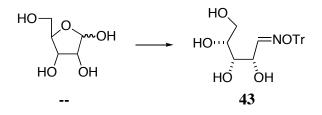


TrONH₂ (51.0 mg, 0.186 mmol) was added in one portion to a stirred solution of **58** (probably largely one isomer) (47.0 mg, 0.187 mmol) in dry CH₂Cl₂ (3 mL) and stirring was continued for 1 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (1.5 x 25 cm), using 10% EtOAc-hexane, gave **35** (77.8 mg, 82%) as an oil, which was a mixture (1:1.3) of isomers (¹H NMR): FTIR (CH₂Cl₂, cast) 2954, 2922, 1954, 1887, 1811, 1631, 1448, 700 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.6-2.80 (m, 11 H), 4.31 (t, *J* = 4.3 Hz, 0.5 H), 4.52 (t, *J* = 4.3 Hz, 0.5 H), 6.75 (t, *J* = 5.6 Hz, 0.42 H), 7.16-7.44 (m, 15 H), 7.57 (t, *J* = 6.1 Hz, 0.57 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 21.6 (t), 21.8 (t), 24.8 (t), 27.9 (t), 28.7 (t), 29.0 (t), 33.205 (t), 33.213 (t), 38.9 (t), 44.3 (d), 45.1 (d), 45.2 (d), 46.4 (d), 90.2 (s), 90.4 (s), 127.0 (d), 127.1 (d), 127.5 (d), 127.6 (d), 129.0 (d), 129.2 (d), 144.56 (s), 144.58 (s), 150.5 (d), 151.6 (d). A satisfactory mass spectrum could not be obtained by electron impact or electrospray methods.

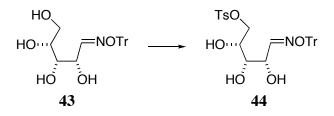

TrONH₂ (610 mg, 2.22 mmol) was added in one portion to a stirred solution of **62** (620 mg, 2.22 mmol) in dry CH₂Cl₂ (22 mL) containing 4Å molecular sieves. Stirring was continued for 4 h and the mixture was filtered and evaporated. Flash chromatography of the residue over silica gel (3 x 30 cm), using 10% EtOAc-hexane, gave **37** (1.12 g, 94%) as a mixture (1:1.3) of geometric isomers (¹H NMR): FTIR (neat film, microscope) 2926, 2853, 1953, 1886, 1810, 1723, 1449, 699 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.30-1.60 (m, 12 H), 2.0-2.10 (m, 1.43 H), 2.38-2.50 (m, 0.64 H), 3.10 (s, 1.31 H), 3.25 (s, 0.63 H), 6.75 (t, *J* = 5.6 Hz, 0.29 H), 7.15-7.40 (m, 15 H), 7.56 (t, *J* = 6.1 Hz, 0.65 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 20.2 (t), 20.9 (t), 21.2 (t), 21.7 (t), 21.8 (t), 23.7 (t), 25.96 (t), 26.01 (t), 34.83 (s/t), 34.85 (s/t), 35.05 (s/t), 35.07 (s/t), 90.2 (s), 90.4 (s), 126.9 (d), 127.1 (d), 127.4 (d), 127.6 (d), 129.0 (d), 129.2 (d), 144.5 (s), 144.6 (s), 151.4 (d), 151.8 (d); exact mass (electrospray) *m*/*z* calcd for C₂₉H₃₂INNaO 560.14209, found 560.14210.


TrONH₂ (30 mg, 0.11 mmol) was added to a stirred solution of 3-(2iodophenyl)propanal²¹ (29.1 mg, 0.11 mmol) in dry CH₂Cl₂ (2 mL) and stirring was continued for 2 h. Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 20 cm), using 10% EtOAc-hexane, gave **39** (0.054g, 94%) as an oil which was a mixture of Z and *E* isomers (¹H NMR), containing some impurities; the material was used directly in the next step.

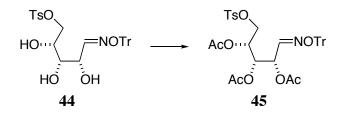
2,3-O-(1-Methylethylidene)-D-ribose O-(Triphenylmethyl)oxime (41).


The general procedure for making *O*-trityl oximes was followed, using TrONH₂ (475.1 mg, 1.723 mmol) and 2,3-*O*-(1-methylethylidene)-D-ribose³² (**40**) (298.4 mg, 1.571 mmol) in THF (10 mL). Flash chromatography of the residue over silica gel (1.7 x 35 cm), using 40% EtOAc-hexane, gave **41** (604 mg, 86%) as a foam, which was a 2.8:1 mixture of geometric isomers (¹H NMR): FTIR (CH₂Cl₂ cast) 3438, 3057, 3033, 2986, 2934, 1597 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.28, 1.38, 1.45, 1.50 (four s, 6 H in all), 1.63-2.01 (br s, 2 H), 3.31-3.72 (m, 3 H), 3.97-4.02 (m, 0.86 H), 4.33-4.41 (m, 0.32 H), 4.64 (t, *J* = 7.0 Hz, 0.76 H), 5.45 (t, *J* = 7.0 Hz, 0.27 H), 6.92 (d, *J* = 6.4 Hz, 0.26 H), 7.18-7.38 (m, 15 H), 7.62 (d, *J* = 6.4 Hz, 0.73 H); ¹³C NMR (CDCl₃, 125.7 MHz) δ 25.4 (q), 25.6 (q), 27.6 (q), 27.8 (q), 64.0 (t), 64.2 (t), 69.6 (d), 70.4 (d), 72.2 (d), 75.3 (d), 78.4 (d), 79.1 (d), 91.3 (s), 92.5 (s), 110.1 (s), 110.5 (s), 127.2 (d), 127.3 (d), 127.6 (d), 127.7 (d), 128.8 (d), 129.0 (d), 143.4 (s), 143.8 (s), 150.5 (d), 150.7 (d); exact mass (electrospray) *m/z* calcd for C₂₇H₂₉NNaO₅ 470.1943, found 470.1942.

5-Bromo-5-deoxy-2,3-*O*-(1-methylethylidene)-D-ribose *O*-(Triphenylmethyl)oxime (42).

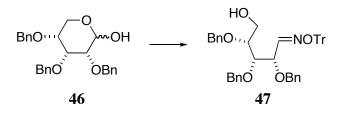

Ph₃P (3.1 g, 11.7 mmol) was added to a stirred and cooled (ice-water) solution of **41** (2.6 g, 5.9 mmol) in pyridine (30 mL), and then CBr₄ (2.14 g, 6.45 mmol) was added in several portions at the same temperature. After the addition, the mixture was heated at 65 °C for 2 h, cooled, and diluted with MeOH (10 mL). Evaporation of the solvent, and flash chromatography of the residue over silica gel (4 x 32 cm), using 10% EtOAc-hexane, gave **42** (2.65 g, 89%) as a foam. The material was a single isomer, but the oxime geometry was not determined: FTIR (CH₂Cl₂ cast) 3564, 3087, 3057, 3033, 2987, 2934, 1595, 1491 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 1.30 (s, 3 H), 1.42 (s, 3 H), 1.92 (d, *J* = 6.0 Hz, 1 H), 3.33-3.61 (m, 3 H), 3.93-4.09 (m, 1 H), 4.72 (t, *J* = 6.0 Hz, 1 H), 7.21-7.51 (m, 15 H), 7.60 (d, *J* = 9.0 Hz, 1 H); ¹³C NMR (CDCl₃, 50.3 MHz) δ 25.5 (q), 27.7 (q), 36.8 (t), 68.8 (d), 75.1 (d), 79.1 (d), 91.2 (s), 110.5 (s), 127.3 (d), 127.8 (d), 128.9 (d), 143.9 (s), 149.8 (d); exact mass (electrospray) *m/z* calcd for C₂₇H₂₈⁷⁹BrNNaO₄ 532.1099, found 532.1100.

D-Ribose O-(Triphenylmethyl)oxime (43).

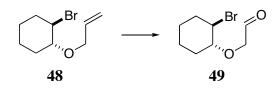

The general procedure for making *O*-trityl oximes was followed, using TrONH_2 (1.06 g, 3.86 mmol) and D-ribose (580 mg, 3.86 mmol) in THF (10 mL). Flash chromatography of the residue over silica gel (1.7 x 35 cm), using 80% EtOAc-hexane, gave **43** (1.438 g, 91%) as a foam. The material was used directly, without characterization.

D-Ribose 5-(4-Methylbenzenesulfonate) O-(Triphenylmethyl)oxime (44).

TsCl (460 mg, 2.41 mmol) was added to a stirred and cooled (0 °C) solution of **43** (890 mg, 2.19 mmol) in pyridine (5 mL), and stirring was continued overnight. Water (10 mL) was added to quench the reaction, and the mixture was extracted with Et₂O (2 x 10 mL). The combined organic extracts were dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel (1.7 x 30 cm), using 50% EtOAc-hexane, gave **44** (658 mg, 54%) as a foam. The material was used directly, without characterization.


D-Ribose 2,3,4-Triacetate 5-(4-Methylbenzenesulfonate) *O*-(Triphenylmethyl)oxime (45).

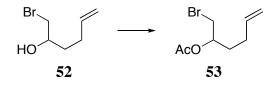
Pyridine (4.6 mL, 80 mmol) was added to a stirred and cooled (0 °C) solution of **44** (405 mg, 0.722 mmol) in Ac₂O (10.6 mL, 144 mmol), and stirring was continued overnight. Water (15 mL) was added and the mixture was extracted with Et₂O (3 x 10 mL). The combined organic extracts were washed with saturated aqueous NaHCO₃ and water (10 mL), dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (1.7 x 30 cm), using 20% EtOAc-hexane, gave **45** (459 mg, 93%) as a foam. The material, which contained small impurities, appeared to be a single isomer, but was used with only partial characterization (¹H NMR): ¹H NMR (CDCl₃, 300 MHz) δ 1.86 (s, 3 H), 1.91 (s, 6 H), 2.4 (s, 3 H), 4.01-4.3 (m, 2 H), 4.94-5.09 (m, 1 H), 5.22-5.48 (m, 2 H), 7.18-7.42 (m, 17 H), 7.49 (d, *J* = 7 Hz, 1 H), 7.72 (d, *J* = 8 Hz, 2 H).


The oxime geometry was not determined.

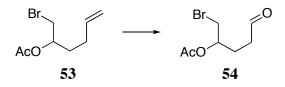
2,3,4-Tris-O-(phenylmethyl)-D-ribose O-(Triphenylmethyl)oxime (47).

The general procedure for making *O*-trityl oximes was followed, using TrONH₂ (80 mg, 0.29 mmol) and **46**³³ (110 mg, 0.26 mmol) in THF (5 mL). Flash chromatography of the residue over silica gel (1.7 x 25 cm), using 15% EtOAc-hexane, gave **47** (167 mg, 94%) as a foam, which was a 5:1 mixture of geometrical isomers (¹H NMR): FTIR (CH₂Cl₂ cast) 3462, 3060, 2869, 1597 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) (in some regions the multiplets include AB quartet signals) δ 3.24-3.31 (m, 1 H), 3.60-3.78 (m, 2.3 H), 3.85 (dd, *J* = 7.0, 2.8 Hz, 0.93 H), 3.95 (dd, *J* = 7.0, 2.8 Hz, 0.25 H), 4.01-4.22 (m, 3.6 H), 4.37-4.58 (m, 2 H), 4.62-4.89 (m, 2 H), 5.24 (dd, *J* = 6.0, 2.0 Hz, 0.2 H), 6.84 (d, *J* = 7.0 Hz, 0.2 H), 6.98-7.44 (m, 30 H), 7.66 (d, *J* = 7.0 Hz, 0.98 H); ¹³C NMR (CDCl₃, 125.7 MHz) δ 61.0 (t), 70.5 (t), 72.4 (t), 74.5 (t), 77.1 (d), 78.5 (d), 80.4 (d), 90.8 (s), 127.0 (d), 127.46 (d), 127.49 (d), 127.53 (d), 127.55 (d), 127.57 (d), 127.6 (d), 127.7 (d), 127.81 (d), 127.84 (d), 128.1 (d), 128.21 (d), 128.23 (d), 128.31 (d), 128.34 (d), 129.0 (d), 129.1 (d), 137.6 (s), 137.7 (s), 138.0 (s), 144.2 (s), 148.9 (d); exact mass *m/z* calcd for C₄₅H₄₃NO₅ 678.3219, found 678.3217.

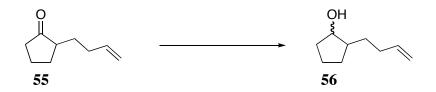
Trans-2-[2-Bromocyclohexyl)oxy]acetaldehyde (49).


Ozone was bubbled through a stirred and cooled (-78 °C) solution of 48^{34} (697.4 mg, 3.184 mmol) in CH₂Cl₂ (15 mL) for 1 h. The mixture was then flushed with O₂ for 10 min, and Ph₃P (2.5 g, 9.6 mmol) was added. Stirring was continued overnight, the cold bath being left in place, but not recharged. Evaporation of the solvent and flash chromatography of the residue over silica gel (1.7 x 30 cm), using 15% EtOAc-hexane, gave **49** (609 mg, 87%) as a colorless oil: FTIR (CH₂Cl₂ cast) 3450, 2937, 2860, 1735 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.19-2.42 (m, 8 H), 3.29-3.43 (m, 1 H), 3.82-4.11 (m, 1 H), 4.21 (s, 2 H), 9.79 (s, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 22.9 (t), 25.1 (t), 30.9 (t), 35.5 (t), 54.8 (d), 75.3 (t), 83.3 (d), 200.8 (d); exact mass *m/z* calcd for C₈H₁₃⁷⁹BrNaO₂ 242.9996, found 242.9991.

Diethyl (2-Bromoethyl)(2-oxoethyl)propanedioate (51).


OsO₄ (0.1 M in PhMe, 0.19 mL, 0.019 mmol) was added in one portion to a stirred solution of **50**³⁵ (59.0 mg, 0.192 mmol) in a mixture of dioxane (3 mL) and water (1 mL). The mixture was stirred for 30 min and then NaIO₄ (102.7 mg, 0.48 mmol) was added in several small portions. The resulting solution was stirred for 2 h, then quenched with water and extracted with EtOAc. The combined organic extracts were washed with brine and dried (Na₂SO₄). Evaporation of the solvent and flash chromatography of the residue over silica gel (1.5 x 20 cm), using 30% EtOAc-hexane, gave aldehyde **51**³⁶ (56 mg, 94%) as an oil: ¹H NMR (CDCl₃, 300 MHz) δ 1.22 (t, *J* = 7.1 Hz, 6 H), 2.52-2.62 (m, 2 H), 3.02 (apparent d, *J* = 1.3 Hz, 2 H), 3.32-3.42 (m, 2 H), 4.22 (q, *J* = 7.1 Hz, 4 H), 9.74 (t, *J* = 1.3 Hz, 1 H).

(1-Bromomethyl)-4-penten-1-yl Acetate (53).


Pyridine (1 mL) was added to a stirred and cooled (0 °C) mixture of Ac₂O (5 mL) and **52**³⁷ (310 mg, 1.73 mmol), and stirring was continued overnight. Water (15 mL) was added and the mixture was extracted with Et₂O (3 x 10 mL). The combined organic extracts were washed with saturated aqueous NaHCO₃, and water (1 x 10 mL), dried, and evaporated. Flash chromatography of the residue over silica gel (1.7 x 30 cm), using 5% EtOAc-hexane, gave **53** (365 mg, 96%) as a colorless oil: FTIR (CH₂Cl₂ cast) 3465, 3078, 2977, 2924, 1742, 1641 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.73-1.82 (m, 2 H), 2.02-2.14 (m, including a singlet at δ 2.07, 5 H in all), 3.38-3.57 (m, 2 H), 4.87-5.09 (m, 3 H), 5.70-5.82 (m, 1 H); ¹³C NMR (CDCl₃, 125.7 MHz) δ 21.1 (q), 29.4 (t), 31.8 (t), 34.1 (t), 71.8 (d), 115.5 (t), 136.9 (d), 170.2 (s). A satisfactory mass spectrum could not be obtained by electron impact or electrospray methods.

(1-Bromomethyl)-4-oxobutyl Acetate (54).

OsO₄ (2.5% w/w in *t*-BuOH, 2.0 mL, 0.16 mmol) was added to a stirred mixture of **53** (358 mg, 1.62 mmol), water (8 mL), CCl₄ (8 mL) and *t*-BuOH (4 mL). After 20 min, the mixture had become black. NaIO₄ (870 mg, 4.05 mmol) was then added in one portion and the resulting mixture was stirred for 6 h. Brine (10 mL) was added, and the mixture was extracted with Et₂O (3 x 10 mL). The combined organic extracts were washed with water (10 mL) and aqueous NaHSO₃ (10%, 15 mL), dried (MgSO₄), and evaporated. Flash chromatography of the residue over silica gel (1.7 x 28 cm), using 20% EtOAc-hexane, gave **54** (289 mg, 80%) as a colorless oil. The material appeared to be a mixture of the aldehyde and its hydrate (¹H and ¹³C NMR): FTIR (CH₂Cl₂ cast) 3459, 2966, 2936, 1739 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.44-2.56 (m, including a singlet at δ 2.07, 7 H in all), 3.37-3.49 (m, 2 H), 4.82-5.11 (m, 1.6 H), 9.76 (t, *J* = 1.3 Hz, 0.3 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 20.8 (q), 20.9 (q), 25.0 (t), 26.4 (t), 29.7 (t), 33.4 t), 33.8 (t), 39.5 (t), 71.5 (d), 71.8 (d), 100.5 (d), 170.2 (s), 170.3 (s), 200.4 (d); exact mass (electrospray) *m*/*z* calcd for C₇H₁₂⁷⁹BrO (M + H) 222.9969, found 222.9967.

2-(But-3-enyl)cyclopentanol (56).

NaBH₄ (340 mg, 8.99 mmol) was added to a stirred and cooled (0 °C) **55**³⁸ (618 mg, 4.478 mmol) and dry MeOH (40 mL). Stirring was continued for 5 h, and the mixture was quenched with saturated aqueous NH₄Cl and extracted with EtOAc. The combined organic extracts were washed with brine, dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (2 x 30 cm), using 30% EtOAc-hexane, gave **56**³⁹ (590 mg, 94%) as an oil, which was a mixture of *cis* and *trans* isomers, with one of these greatly predominating (¹H NMR): FTIR (CH₂Cl₂, cast) 3339, 2954, 2925, 2872, 1640 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.03-1.32 (m, 2 H), 1.44-1.75 (m, 6 H), 1.78-2.20 (m, 4 H), 3.80 (q, *J* = 5.5 Hz, 1 H), 4.87-5.05 (m, 2 H), 5.80 (dddd, *J* = 16.9, 10.2, 6.7, 6.7 Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) (major isomer only) δ 21.7 (t), 29.8 (t), 32.3 (t), 32.9 (t), 34.6 (t), 47.7 (d), 79.0 (d), 114.2 (t), 138.8 (d);

exact mass m/z calcd for C₉H₁₆O 140.12012, found 140.11971.

1-(But-3-enyl)-2-iodocyclopentane (57).

Imidazole (698 mg, 10.25 mmol) was added to a stirred solution of **56** (377.8 mg, 2.699 mmol) in THF (30 ml). The mixture was cooled to 0 °C and stirred for 10 min. Ph₃P (1.91 g, 7.282 mmol) was added in one portion and stirring was continued for additional 10 min. I₂ (1.78 g, 7.013 mmol) was then added in one portion and stirring at 0 °C was continued for 2 h. The ice bath was left in place, but not recharged, and stirring was continued overnight. The mixture was quenched with saturated aqueous Na₂S₂O₃ and extracted with Et₂O. The combined organic extracts were washed with water and brine, dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (2 x 20 cm), using hexane, gave **57** (383.6 mg, 57%) as an oil, which appeared to be a single isomer (NMR): FTIR (CH₂Cl₂, cast) 2959, 2924, 2867, 910 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.84-0.99 (m, 1 H), 1.09-2.43 (m, 10 H), 3.79 (q, J = 8.2 Hz, 0.1 H), 4.55 (ddd, J = 4.1, 4.1, 4.1 Hz, 0.9 H), 4.92-5.10 (m, 2 H), 5.83 (dddd, J = 16.7, 10.2, 6.7, 6.7 Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 21.7 (t), 28.9 (t), 32.2 (t), 35.9 (t), 38.9 (t), 45.2 (d), 46.2 (d), 114.7 (t), 138.5 (d); exact mass *m*/*z* calcd for C₉H₁₅ (M - I) 123.11738, found 122.11701.

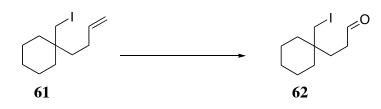
3-(2-Iodocyclopentyl)propanal (58).

OsO₄ in PhMe (0.1 M, 0.40 mL, 0.04 mmol) was added in one portion to a stirred solution of **57** (100 mg, 0.40 mmol) in water (1 mL) and dioxane (3 mL). Stirring was continued for 20 min and then NaIO₄ (220 mg, 1.029 mmol) was added in small portions over 10 min. The mixture was stirred for an additional 2 h, diluted with EtOAc and washed with water and brine, dried (MgSO₄) and evaporated. Flash chromatography of the residue over silica gel (1.5 x 30

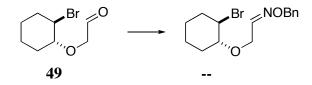
cm), using 10% EtOAc-hexane, gave **58** (57.2 mg, 57%) as an oil, which was largely a single isomer (¹H NMR): FTIR (CH₂Cl₂, cast) 2952, 2865, 1723, 668 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.84-2.60 (m, 11 H), 3.70 (q, *J* = 8.3 Hz, 0.11 H), 4.51 (ddd, *J* = 4.3, 4.3, 4.3 Hz, 0.89 H), 9.78 (t, *J* = 1.7 Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 21.7 (t), 28.9 (t), 29.1 (t), 38.7 (t), 42.1 (t), 43.7 (d), 45.9 (d), 201.9 (d); exact mass *m*/*z* calcd for C₈H₁₃O (M - I) 125.09664, found 125.09652.

[1-(But-3-enyl)cyclohexyl]methanol (60).

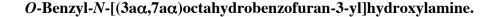
DIBAL (1 M, 15.6 mL, 15.6 mmol) was added dropwise to a stirred and cooled (-78 °C) solution of ester **59**⁴⁰ (1.17 g, 5.97 mmol) in dry CH₂Cl₂ (40 mL. The mixture was stirred at -78 °C for 4 h. The mixture was quenched with solid sodium potassium tartrate (ca 3 g) and glycerol (ca 6 mL) and the cold bath was removed and stirring was continued overnight, by which stage two layers had formed. The mixture was extracted with EtOAc (3 times) and the combined organic extracts were washed with brine, dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (3 x 20 cm), using 10% EtOAc-hexane, gave **60** (780 mg, 78%) as a colorless oil: FTIR (CH₂Cl₂ cast) 3345, 2926, 2853, 1454 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.23-1.51 (m, 12 H), 1.92-2.05 (m, 2 H), 3.43 (d, *J* = 4.5 Hz, 2 H), 4.87-5.09 (m, 2 H), 5.84 (dddd, *J* = 16.8, 10.1, 6.6, 6.6 Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 21.4 (t), 26.3 (t), 27.4 (t), 32.3 (t), 33.9 (t), 36.9 (s), 68.2 (t), 113.9 (t), 139.6 (d); exact mass *m/z* calcd for C₁₁H₁₈ (M-H₂O) 150.14085, found 150.14043.

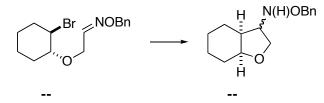

1-(But-3-enyl)-1-(iodomethyl)cyclohexane (61).

Imidazole (110 mg, 1.67 mmol) was added to a stirred solution of **60** (74 mg, 0.44 mmol) in THF (5 mL) and the mixture was cooled to 0 °C. Stirring was continued until all the


imidazole had dissolved and then Ph₃P (312 mg, 1.19 mmol) was added. Stirring was continued for an additional 10 min, I₂ (290 mg, 1.14 mmol) was added in one portion and stirring was continued for 2 h. The cold bath was left in place, but not recharged, and stirring was continued overnight. The mixture was quenched with saturated aqueous Na₂S₂O₃ and extracted with Et₂O (3 times). The combined organic extracts were washed with brine, dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 10% EtOAchexane, gave **61** (120 mg, 100%): FTIR (neat film microscope) 2926, 2851, 1641, 910 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.26-1.55 (m, 12 H), 1.86-2.03 (m, 2 H), 3.25 (s, 2 H), 4.91-5.13 (m, 2 H), 5.85 (dddd, *J* = 16.8, 10.2, 6.6, 6.6 Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 21.7 (t), 21.8 (t), 26.0 (t), 27.0 (t), 34.9 (t), 34.9 (t), 37.1 (s), 114.2 (t), 138.8 (d); exact mass *m/z* calcd for C₁₁H₁₉I 278.05316, found 278.05280.

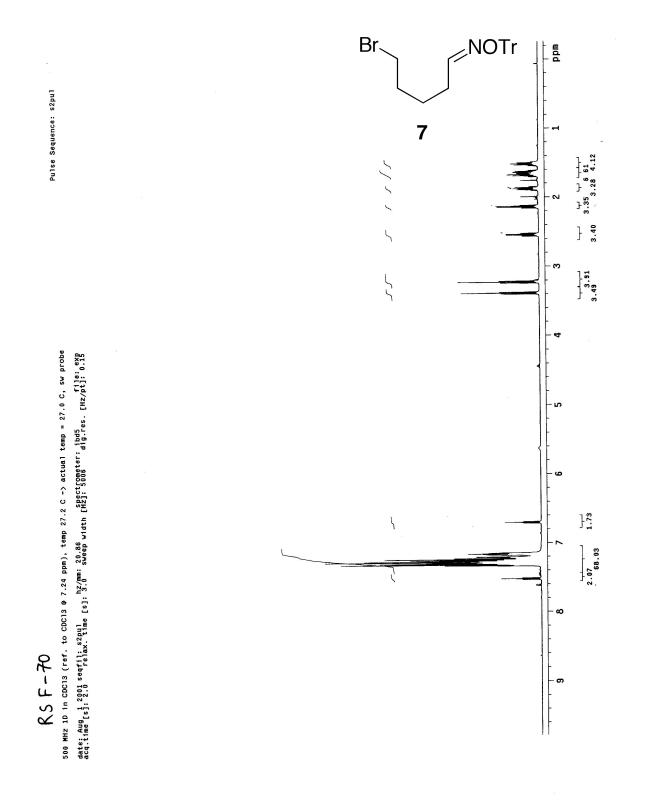
3-[(1-Iodomethyl)cyclohexyl]propanal (62).

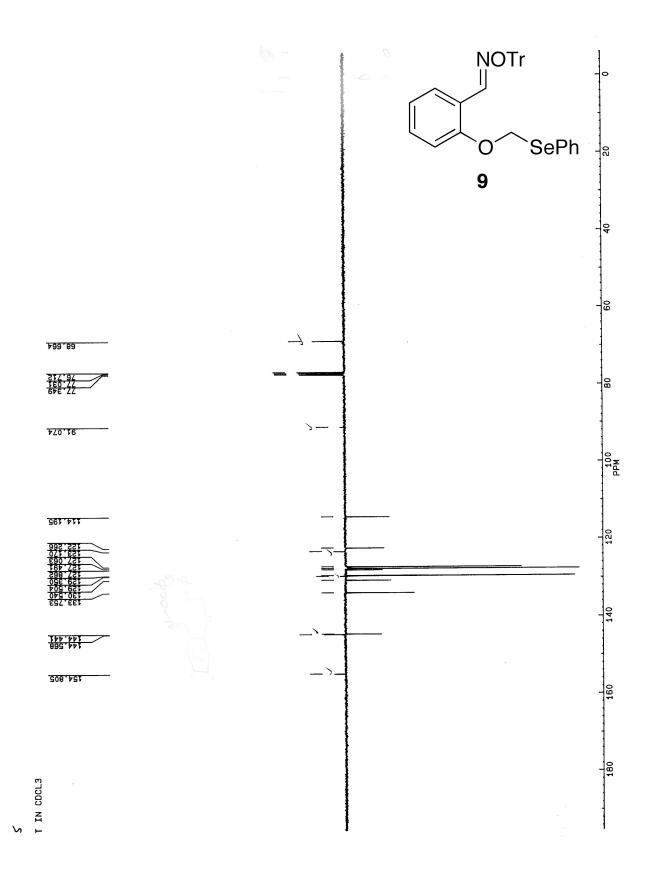

OsO₄ (0.1 M in PhMe, 3.2 mL, 0.32 mmol) was added in one portion to a stirred solution of alkene **61** (896 mg, 3.22 mmol) in water (8 mL) and dioxane (24 mL). The mixture was stirred for 20 min and then NaIO₄ (1.72 g, 8.0 mmol) was added in small portions and stirring was continued for 2 h. The mixture was diluted with water and extracted with EtOAc (3 times). The combined organic extracts were washed with brine, dried (Na₂SO₄) and evaporated. Flash chromatography of the residue over silica gel (2 x 20 cm), using 10% EtOAc-hexane, gave **62** (636 mg, 71%): FTIR (neat film microscope) 2927, 2854, 1725 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.32-1.54 (br s, 10 H), 1.64-1.75 (m, 2 H), 2.26-2.40 (m, 2 H), 3.20 (s, 2 H), 9.80 (t, *J* = 1.8 Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 20.4 (t), 21.7 (t), 25.9 (t), 30.1 (s), 34.6 (t), 34.8 (t), 37.8 (t), 202.0 (d); exact mass *m/z* calcd for C₁₀H₁₇IO 280.03241, found 280.03232.

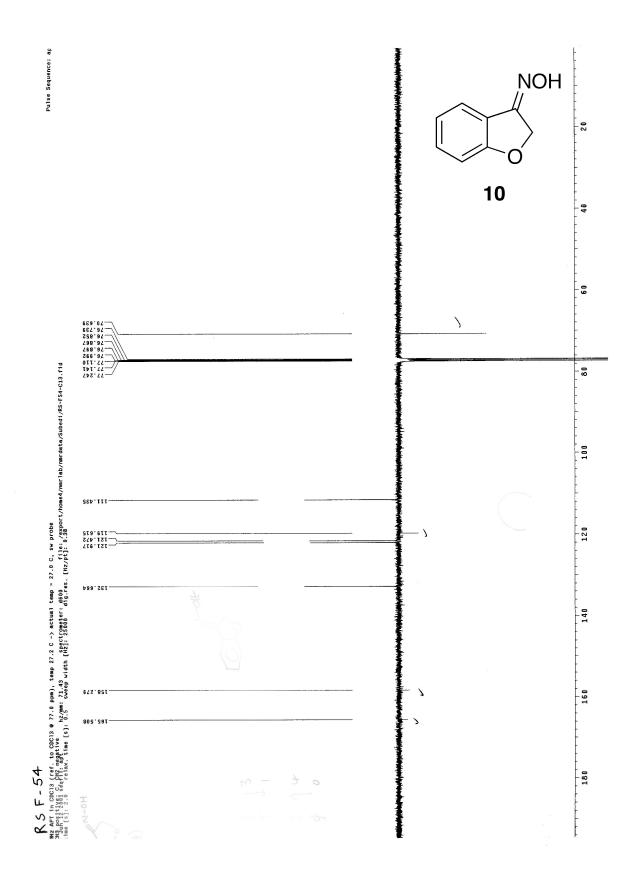

Trans-2-[(2-Bromocyclohexyl)oxy]acetaldehyde O-(Phenylmethyl)oxime.

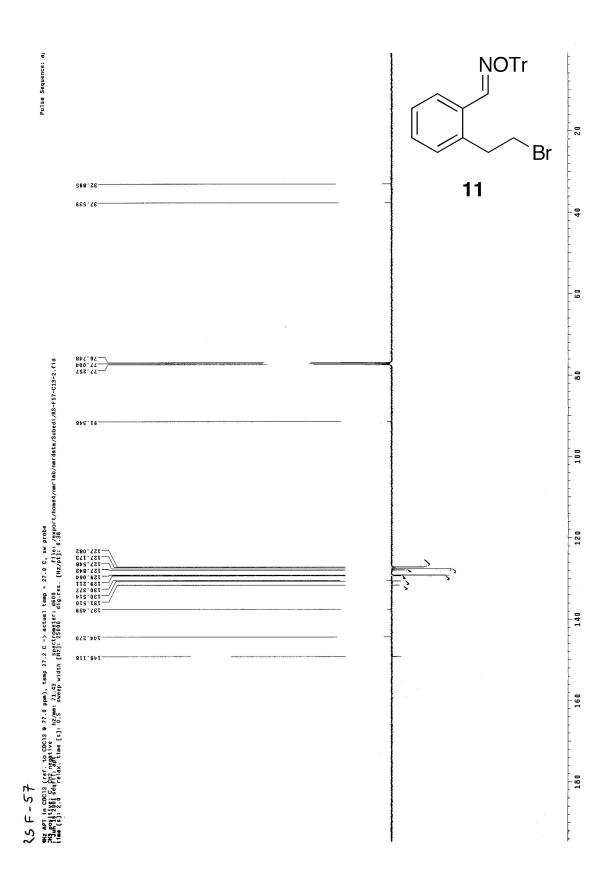
O-Benzylhydroxylamine hydrochloride (330 mg, 2.66 mmol) was added to a stirred solution of **49** (490 mg, 2.22 mmol) in THF (10 mL). Pyridine (350 mg, 4.44 mmol) was then added, and the mixture was refluxed for 10 h, cooled, filtered and evaporated. Flash chromatography of the residue over silica gel (1.7 x 32 cm), using 8% EtOAc-hexane, gave *trans*-2-[(2-bromocyclohexyl)oxy]acetaldehyde *O*-(phenylmethyl)oxime (632 mg, 88%) as a light yellow oil, which was a mixture of *Z* and *E* isomers (¹H NMR): FTIR (CH₂Cl₂ cast) 3087, 3063, 2937, 2860, 1452 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.19-2.4 (m, 8 H), 3.27-3.39 (m, 1 H), 3.88-3.99 (m, 1 H), 4.12-4.51 (m, 2 H), 5.09 (d, *J* = 1.6 Hz, 2 H), 6.87 (t, *J* = 4.0 Hz, 0.42 H), 7.23-7.59 (m, 5 H), 7.53 (t, *J* = 4.0 Hz, 0.5 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 23.2 (t), 25.4 (t), 30.7 (t), 30.9 (t), 35.6 (t), 54.9 (d), 55.2 (d), 64.0 (t), 66.4 (t), 75.9 (t), 76.3 (t), 81.5 (s), 82.4 (s), 127.8 (d), 127.9 (d), 128.0 (d), 128.1 (d), 128.4 (d), 137.4 (s), 137.5 (s), 147.9 (d), 151.1 (d); exact mass (electrospray) *m/z* calcd for C₁₅H₂₀⁷⁹BrNNaO₂ 348.0575, found 348.0570.

The oxime geometry was not established.

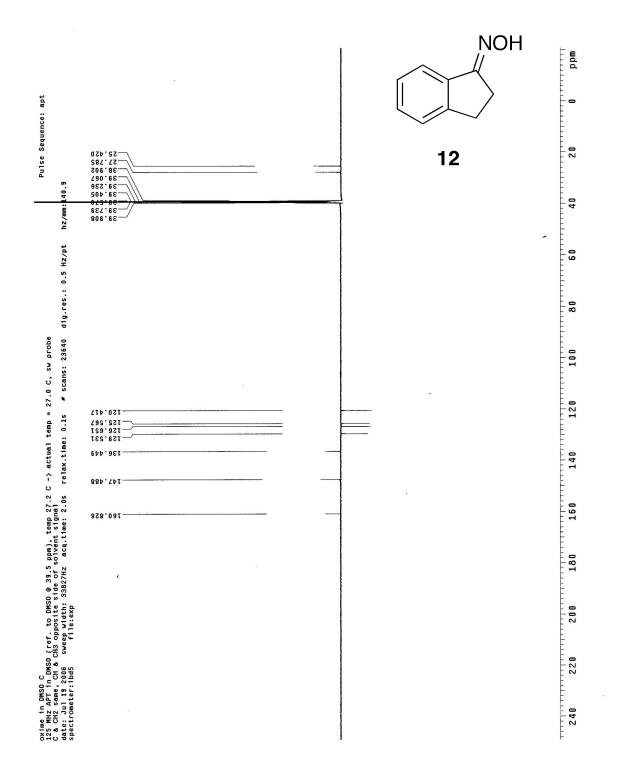


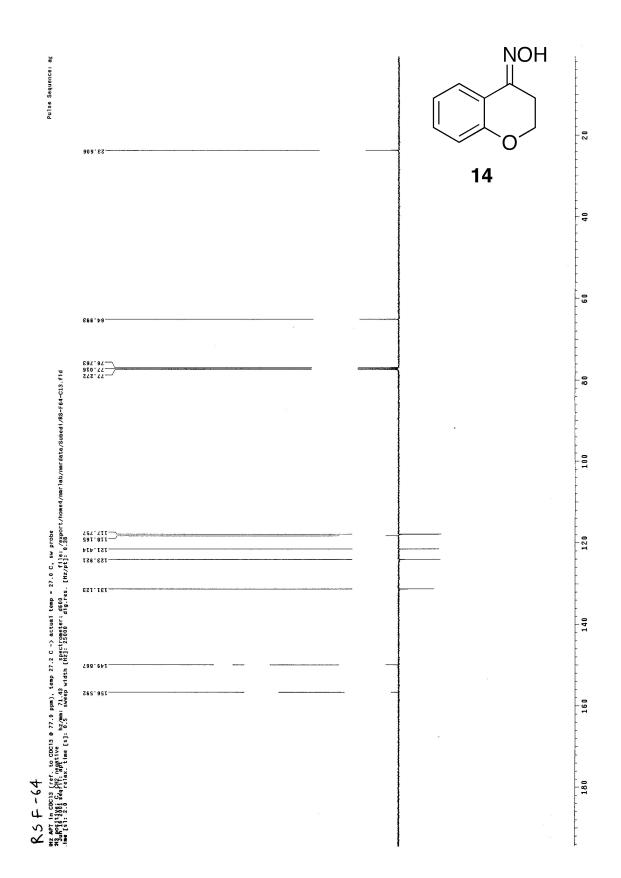


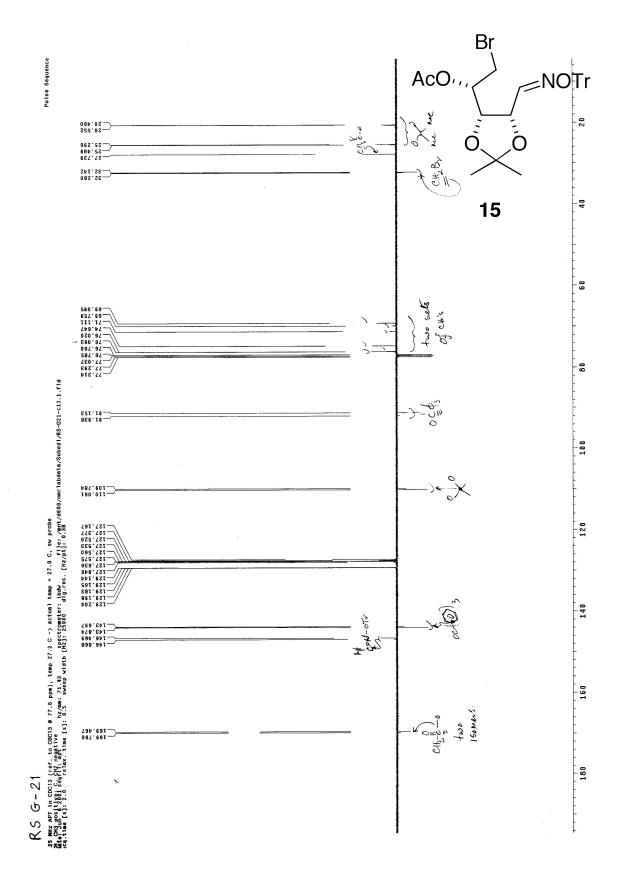

General procedure A for radical cyclization was followed, using *trans*-2-[(2-bromocyclohexyl)oxy]acetaldehyde *O*-(phenyl-methyl)oxime (281 mg, 0.865 mmol) in THF (50 mL), Bu₃SnH (370 mg, 1.30 mmol) in THF (5 mL), and ABC (4 mg, 0.02 mmol) in THF (5 mL). Flash chromatography of the residue over silica gel (1.7 x 20 cm), using 20% EtOAchexane, gave *O*-benzyl-*N*-[(3α , $7\alpha\alpha$)octahydrobenzofuran-3-yl]hydroxylamine (129 mg, 61%) as a foam, which was a mixture of two isomers (¹H NMR): FTIR (CH₂Cl₂ cast) 3242, 3086, 3062, 2931 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.12-2.23 (m, 9 H), 3.41-3.46 (m, 0.68 H), 3.48-3.57 (m, 1 H), 3.91-4.20 (m, 1.8 H), 4.12 (dd, *J* = 10.3, 6.4 Hz, 0.7 H), 4.69, 4.70 (two s, 2 H in all), 4.83-5.92 (br s, 1 H), 7.22-7.43 (m, 5 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 20.4 (t), 20.5 (t), 20.9 (t), 24.1 (t), 24.2 (t), 26.1 (t), 27.7 (t), 28.2 (t), 39.7 (d), 41.4 (d), 64.0 (d), 67.1 (d), 68.3 (t), 69.8 (t), 75.6 (d), 76.0 (t), 76.6 (t), 77.3 (d), 127.8 (d), 127.9 (d), 128.3 (d), 128.4 (d), 128.5 (d), 137.7 (s); exact mass *m/z* calcd for C₁₅H₂₂NO₂ (M + H) 248.1650, found 248.1654.

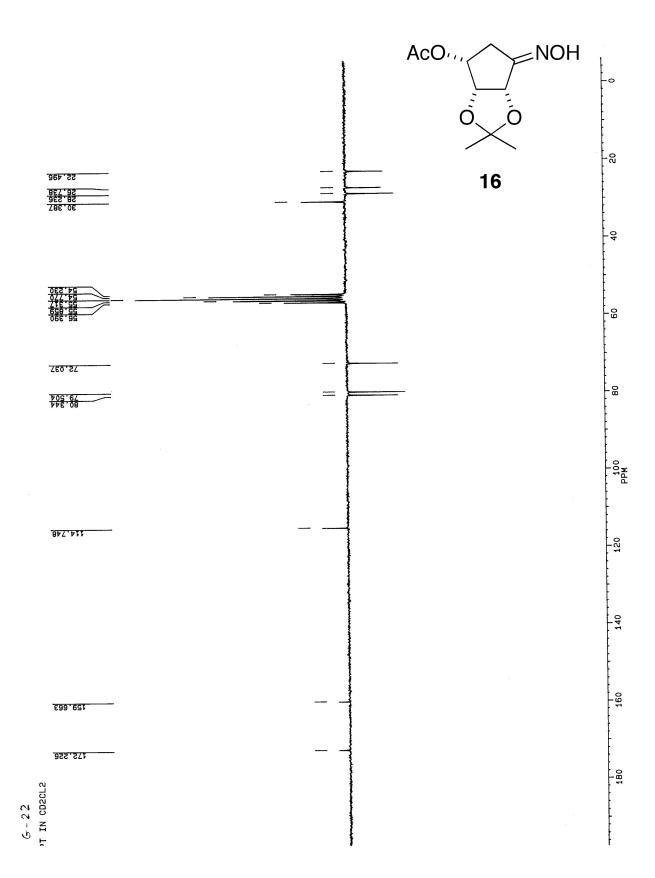

References and footnotes

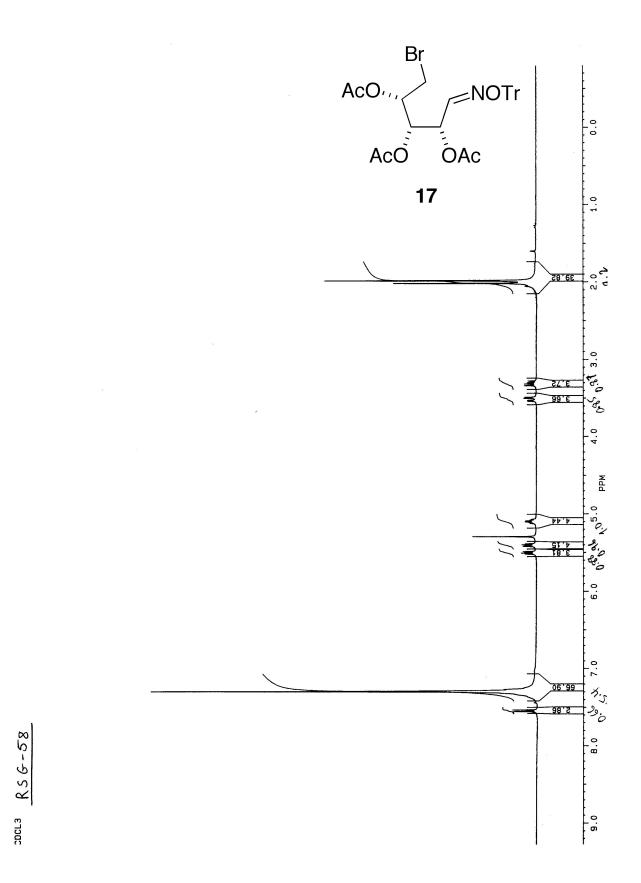
- Hwu, J. R.; Tseng, W, N.; Patel, H. V.; Wong, F. F.; Horng, D.-N.; Liaw, B. R.; Lin, L. C. J. Org. Chem. 1999, 64, 2211-2218.
- (26) Hardy, J.-C.; Venet, M. Tetrahedron Lett. 1982, 23, 1255-1256.
- (27) Pratap, R.; Gupta, R. C.; Anand, N. Indian J. Chem. Sect. B 1981, 20, 1063-1067.
- (28) Talybov, G. M.; Mekhtieva, V. Z.; Karaev, S. F. Russian J. Org. Chem. 2001, 37, 600.
- (29) We used NIS instead of I_2/HgO .
- (30) Dutta, A. K.; Fei, X.-S.; Beardsley, P. M.; Newman, J. L.; Reith, M. E. A. J. Med. Chem.
 2001, 44, 937-948.
- (31) Bonini, C.; Giuliano, C.; Righi, G.; Rossi, L. Synth. Commun. 1992, 22, 1863-1870.
- (32) Kaskar, B.; Heise, G. L.; Michalak, R. S.; Vishnuvajjala, B. R. Synthesis, 1990, 1031-1032.
- (33) Tejima, S.; Ness, R. K.; Kaufman, R. L.; Fletcher, Jr., H. G. *Carbohydr. Res.* **1968**, *7*, 485-490.
- (34) Beckwith, A. L. J.; Page, D. M. *Tetrahedron* **1999**, *55*, 3245-3254.
- (35) Bunce, R. A.; Burns, S. E. Org. Prep. Proc. Intl. 1999, 31, 99-123.
- (36) Kim, S.; Kee, I. S.; Lee, S. J. Am. Chem. Soc. 1991, 113, 9882-9883.
- (37) Dolbier, Jr., W. R.; Rong, X. X.; Bartberger, M. D.; Koroniak, H.; Smart, B. E.; Yang,
 Z.-Y. J. Chem. Soc., Perkin Trans. 2 1998, 219-231.
- (38) Molander, G. A.; McKie, J. A. J. Org. Chem. 1992, 57, 3132-3139.
- (39) The *trans* isomer corresponding to **56** is known: Hegedus, L. S.; McKearin, J. M. J. Am. *Chem. Soc.* **1982**, *104*, 2444-2451.
- (40) Nuhrich, A.; Moulines, J. *Tetrahedron* 1991, 47, 3075-3088. Our material had: FTIR 2936, 2854, 1731, 1455 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.14-1.40 (m, 5 H), 1.50-1.65 (m, 5 H), 1.89-2.00 (m, 2 H), 2.03-2.15 (m, 2 H), 3.68 (s, 3 H), 4.88-5.03 (m, 2 H), 5.76 (dddd, J = 16.8, 10.2, 6.6, 6.6 Hz, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 23.2 (t), 25.9 (t), 28.4 (t), 34.1 (t), 39.6 (t), 46.8 (s), 51.4 (q), 114.4 (t), 138.4 (d), 177.0 (s); exact mass *m*/*z* calcd for C₁₂H₂₀O₂ 196.14633, found 196.14612.

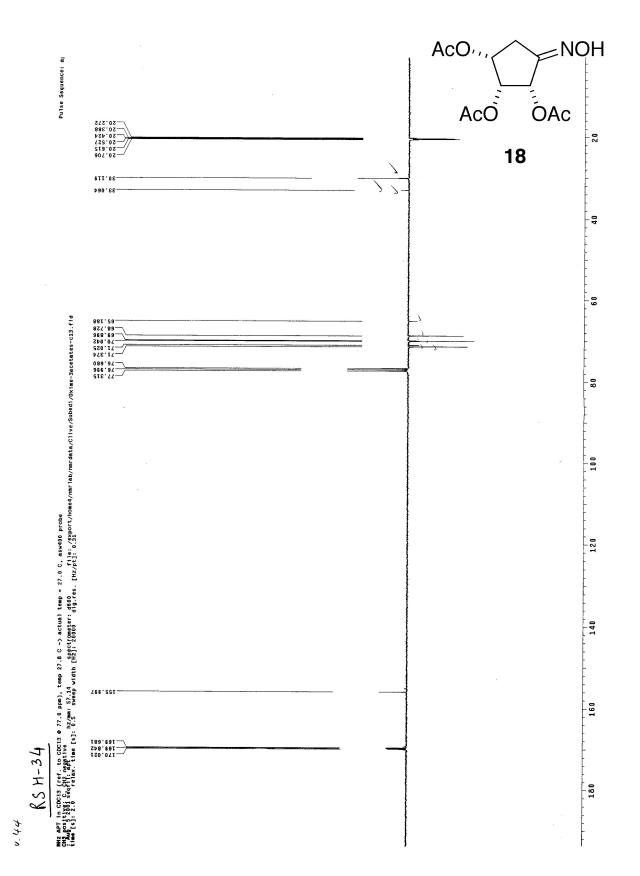


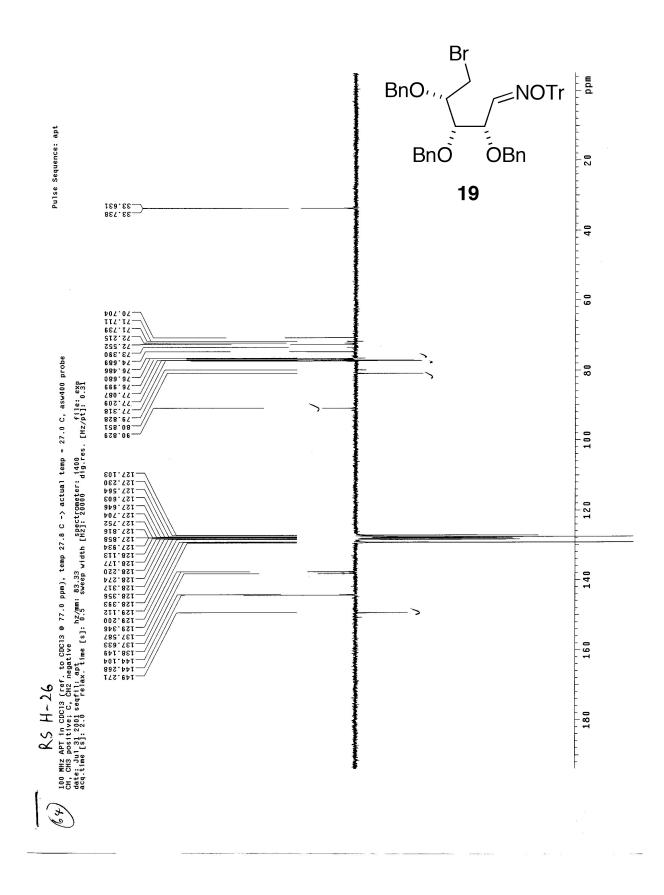


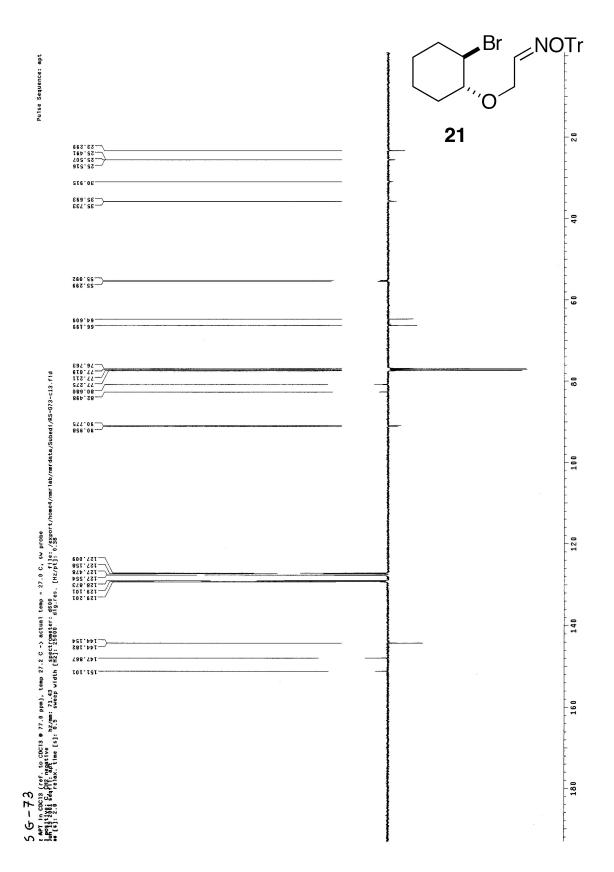


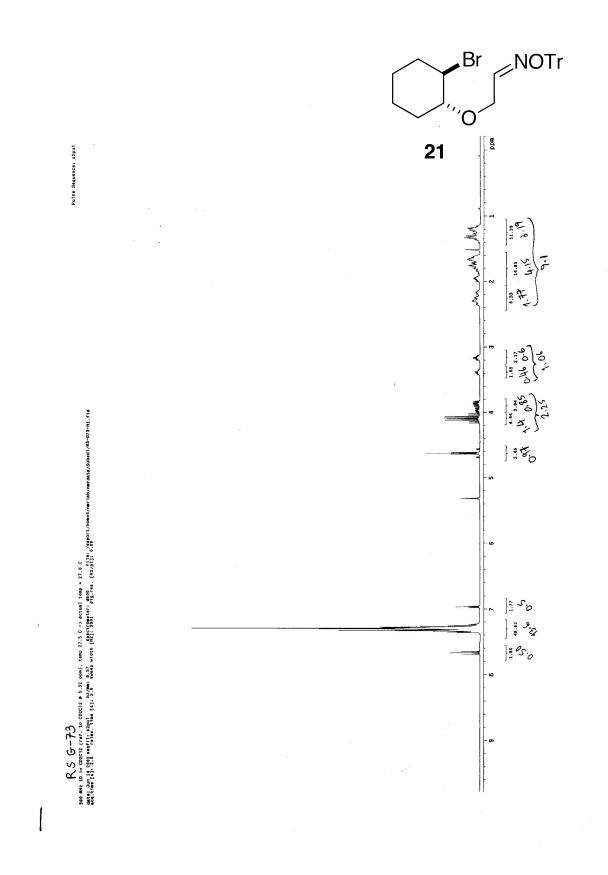

S33

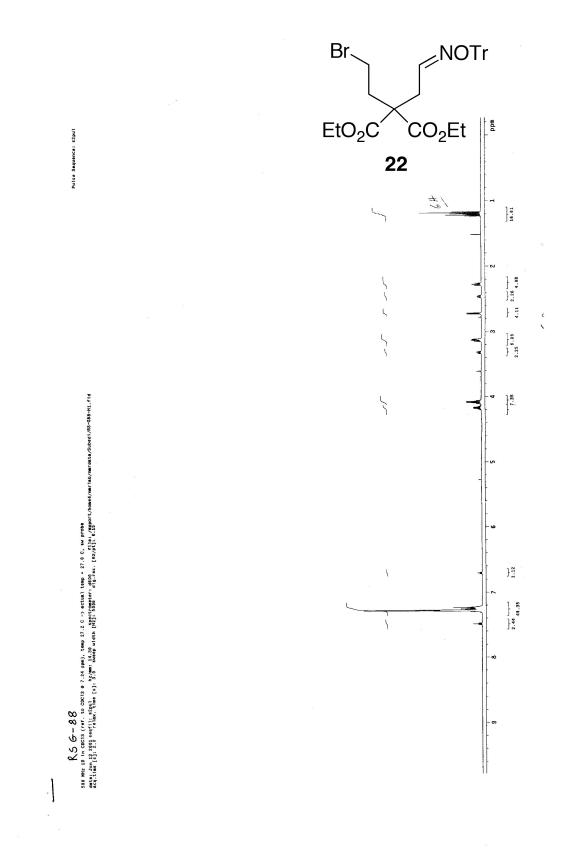


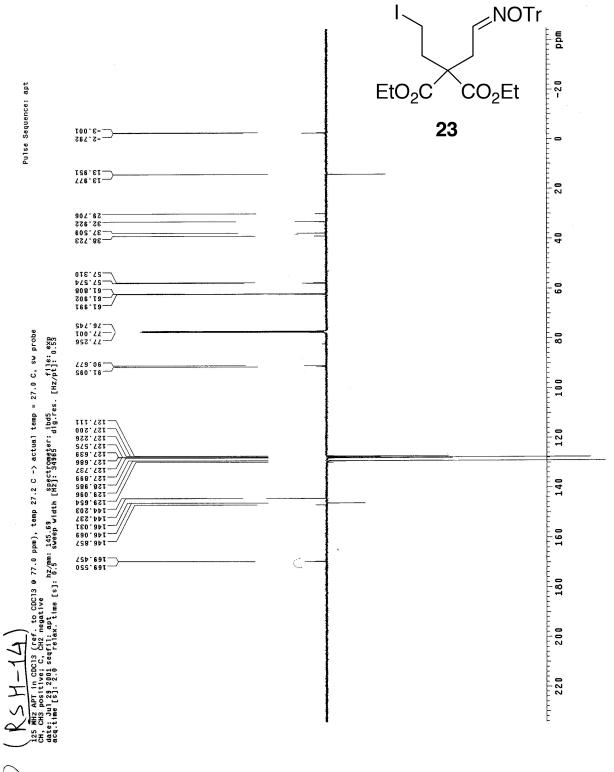


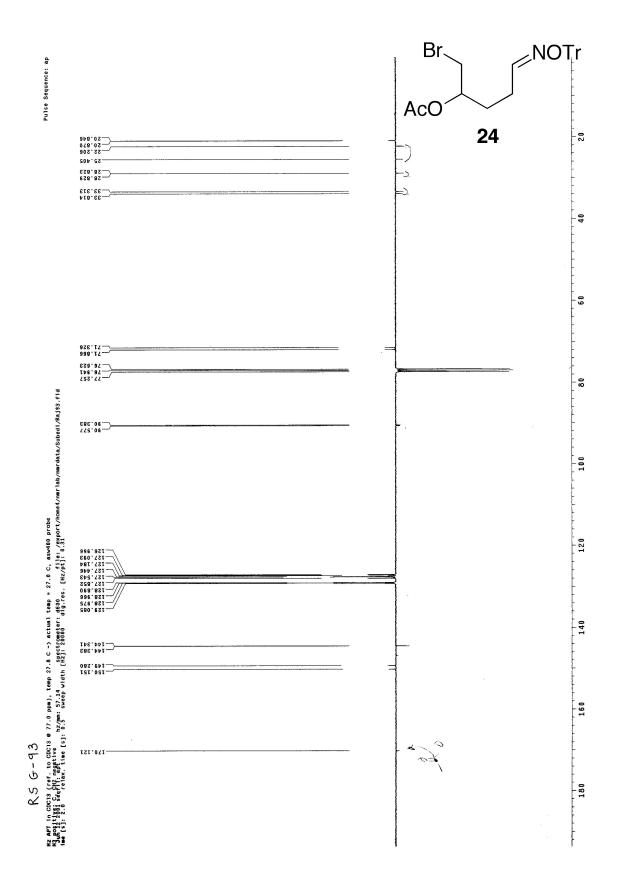


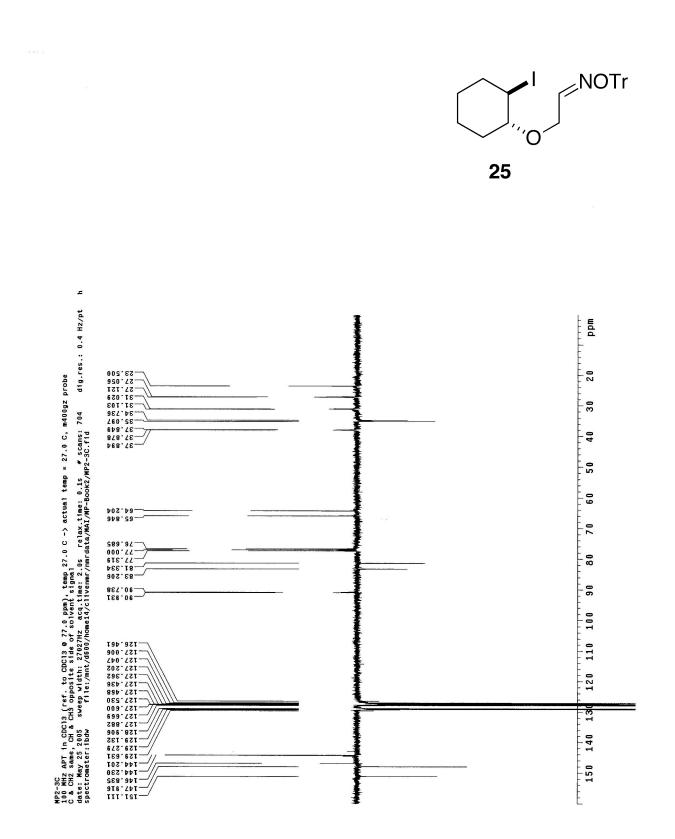


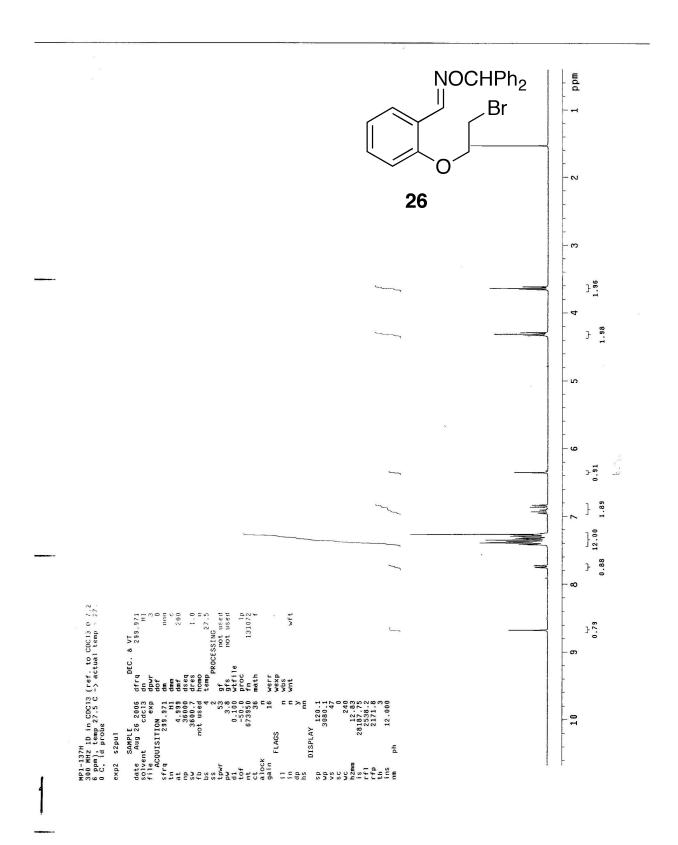


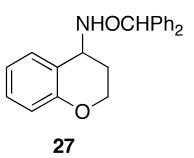


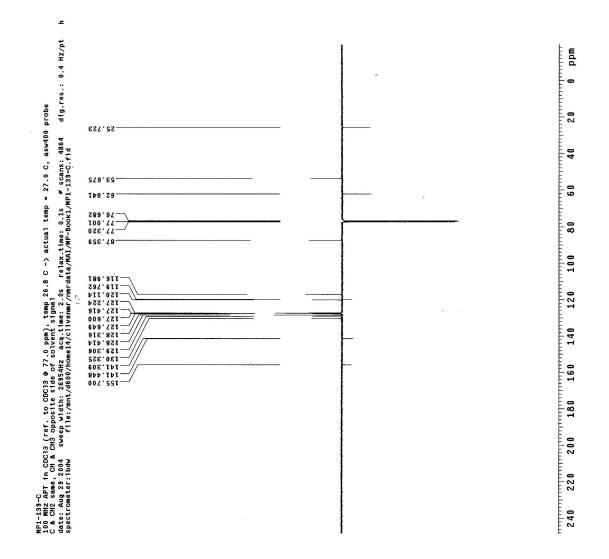


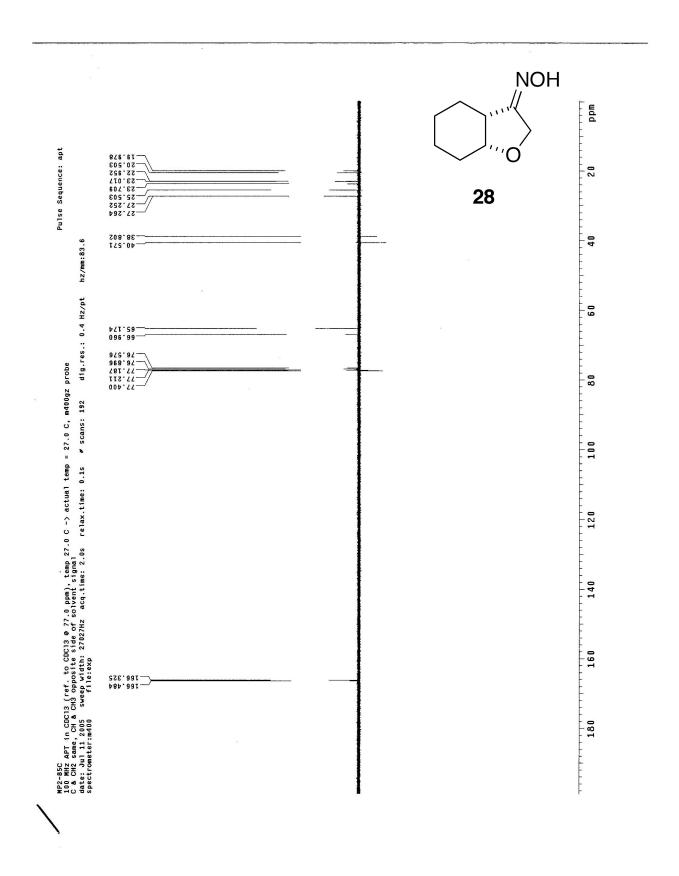


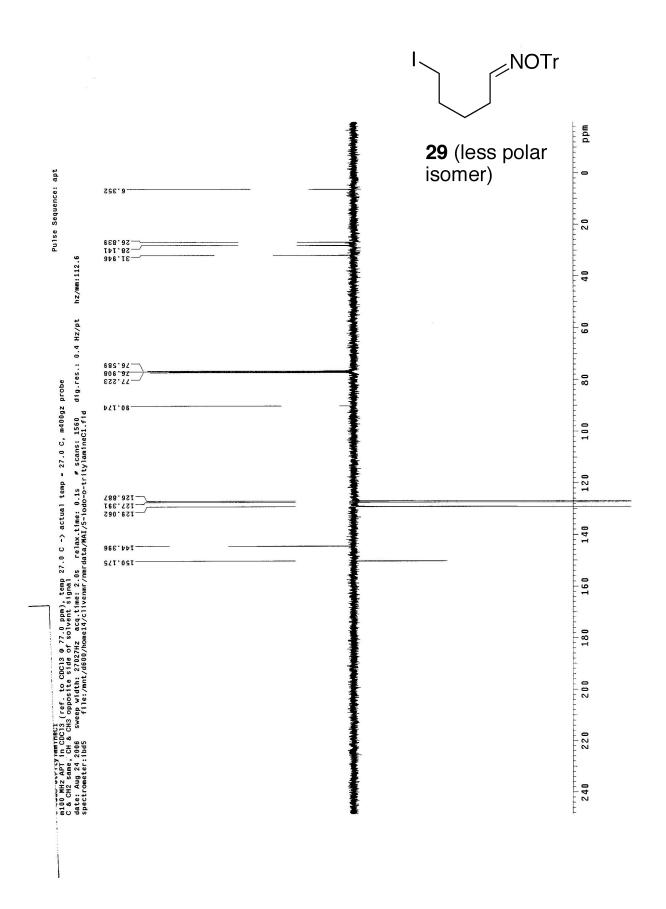


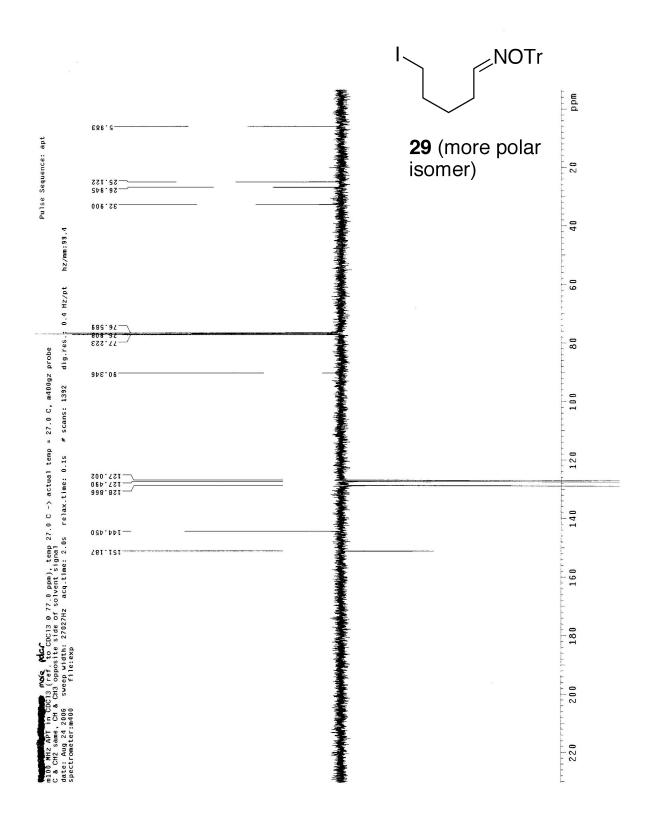


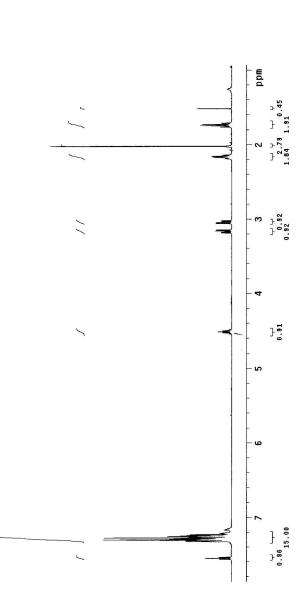


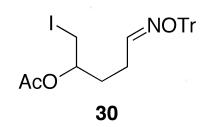

(fa)

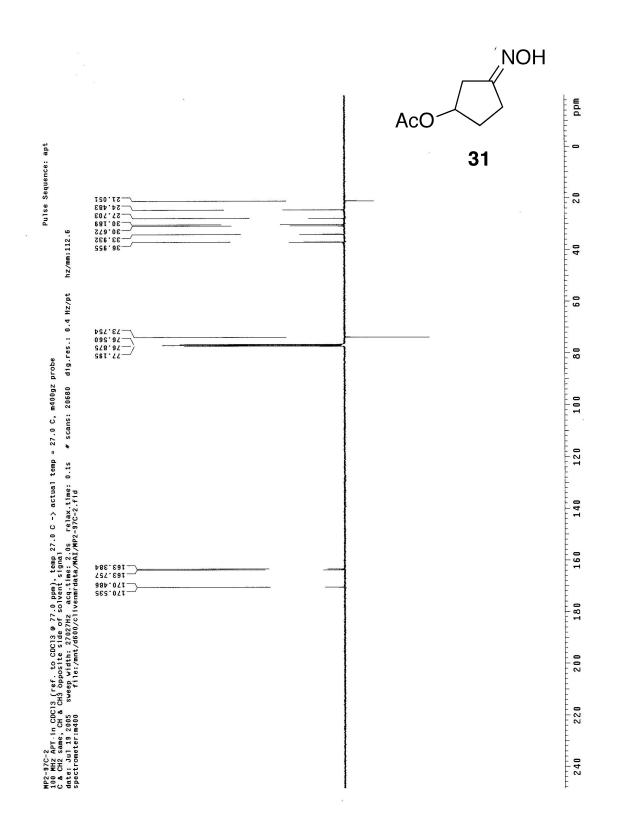




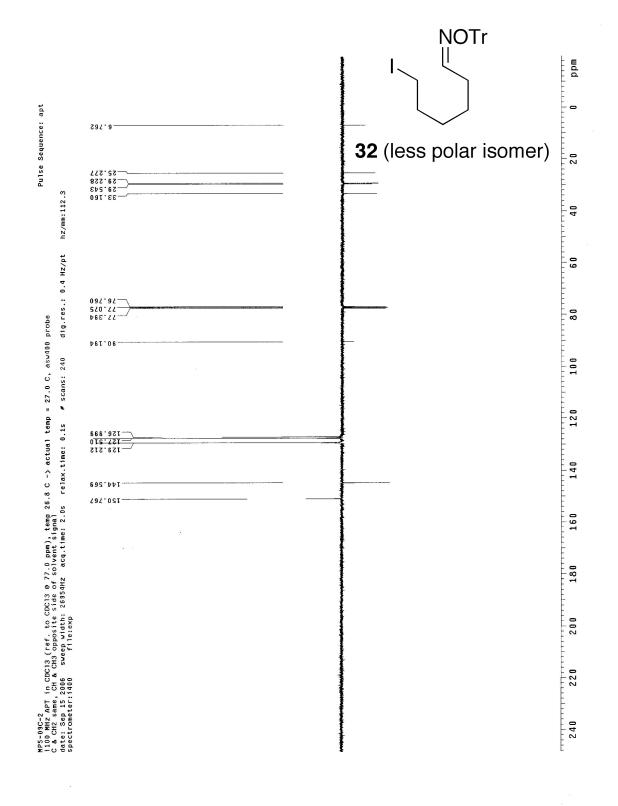


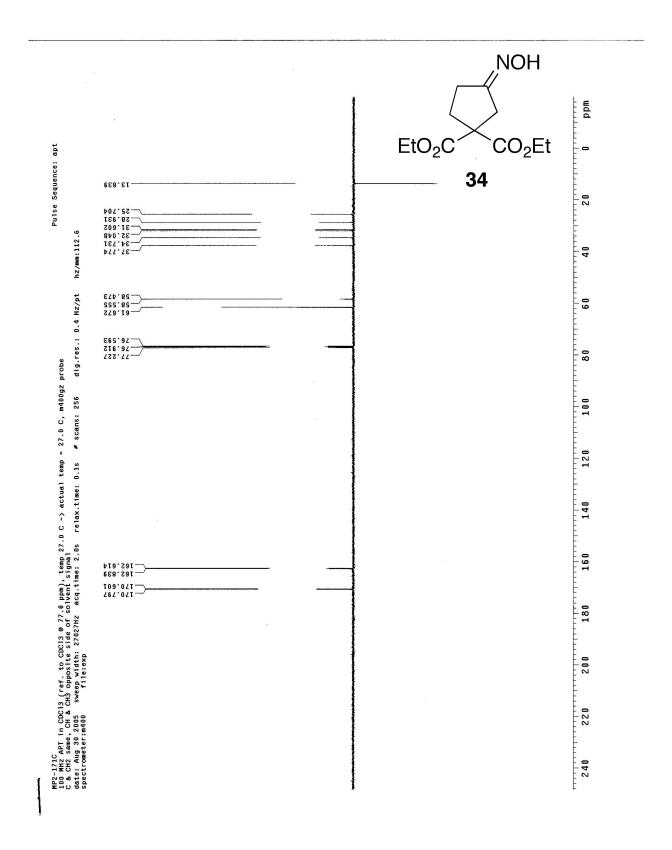


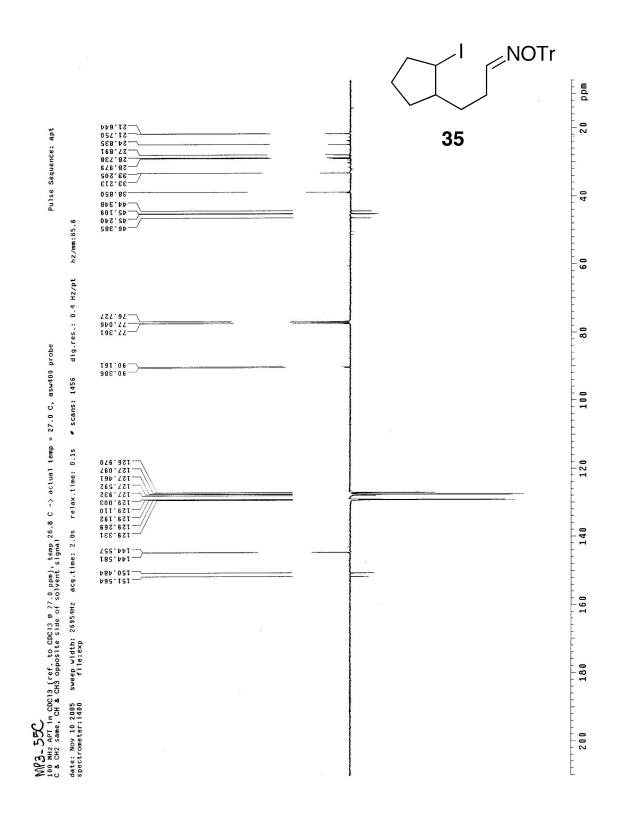


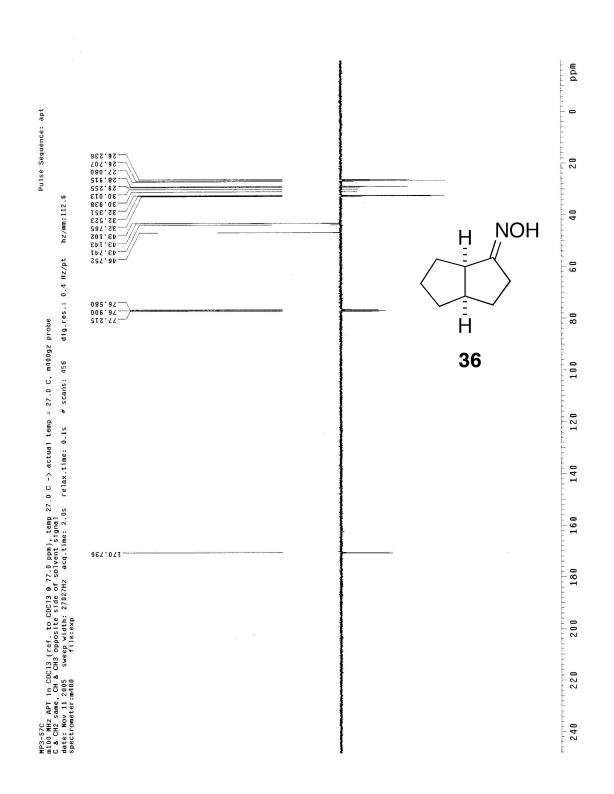


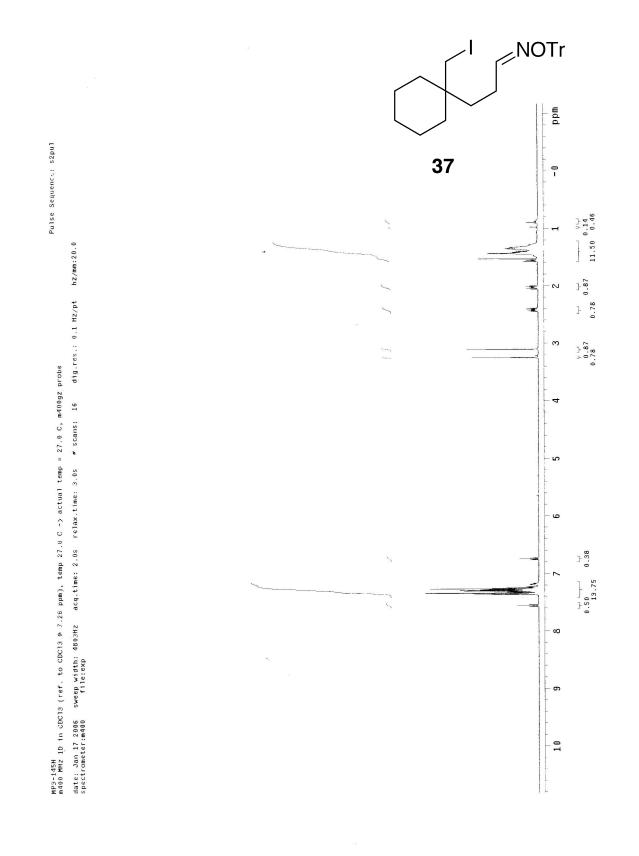
Solvent: cdc13 Temp. 27.0 C / 300.1 K File: MP2-95H INOVA-500 "ibdw"

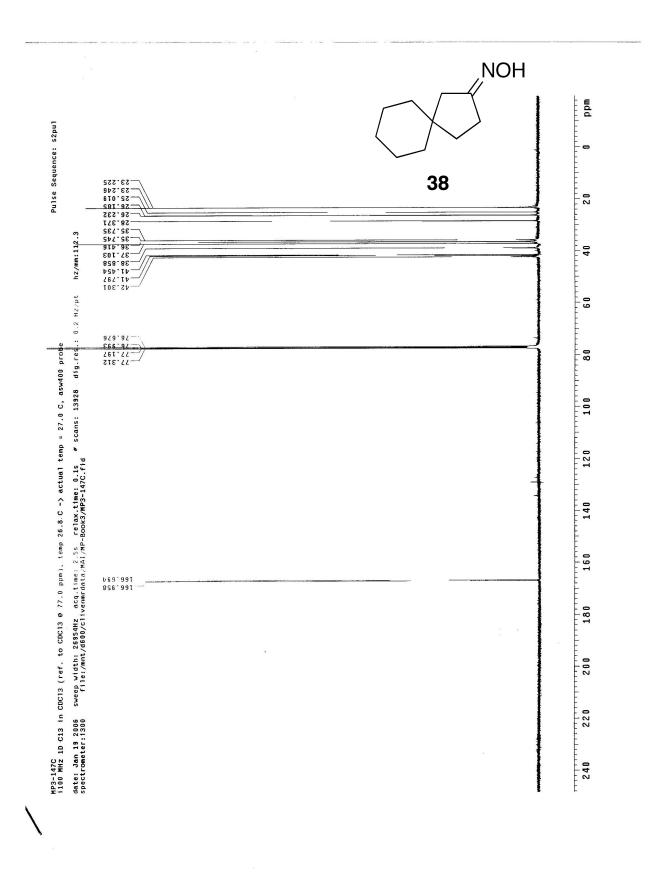

Relax. delay 3.000 sec Pulse 85.0 degrees Acq. time 1.999 sec Vidth 4803.1 H2 L6 repetitions DBATA PROCESSING DBATA PROCESSING FT size 110.30 sec Total time 1 min, 30 sec

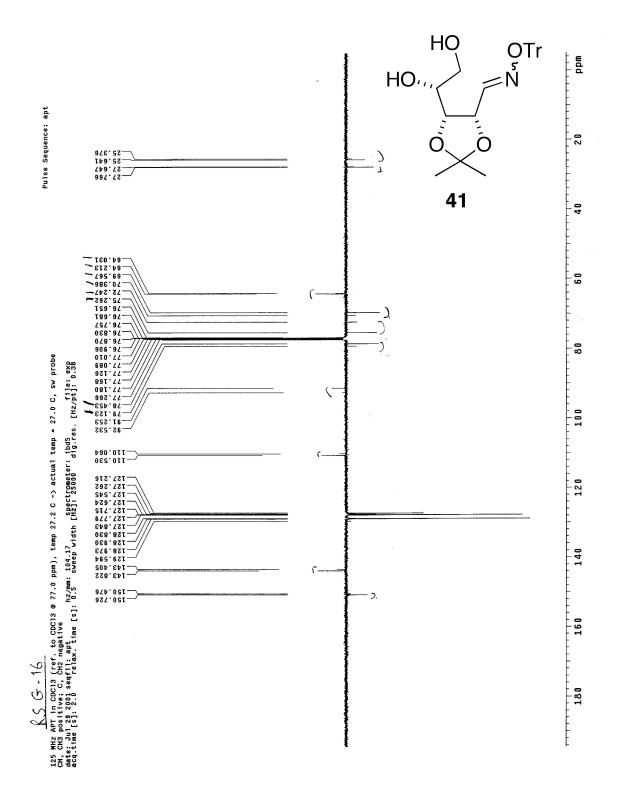


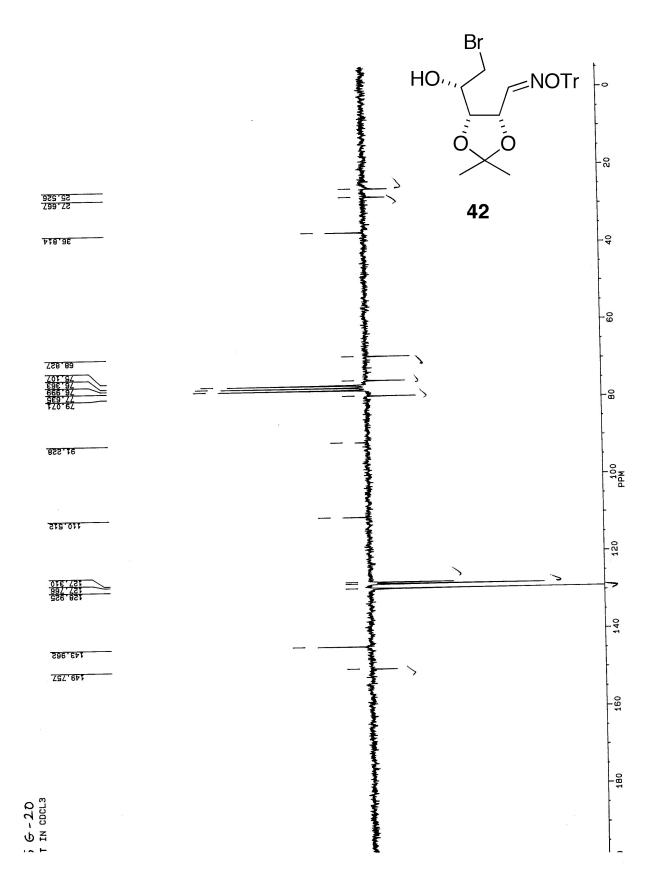


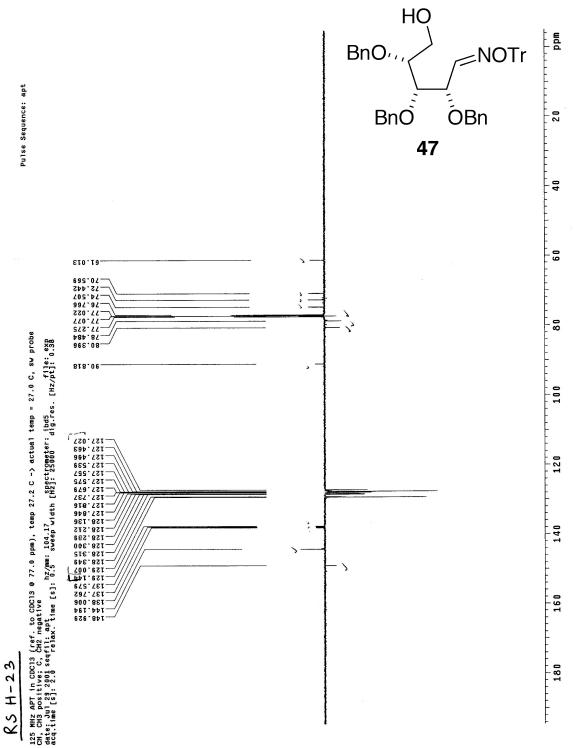


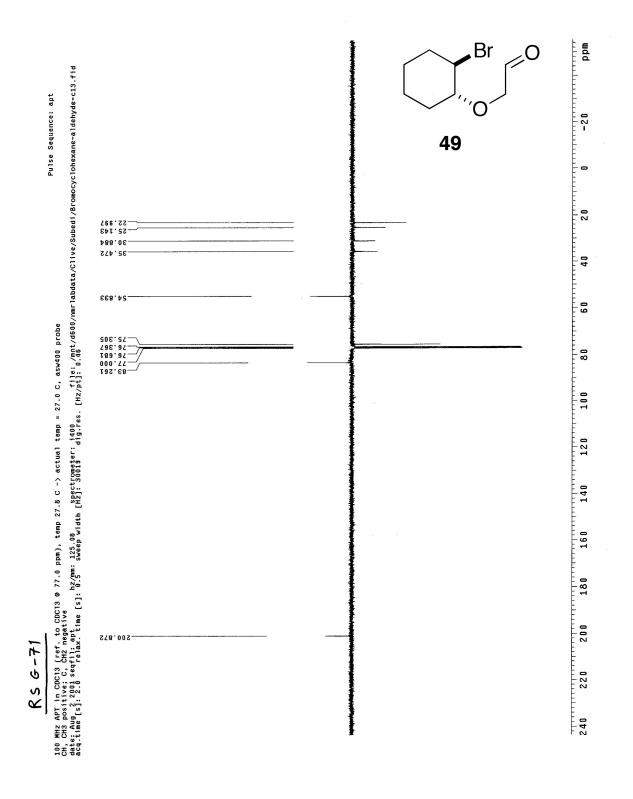


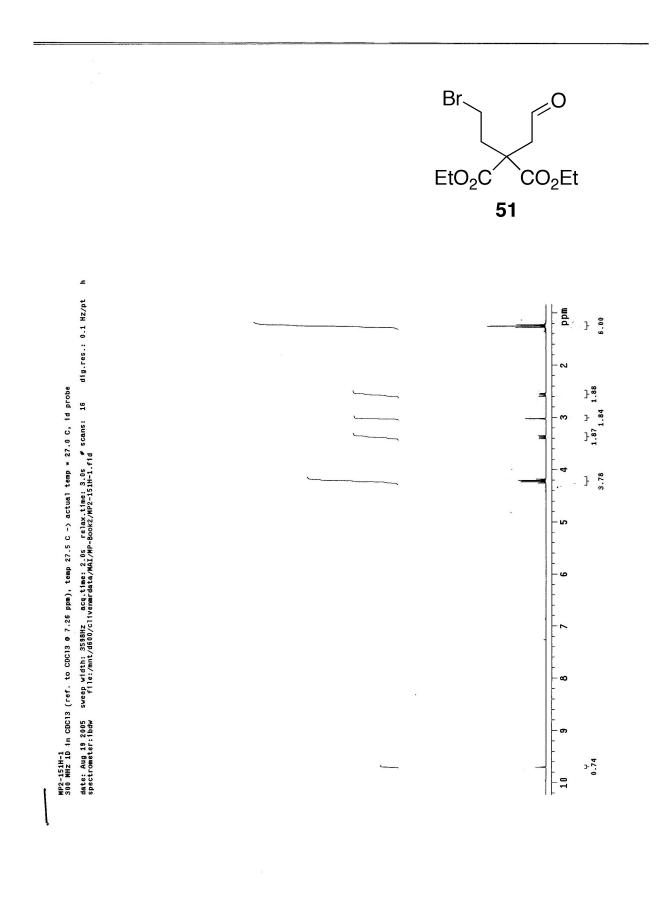


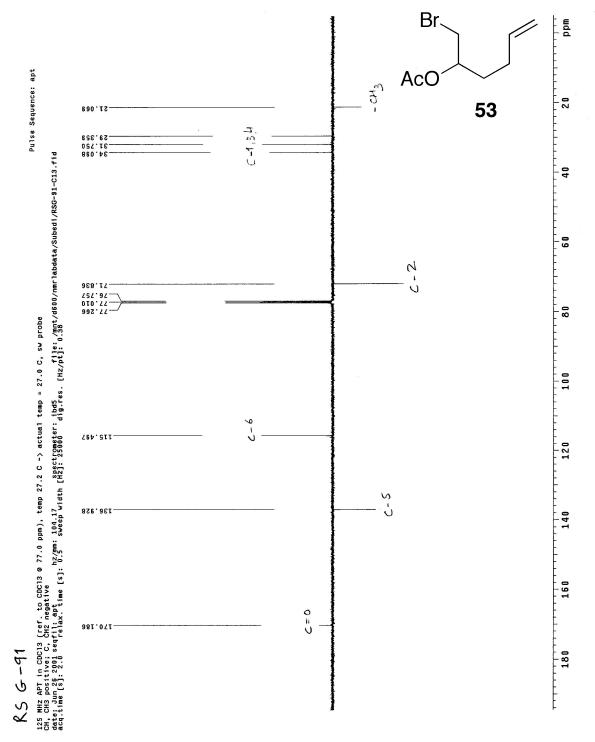


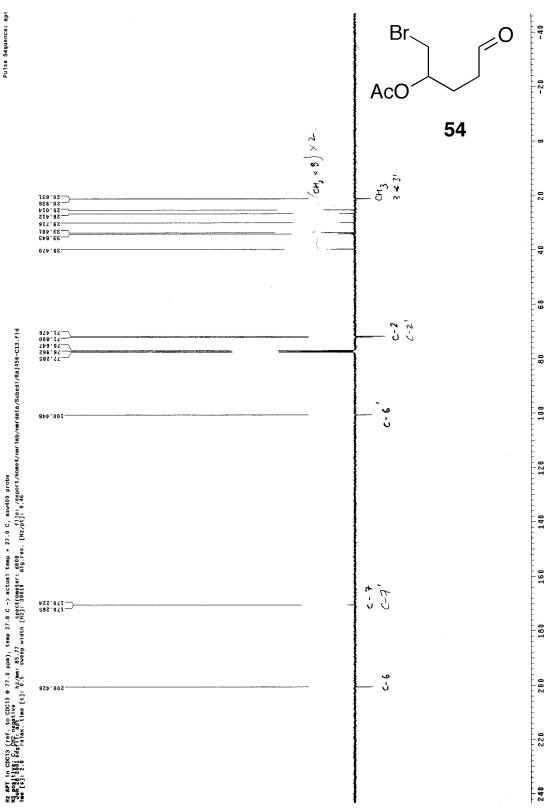


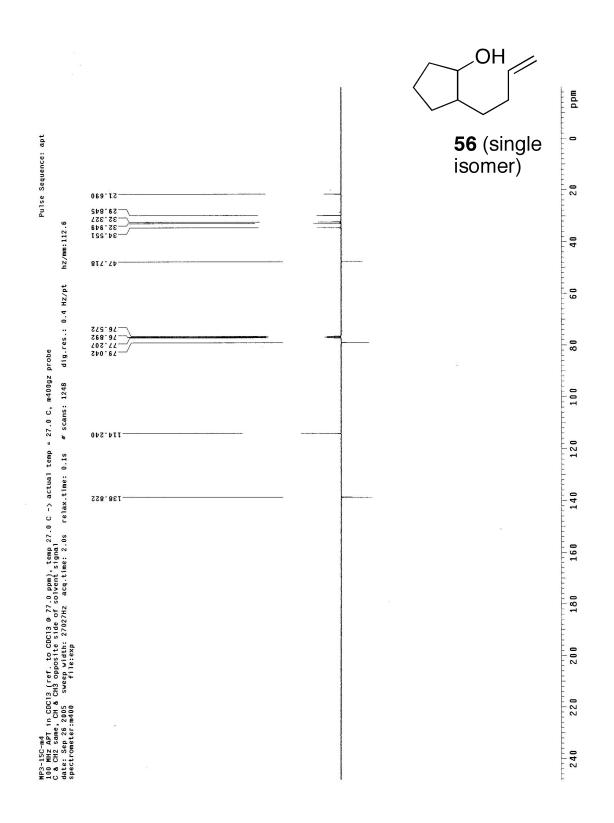


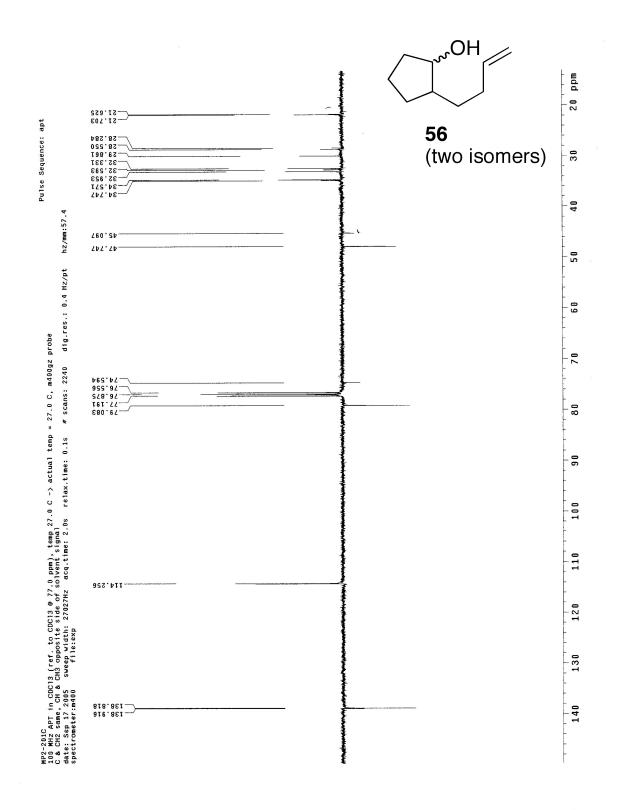


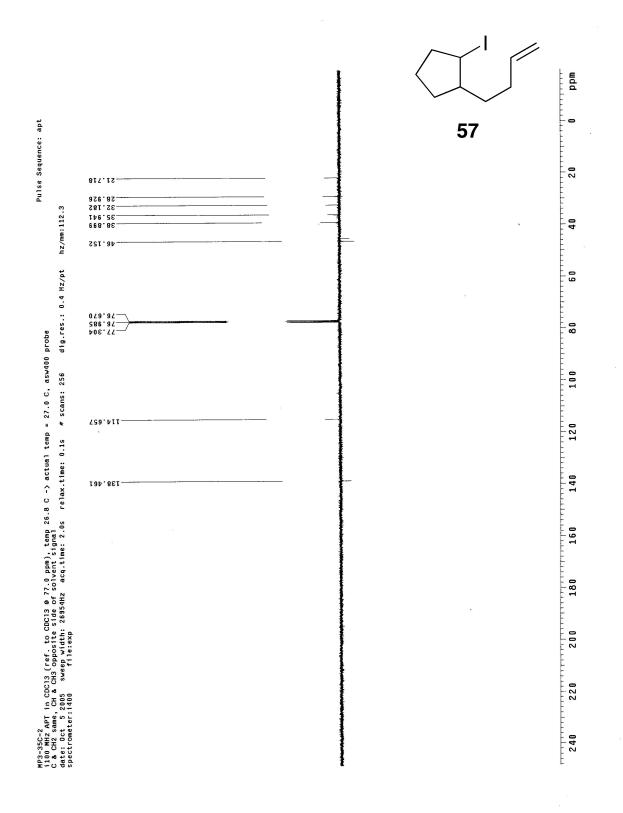


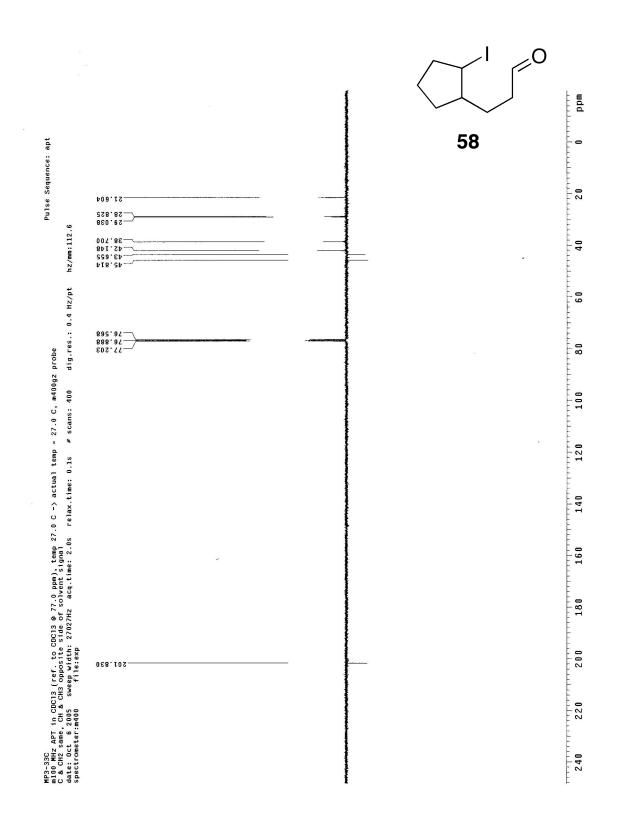




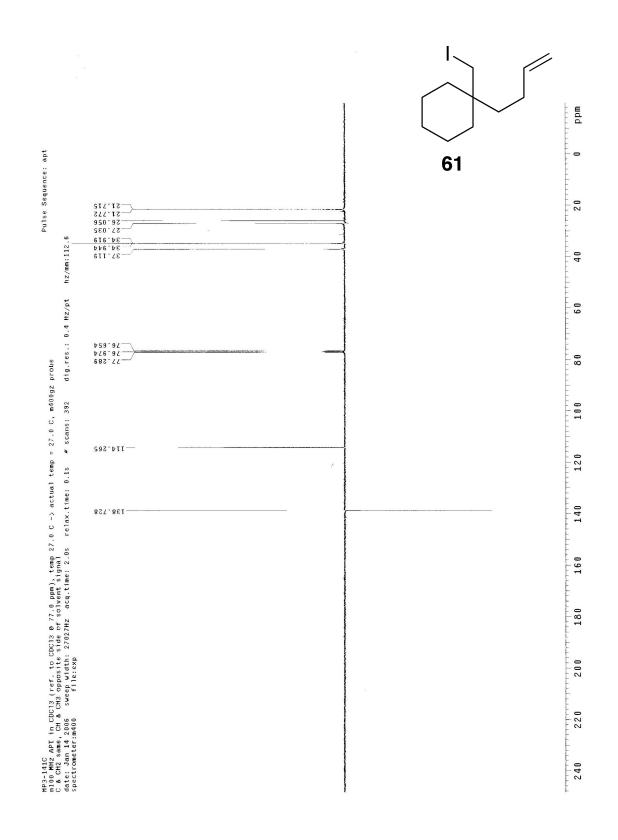


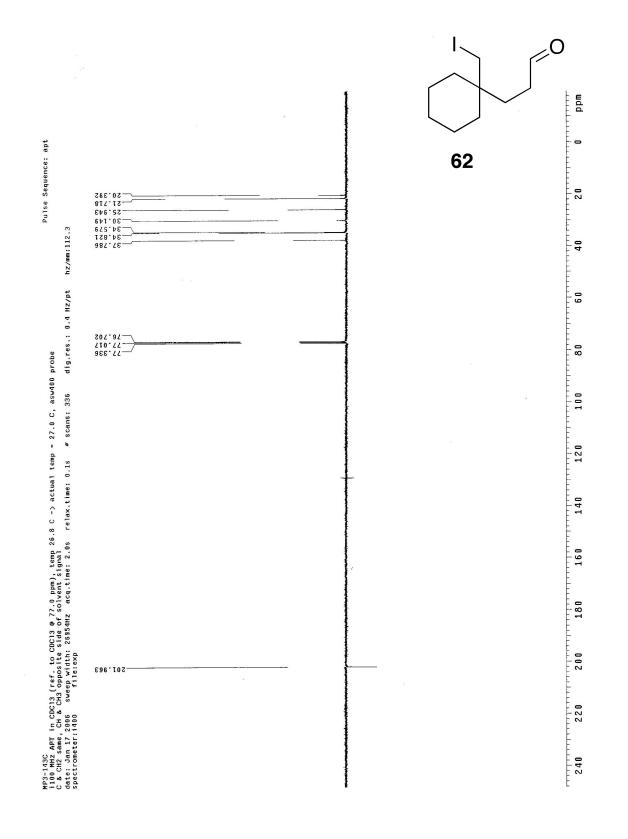


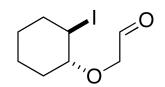

.

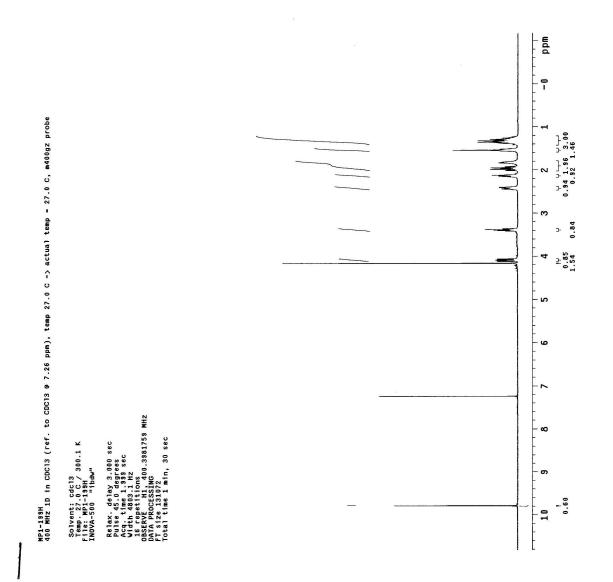


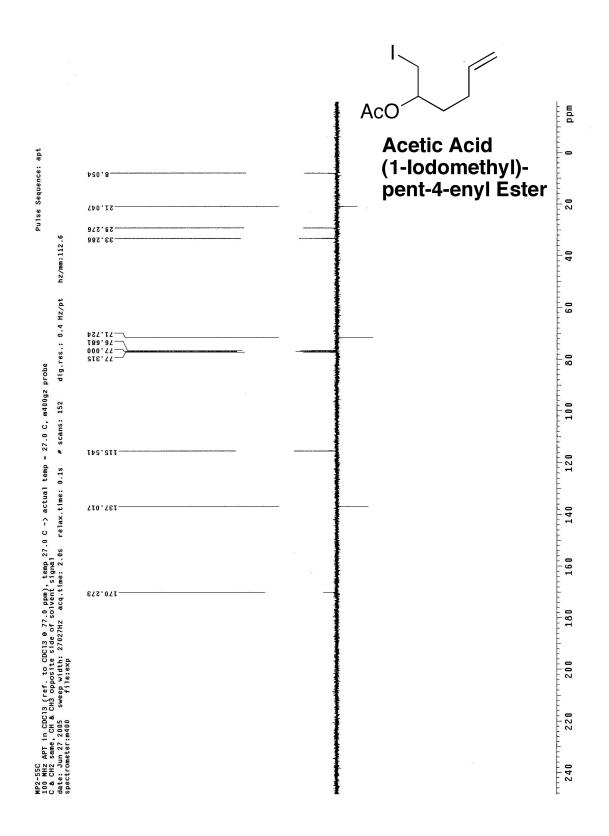
Pulse Sequence: apt

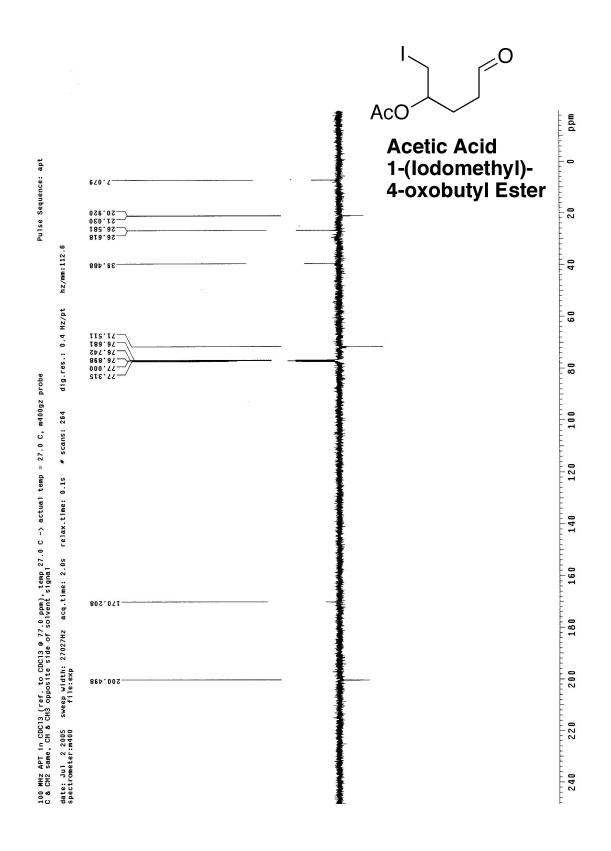


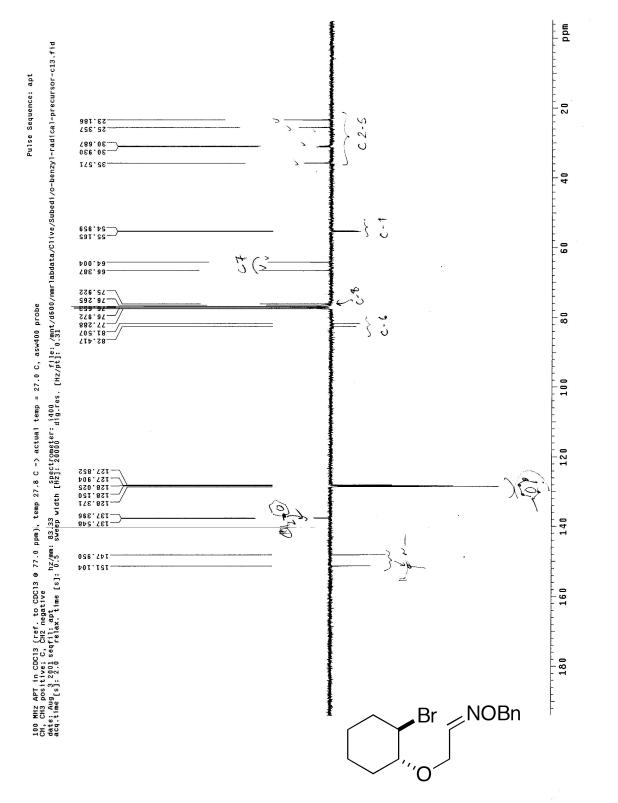




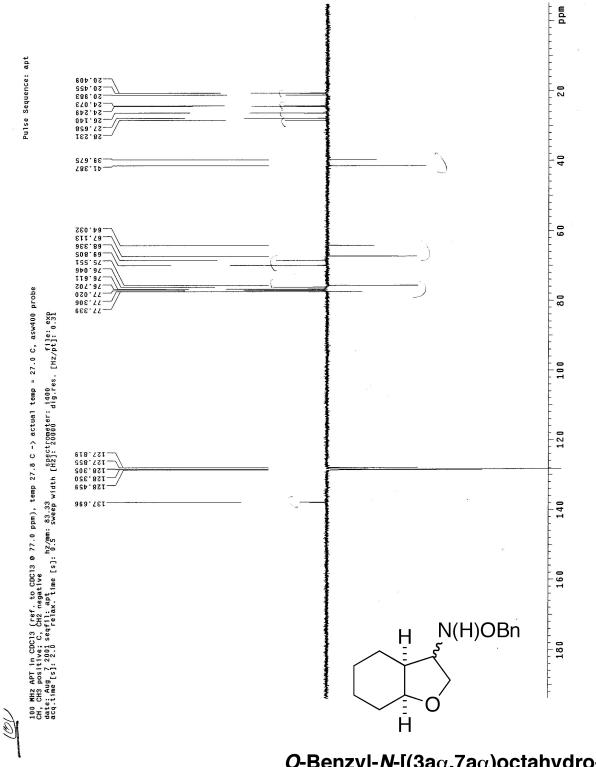








Trans-[(2-lodocyclohexyl)oxy]acetaldehyde



Trans-2-[(2-bromocyclohexyl)oxy]acetaldehyde *O*-(phenylmethyl)oxime

 $\begin{array}{l} \textbf{\textit{O}-Benzyl-\textit{N}-[(3a\alpha,7a\alpha)octahydrobenzofuran-3-yl]hydroxylamine} \end{array}$