SUPPORTING INFORMATION

Carbocyclization by Radical Closure onto \boldsymbol{O}-Trityl Oximes: Dramatic Effect of Diphenyl Diselenide

Derrick L. J. Clive,* Mai P. Pham and Rajendra Subedi
Chemistry Department, University of Alberta, Edmonton, Alberta, Canada T6G 2 G2
derrick.clive@ualberta.ca

Experimental procedures for:
Experimental procedures for 7-11, 12 (from 11), 13-17, 19-27-30, 32-33, 34 (from 22), 35, 37, 39, 41-45, 47, 49, 51, 53-54, 56-58, 60-62, trans-2-[(2-bromocyclohexyl)oxy]acetaldehyde O (phenylmethyl)oxime, O-benzyl- N-[(3a $\alpha, 7 \mathrm{a} \alpha)$ octahydrobenzofuran-3-yl]hydroxylamine S 2

References and footnotes S29

NMR spectra of 7, 9-32, 34-38, 41-42, 47, 49, 51, 53-54, 56-58, 60-62, trans-[(2iodocyclohexyl)oxy]acetaldehyde, acetic acid (1-iodomethyl)pent-4-enyl ester, acetic acid 1-(iodomethyl)-4-oxobutyl ester, trans-2-[(2-bromocyclohexyl)oxy]acetaldehyde O-(phenylmethyl)oxime, O-benzyl- N-[3a $\alpha, 7 \mathrm{a} \alpha$)-octahydrobenzofuran-3-yl]hydroxylamine S30

5-Bromopentanal O-(Triphenylmethyl)oxime (7).

The general procedure for making O-trityl oximes was followed, using TrONH_{2} (850 mg , 3.08 mmol) and 5-bromopentanal ${ }^{14}$ ($505 \mathrm{mg}, 3.08 \mathrm{mmol}$) in THF (10 mL). Flash chromatography of the residue over silica gel ($1.7 \times 35 \mathrm{~cm}$), using 5\% EtOAc-hexane, gave 7 $(1.07 \mathrm{~g}, 82 \%)$ as a foam, which was a $1: 1$ mixture of Z and E isomers $\left({ }^{13} \mathrm{C}\right.$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3056,3022,2935,1596,1491 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.43-1.54(\mathrm{~m}$, $1 \mathrm{H}), 1.60-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.60(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.42 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 15 \mathrm{H}), 7.52(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right) 24.7(\mathrm{t}), 24.8(\mathrm{t}), 25.5(\mathrm{t}), 28.5(\mathrm{t}), 31.4(\mathrm{t})$, 32.3 (t), 33.2 (t), 33.4 (t), 90.3 (s , 90.4 (s$), 126.9$ (d), 127.0 (d), 127.4 (d), 127.5 (d), 128.8 (d), 129.1 (d), 144.4 (s), 144.5 (s), 150.1 (d), 151.2 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{24}{ }^{79} \mathrm{BrNNaO} 444.0938$, found 444.0943 .

Cyclopentanone Oxime (8).

General procedure B for radical cyclization was followed using 29 ($353.3 \mathrm{mg}, 0.7535$ mmol) , $\mathrm{PhSeSePh}(47 \mathrm{mg}, 0.15 \mathrm{mmol})$ and Hünig's base ($0.52 \mathrm{~mL}, 3.014 \mathrm{mmol}$) in THF (20 $\mathrm{mL}), \mathrm{Bu}_{3} \mathrm{SnH}(0.24 \mathrm{~mL}, 0.892 \mathrm{mmol})$ in THF (5 mL) and ABC ($184 \mathrm{mg}, 0.753 \mathrm{mmol}$) in THF (5 $\mathrm{mL})$. After evaporation of the solvent, flash chromatography of the residue over silica gel (1.5 x 30 cm), using 30% EtOAc-hexane, gave cyclopentanone oxime (8) ${ }^{25}$ ($0.0689,92 \%$).

2-[(Phenylseleno)methoxy]benzaldehyde O-(Triphenylmethyl)oxime (9).

The general procedure for making O-trityl oximes was followed, using TrONH_{2} (193 mg , $0.702 \mathrm{mmol})$ and 2-[(phenylseleno)methoxy]benzaldehyde ${ }^{15}(204.6 \mathrm{mg}, 0.7007 \mathrm{mmol})$ in THF (5 mL). Flash chromatography of the residue over silica gel ($1.7 \times 30 \mathrm{~cm}$), using 7% EtOAchexane, gave 9 ($362 \mathrm{mg}, 95 \%$) as a foam, which appeared to be a single isomer $\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR): FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $3056,3032,1599,1577,1484,1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 5.66(\mathrm{~s}, 2 \mathrm{H}), 6.82-6.91(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.63(\mathrm{~m}, 22 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 100.6 MHz) $\delta 68.7$ (t), 91.1 (s$), 114.2$ (d), 122.3 (d), 123.2 (s$), 127.1$ (d), 127.5 (d), 127.9 (d), 129.4 (d), 129.5 (s), 130.5 (d), 133.8 (d), 144.4 (d), 144.6 (s), 154.8 (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NNaO}_{2}{ }^{80}$ Se 572.1104, found 572.1100.

The oxime geometry was not determined.

3(2H)-Benzofuranone Oxime (10). ${ }^{26}$

General procedure A for radical cyclization was followed, using 9 ($238 \mathrm{mg}, 0.434 \mathrm{mmol}$) in THF (30 mL), Bu $\mathrm{B}_{3} \mathrm{SnH}(510.0 \mathrm{mg}, 1.737 \mathrm{mmol})$ in THF (10 mL), ABC ($11 \mathrm{mg}, 0.043 \mathrm{mmol}$) in THF (10 mL), and $i-\operatorname{Pr}_{2} \mathrm{NEt}(230 \mathrm{mg}, 1.74 \mathrm{mmol})$. Flash chromatography of the residue over silica gel (1.7 x 20 cm), using $10 \% \mathrm{EtOAc}-$ hexane, gave $10(59.2 \mathrm{mg}, 91 \%)$ as a crystalline solid, which was a single isomer of unestablished geometry: mp 158-161 ${ }^{\circ} \mathrm{C}$; FTIR 3131, 3046, 2841, 1666, 1605, 1591, $1481 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 5.18(\mathrm{~s}, 2 \mathrm{H}), 6.86-7.11(\mathrm{~m}, 2 \mathrm{H})$,
 111.4 (d), 119.6 (s), 121.5 (d), 121.9 (d), 132.7 (d), 158.3 (s), 165.5 (s$)$; exact mass m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{2}$ 149.0476, found 149.0477.

2-(2-Bromoethyl)benzaldehyde \boldsymbol{O}-(Triphenylmethyl)oxime (11).

The general procedure for making O-trityl oximes was followed, using $\mathrm{TrONH}_{2}(1.094 \mathrm{~g}$, 3.978 mmol) and 2-(2-bromoethyl)benzaldehyde ${ }^{16}$ ($1.06 \mathrm{~g}, 4.97 \mathrm{mmol}$) in THF (15 mL). Flash chromatography of the residue over silica gel ($4 \times 32 \mathrm{~cm}$), using 5\% EtOAc-hexane, gave 11 $(1.75 \mathrm{~g}, 94 \%)$ as a foam, which was a single isomer: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3057,3022,1957$, 1597, $1490 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.01-3.18(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.45(\mathrm{~m}, 19 \mathrm{H}), 8.41$ ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right) \delta 32.9$ (t), 37.5 (t$), 91.3$ (s$), 127.1$ (d), 127.2 (d), 127.5 (d), 127.8 (d), 129.1 (d), 129.2 (d), 130.4 (s), 130.5 (d), 131.5 (d), 137.4 (s), 144.3 (s), 149.1 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{24}{ }^{79} \mathrm{BrNNaO} 492.0938$ found 492.0928 .

The oxime geometry was not determined.

2,3-Dihydro-1H-inden-1-one Oxime (12) (from 11). ${ }^{22,23}$

General procedure A for radical cyclization was followed, using $11(211 \mathrm{mg}, 0.449$ mmol) in THF (30 mL), $\mathrm{Bu}_{3} \mathrm{SnH}(524 \mathrm{mg}, 1.81 \mathrm{mmol})$ in THF (8 mL), ABC ($11 \mathrm{mg}, 0.045$ $\mathrm{mmol})$ in THF (8 mL), and $i-\mathrm{Pr}_{2} \mathrm{NEt}(232 \mathrm{mg}, 1.81 \mathrm{mmol})$. Flash chromatography of the residue over silica gel ($1.7 \times 18 \mathrm{~cm}$), using 10% EtOAc-hexane, gave $12(57.3 \mathrm{mg}, 87 \%)$ as a crystalline solid, which was a single isomer: mp $148-150{ }^{\circ} \mathrm{C}\left(\mathrm{Lit.}^{22} \mathrm{mp} 153-154{ }^{\circ} \mathrm{C}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3064, 2861, 1654, 1598, 1479, $1460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.92-3.01(\mathrm{~m}, 2 \mathrm{H})$, 3.05-3.18 (m, 2 H), 7.20-7.41 (m, 3 H), 7.64-7.67 (m, 1 H), 9.15 ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 125.7 MHz) $\delta 26.0$ (t), 28.6 (t), 121.5 (d), 125.5 (d), 126.9 (d), 130.3 (d), 135.8 (s), 148.3 (s), 163.9 (s); exact mass m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO} 147.0684$, found 147.0682.

The ${ }^{13} \mathrm{C}$ NMR spectrum (DMSO-d ${ }_{6}$) of the so-called E-isomer has been reported; ${ }^{23}$ but the spectrum of our material, also in DMSO- d_{6}, is different from the reported spectrum. Our sample had: ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}_{-} \mathrm{d}_{6}, 125.7 \mathrm{MHz}$) $\delta 25.4$ (t$), 27.8$ (t), 120.4 (d), 125.6 (d), 126.7 (d), 129.5 (d), $136.4(\mathrm{~s}), 147.5(\mathrm{~s}), 160.8(\mathrm{~s})$. A sample crystallized from a mixture of $i-\mathrm{PrOH}$ and hexane gave material suitable for X-ray analysis, which established the E-geometry.

2-(2-Bromoethoxy)benzaldehyde O-(Triphenylmethyl)oxime (13).

The general procedure for making O-trityl oximes was followed, using TrONH_{2} (180 mg , 0.654 mmol) and 2-(2-bromoethoxy)benzaldehyde ${ }^{17}(150 \mathrm{mg}, 0.654 \mathrm{mmol})$ in THF (10 mL). Flash chromatography of the residue over silica gel ($1.7 \times 30 \mathrm{~cm}$), using 5\% EtOAc-hexane, gave $13(289 \mathrm{mg}, 92 \%)$ as a foam, which appeared to be a single isomer (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3056,3033,1599,1488,1448,1421 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 3.66(\mathrm{t}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81-7.59(\mathrm{~m}, 19 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 50.3 MHz) $\delta 28.9$ (t$), 68.3$ (t), 91.1 (s$), 112.3$ (d), 121.5 (d), 121.9 (s$), 127.1$ (d), 127.3 (d), 127.5 (d), 127.9 (d), 129.3 (d), 130.7 (d), 144.3 (d), 144.5 (s$), 155.9$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{24}{ }^{79} \mathrm{BrNNaO} 508.0888$, found 508.08828.

The oxime geometry was not determined.

2,3-Dihydro-4H-1-benzopyran-4-one Oxime (14). ${ }^{27}$

General procedure A for radical cyclization was followed, using 13 ($151.7 \mathrm{mg}, 0.3121$ mmol) in THF (20 mL), $\mathrm{Bu}_{3} \mathrm{SnH}(340.0 \mathrm{mg}, 1.248 \mathrm{mmol})$ in THF (5 mL), ABC ($8 \mathrm{mg}, 0.03$ mmol) in THF (5 mL), and $i-\mathrm{Pr}_{2} \mathrm{NEt}(200 \mathrm{mg}, 1.56 \mathrm{mmol})$. Flash chromatography of the residue over silica gel ($1.7 \times 18 \mathrm{~cm}$) gave $14(46.1 \mathrm{mg}, 92 \%)$ as a crystalline solid: $\mathrm{mp} 139-141^{\circ} \mathrm{C}$ (lit. ${ }^{27} 138{ }^{\circ} \mathrm{C}$); FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $3263,2988,2922,1958,1647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 2.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 1$
 117.7 (d), 118.2 (s), 121.4 (d), 123.9 (d), 131.1 (d), 150.0 (s), 156.6 (s); exact mass m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{2} 163.0633$, found 163.0632 .

Although the compound is known, ${ }^{27}$ its geometry was not reported, and we did not establish the geometry. In a separate experiment triphenylmethane ($78 \mathrm{mg}, 56 \%$) was isolated.

4-O-Acetyl-5-bromo-5-deoxy-2,3-O-(1-methylethylidene)-d-ribose O-(Triphenyl-

 methyl)oxime (15).
$\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{~mL}, 1 \mathrm{mmol})$ was added to a stirred solution of $42(265.4 \mathrm{mg}, 0.5214 \mathrm{mmol})$ in pyridine (1.0 mL), and stirring was continued overnight. Water (10 mL) was added and the solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 10 \mathrm{~mL})$, water $(2 \times 10 \mathrm{~mL})$ and brine ($2 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel ($1.7 \times 32 \mathrm{~cm}$), using 5\% EtOAc-hexane, gave $15(270 \mathrm{mg}, 96 \%)$ as a foam, which was a $4.3: 1$ mixture of isomers (${ }^{1} \mathrm{H}$ NMR $):$ FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3057,3034,2987,1749,1491 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 400 MHz) $\delta 1.31$ and 1.40 (two singlets, 3 H in all), 1.43 and 1.49 (two singlets, 3 H in all), 1.59 and 1.78 (two singlets, 3 H in all), 3.44-3.58 (two overlapping $\mathrm{m}, 2 \mathrm{H}$), 4.31-4.39 ($\mathrm{m}, 0.84 \mathrm{H}$), 4.61-4.72 (m, 1 H$), 4.88-4.99(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.51(\mathrm{~m}, 0.22 \mathrm{H}), 6.83(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 0.69 \mathrm{H}), 7.17-$ $\left.7.35(\mathrm{~m}, 15 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.86 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 125.7 \mathrm{MHz}\right) \delta 20.4(\mathrm{q}), 20.5(\mathrm{q}), ~$ 25.3 (q), 25.4 (q), 27.7 (q), 32.1 (t), 32.3 (t), 69.1 (d), 69.7 (d), 71.1 (d), 74.7 (d), 76.02 (d), 76.06 (d), 91.1 (s$), 91.9$ (s$), 109.8$ (s$), 110.0$ (s$), 127.1$ (d), 127.3 (d), 127.53 (d), 127.56 (d), 127.6 (d), 127.8 (d), 129.14 (d), 129.18 (d), 129.19 (d), 129.2 (d), 143.7 (s), 143.9 (s), 146.5 (d), 146.9 (d), 169.5 (s), 169.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{30}{ }^{79} \mathrm{BrNNaO}_{5} 574.1205$, found 574.1202.
[4R-(3a $, 4 \beta, 6 \mathrm{a} \alpha)]$-Tetrahydro-2,2-dimethyl-6-hydroximino-4H-cyclopenta-1,3-dioxol-4-yl Acetate (16).

General procedure A for radical cyclization was followed, using 15 ($250.0 \mathrm{mg}, 0.4537$ $\mathrm{mmol})$ in THF (30 mL), $\mathrm{Bu}_{3} \mathrm{SnH}(0.49 \mathrm{~mL}, 1.814 \mathrm{mmol})$ in THF (10 mL), ABC ($11 \mathrm{mg}, 0.067$ $\mathrm{mmol})$ in THF (10 mL), and $i-\mathrm{Pr}_{2} \mathrm{NEt}(237.4 \mathrm{mg}, 1.814 \mathrm{mmol})$. As some starting material was present after the arbitrary reflux period (TLC control), further portions of $\mathrm{Bu}_{3} \mathrm{SnH}(0.07 \mathrm{~mL}$, $0.24 \mathrm{mmol})$, and $\mathrm{ABC}(8 \mathrm{mg}, 0.03 \mathrm{mmol})$, each in THF (4 mL), were added slowly (4 h) as before, and refluxing was continued for 2 h after the addition. Flash chromatography of the residue over silica gel ($1.7 \times 20 \mathrm{~cm}$), using 40% EtOAc-hexane, gave $16(96.0 \mathrm{mg}, 93 \%)$ as a crystalline solid, which was a single isomer: mp 151-154 ${ }^{\circ} \mathrm{C}$; FTIR 3358, 2991, 2980, 2945, $1736 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.74$ (m, 1 H$), 3.11-3.32(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.88(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), \delta 4.89-5.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 22.5(\mathrm{q}), 26.7(\mathrm{q}), 28.2(\mathrm{q}), 30.4$ (t), $72.0(\mathrm{~d}), 79.5(\mathrm{~d}), 80.3$ (d), 114.7 (s), $159.6(\mathrm{~s}), 172.2(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NNaO}_{5} 252.0847$, found 252.0848 .

The oxime geometry was not established.

2,3,4-Tris- O-Acetyl-5-Bromo-5-deoxy-D-ribose O-(Triphenylmethyl)oxime (17).

DMF (10 mL) was added to a stirred mixture of LiBr (dried at $100^{\circ} \mathrm{C}, 140 \mathrm{mg}, 1.55$ $\mathrm{mmol})$ and $45(266 \mathrm{mg}, 0.387 \mathrm{mmol})$. The solution was stirred for $8 \mathrm{~h}, \mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added, and the mixture was washed with water $(4 \times 10 \mathrm{~mL})$. The ether extract was washed with water ($2 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.7 \times 30 \mathrm{~cm}$), using 15% EtOAc-hexane, gave $17(198 \mathrm{mg}, 86 \%)$ as a foam. The material, which was used with only partial characterization (${ }^{1} \mathrm{H}$ NMR), appeared to be a single isomer: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 1.98$ and 2.01 (two singlets, 9 H), 3.24-3.58 (m, 2 H), 5.01-5.16 (m, $1 \mathrm{H}), 5.34-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.51(\mathrm{~m}, 1 \mathrm{H}), 7.01-7.49(\mathrm{~m}, 15 \mathrm{H}), 7.52(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H})$.

The oxime geometry was not determined.

5-Bromo-5-deoxy-2,3,4-tris- O-(phenylmethyl)-d-ribose O-(Triphenylmethyl)oxime (19).

$\mathrm{Ph}_{3} \mathrm{P}(90 \mathrm{mg}, 0.34 \mathrm{mmol})$ was added to a stirred and cooled (ice-water) solution of 47 $(115 \mathrm{mg}, 0.169 \mathrm{mmol})$ in pyridine $(5 \mathrm{~mL})$, and then $\mathrm{CBr}_{4}(70 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added in one portion. The mixture was heated at $65^{\circ} \mathrm{C}$ for 2 h , cooled, and diluted with $\mathrm{MeOH}(5 \mathrm{~mL})$. Evaporation of the solvent, and flash chromatography of the residue over silica gel ($1.7 \times 20 \mathrm{~cm}$), using 10% EtOAc-hexane, gave $19(109 \mathrm{mg}, 86 \%)$ as a foam, which was a $6: 1$ mixture of isomers (${ }^{1} \mathrm{H}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3060,3030,2866,1958,1597 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 400 MHz) $\delta 3.34-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.74(\mathrm{~m}, 2 \mathrm{H})$, 3.79-4.08 (m, 2 H), 4.19-5.30 (m including several AB q, 6 H), 6.88 (d, $J=7 \mathrm{~Hz}, 0.13 \mathrm{H}$), 7.22-7.46 (m, 30 H), 7.68 (d, $J=7 \mathrm{~Hz}, 0.77 \mathrm{H}$); ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 33.6(\mathrm{t}), 33.7(\mathrm{t}), 70.7(\mathrm{t}), 71.71(\mathrm{~d}), 71.73(\mathrm{t}), 72.2(\mathrm{t}), 72.5(\mathrm{t})$, 73.4 (t), 74.7 (t), 76.5 (d), 77.1 (d), 77.2 (d), 79.8 (d), 80.8 (d), 90.8 ($s), 127.1$ (d), 127.2 (d), 127.5 (d), 127.6 (d), 127.64 (d), 127.7 (d), 127.75 (d), 127.81 (d), 127.85 (d), 127.9 (d), 128.11 (d), 128.17 (d), 128.2 (d), 128.3 (d), 128.31 (d), 128.35 (d), 128.4 (d), 129.1 (d), 129.2 (d), 129.3 (d), 137.5 (s), 137.6 (s), 138.1 (s), 144.1 (s), 144.3 (s), 149.3 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{42}{ }^{79} \mathrm{BrNNaO}_{4} 762.2194$, found 762.2183.

General procedure A for radical cyclization was followed, using 19 ($260 \mathrm{mg}, 0.351$ $\mathrm{mmol})$ in THF (25 mL), Bu $\mathrm{B}_{3} \mathrm{SnH}(0.21 \mathrm{~mL}, 0.702 \mathrm{mmol})$ in THF $(5 \mathrm{~mL}), \mathrm{ABC}(5 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ in THF (5 mL), and $i-\mathrm{Pr}_{2} \mathrm{NEt}(90 \mathrm{mg}, 0.71 \mathrm{mmol})$. As a considerable amount of starting material was present after the arbitrary reflux period (TLC control), further portions of $\mathrm{Bu}_{3} \mathrm{SnH}$ ($0.21 \mathrm{~mL}, 0.702 \mathrm{mmol}$) and $\mathrm{ABC}(5.9 \mathrm{mg}, 0.024 \mathrm{mmol})$, each in THF (5 mL), were added slowly (10 h) as before. As a considerable amount of starting material was still present after the arbitrary reflux period (TLC control), further portions of $\mathrm{Bu}_{3} \mathrm{SnH}(0.21 \mathrm{mg}, 0.702 \mathrm{mmol})$ and ABC ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$), each in THF (5 mL), were added slowly (10 h) as before. Flash
chromatography of the residue over silica gel ($1.7 \times 20 \mathrm{~cm}$), using 30% EtOAc-hexane, gave 20 ($132 \mathrm{mg}, 91 \%$) as a crystalline solid, which was a mixture of Z and E isomers (${ }^{1} \mathrm{H} \mathrm{NMR}$): mp $145-147{ }^{\circ} \mathrm{C}$; FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $3228,3087,3062,2869,1495 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta$ 2.48-2.92 [m, including a doublet of doublets at $\delta 2.54(\mathrm{dd}, J=17.0,6.3 \mathrm{~Hz}), 2 \mathrm{H}$ in all], 3.76-3.97 [m, including a triplet at $\delta 3.8(J=4.6 \mathrm{~Hz}), 2 \mathrm{H}$ in all], $4.16(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-$ $4.84(\mathrm{~m}, 6 \mathrm{H}), 7.03-7.61(\mathrm{~m}, 15 \mathrm{H}), 7.78-8.87(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 30.5$ $(\mathrm{t}), 33.7(\mathrm{t}), 71.41(\mathrm{t}), 71.47(\mathrm{t}$, shows only in expanded spectrum), $71.5(\mathrm{t}), 71.6(\mathrm{t}), 72.5(\mathrm{t}), 72.7$ (t), 73.4 (d), 75.2 (d), 75.3 (d), 77.0 (d), 78.4 (d), 127.5 (d), 127.53 (d), 127.59 (d), 127.6 (d), 127.71 (d), 127.75 (d), 127.86 (d), 127.89 (d), 128.14 (d), 128.16 (d), 128.22 (d), 128.28 (d), 128.3 (d), 137.8 (s), 138.1 (s), 138.18 (s), 138.2 (s), 138.21 (s), 138.4 (s), 158.6 (s), 160.1 (s); exact mass m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4} 417.1940$, found 417.1943.

Trans-2-[2-Bromocyclohexyl)oxy]acetaldehyde \boldsymbol{O}-(Triphenylmethyl)oxime (21).

The general procedure for making O-trityl oximes was followed, using $\mathrm{TrONH}_{2}(651 \mathrm{mg}$, $2.37 \mathrm{mmol})$ and $49(523 \mathrm{mg}, 2.36 \mathrm{mmol})$ in THF (8 mL). Flash chromatography of the residue over silica gel ($1.7 \times 35 \mathrm{~cm}$), using 5\% EtOAc-hexane, gave $21(1.06 \mathrm{~g}, 94 \%)$ as a foam, which was a 1:1 mixture of Z and E isomers (${ }^{1} \mathrm{H}$ NMR $)$: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3056,3033,2860,1597$, $1491 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 1.10-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.58-2.03(\mathrm{~m}, 4 \mathrm{H}), 2.11-2.41$ $(\mathrm{m}, 1 \mathrm{H}), 3.11-3.23(\mathrm{~m}, 0.6 \mathrm{H}), 3.34-3.43(\mathrm{~m}, 0.46 \mathrm{H}), 3.81-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.64$ (apparent $\mathrm{t}, J=4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=5 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.14-7.40(\mathrm{~m}, 15 \mathrm{H}), 7.69(\mathrm{t}, J=5 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right) \delta 23.3(\mathrm{t}), 25.49(\mathrm{t}), 25.5(\mathrm{t}), 25.51(\mathrm{t}), 31.0(\mathrm{t}), 35.6(\mathrm{t}), 35.7(\mathrm{t}), 55.1(\mathrm{~d})$, 55.3 (d), 64.6 (t), 66.2 (t), 80.7 (d), 82.5 (d), 90.7 (s$), 91.0$ (s$), 127.0$ (d), 127.2 (d), 127.4 (d), 127.5 (d), 128.8 (d), 129.1 (d), 129.2 (d), 144.1 (s$), 144.2$ (s$), 147.8$ (d), 151.1 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{28}{ }^{79} \mathrm{BrNNaO}_{2} 500.1195$, found 500.1199 .

Diethyl (2-Bromoethyl)[2-[(triphenylmethoxy)imino]ethyl]propanedioate (22).

The general procedure for making O-trityl oximes was followed, using TrONH_{2} (260 mg , 0.943 mmol) and 51 ($290 \mathrm{mg}, 0.943 \mathrm{mmol}$) in THF (10 mL). Flash chromatography of the residue over silica gel ($1.7 \times 30 \mathrm{~cm}$), using 10% EtOAc-hexane, gave 22 ($512 \mathrm{mg}, 97 \%$) as a foam, which was a mixture of Z and E isomers (${ }^{1} \mathrm{H}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3533 , 3087, 2980, 2936, 1958, 1731, $1597 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.17(\mathrm{t}, J=7.0 \mathrm{~Hz})$ and 1.22 $(\mathrm{t}, J=7.0 \mathrm{~Hz})(6 \mathrm{H}$ in all $), 2.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1.3 \mathrm{H}), 2.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.73-2.80(\mathrm{~m}$, $1.3 \mathrm{H}), 3.11-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.38(\mathrm{~m}, 0.72 \mathrm{H}), 4.04-4.23(\mathrm{~m}, 4 \mathrm{H}), 6.71(\mathrm{dt}, J=5.5,0.8 \mathrm{~Hz}$, $\left.0.36 \mathrm{H}), 7.19-7.32(\mathrm{~m}, 15 \mathrm{H}), 7.50(\mathrm{dt}, J=6.0,0.6 \mathrm{~Hz}, 0.8 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 125.7 \mathrm{MHz}\right) \delta$ 14.0 (q), 14.1 (q), 26.7 (t), $26.9(\mathrm{t}), 30.1(\mathrm{t}), 33.2(\mathrm{t}), 35.9(\mathrm{t}), 37.2(\mathrm{t}), 55.9(\mathrm{~s}$ or t), $56.2(\mathrm{~s}$ or t$)$, 61.9 (s or t), 62.1 (s or t), 90.7 (s), 91.1 (s$), 127.10$ (d), 127.13 (d), 127.5 (d), 127.8 (d), 128.9 (d), 129.0 (d), 144.1 (s), 144.2 (s), 145.9 (d), 146.0 (d), 169.5 (s), 169.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{32}{ }^{79} \mathrm{BrNNaO}_{5} 588.1356$, found 588.1361.

Diethyl (2-Iodoethyl)[2-[(triphenylmethoxy)imino]ethyl]propanedioate (23).

Bromide 22 ($365 \mathrm{mg}, 0.645 \mathrm{mmol}$) was added to a stirred solution of $\mathrm{NaI}(200 \mathrm{mg}, 1.29$ mmol) in dry acetone (10 mL), and the mixture was refluxed for 24 h and cooled. Saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was added to the mixture which was then extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (1 x 10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel ($1.7 \times 30 \mathrm{~cm}$), using 8% EtOAchexane, gave 23 ($342 \mathrm{mg}, 83 \%$) as a foam, which was a $3.8: 1$ mixture of isomers (${ }^{1} \mathrm{H} \mathrm{NMR}$): FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3532, 3057, 2979, 1958, 1730, $1597 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz})(6 \mathrm{H}$ in all), 2.31-2.98(m,5 H), 3.03-3.18 (m, 1 H$), 4.01-$ $4.23(\mathrm{~m}, 4 \mathrm{H}), 6.71(\mathrm{t}, J=5 \mathrm{~Hz}, 0.18 \mathrm{H}), 7.21-7.35(\mathrm{~m}, 15 \mathrm{H}), 7.49(\mathrm{t}, J=5 \mathrm{~Hz}, 0.70 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}$) $\delta-3.0(\mathrm{t}),-2.8(\mathrm{t}), 13.95(\mathrm{q}), 13.98(\mathrm{q}), 29.7(\mathrm{~s}$ or t), $32.9(\mathrm{~s}$ or t), 37.5 (s or t), 38.7 (s or t), $57.3(\mathrm{~s}$ or t), $57.6(\mathrm{~s}$ or t), $61.8(\mathrm{~s}$ or t), $61.9(\mathrm{~s}$ or t), $90.7(\mathrm{~s}), 91.1(\mathrm{~s}), 127.1$ (d), 127.20 (d), 127.58 (d), 127.64 (d), 129.0 (d), 129.1 (d), 144.2 (s), 146.0 (d), 146.1 (d), 146.9 (s), 169.5 (s), 169.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{INNaO}_{5}$ 636.1222, found 636.1228 .

(1-Bromomethyl)-4-[(Triphenylmethoxy)imino]butyl Acetate (24).

The general procedure for making O-trityl oximes was followed, using TrONH_{2} (335 mg , $1.22 \mathrm{mmol})$ and $\mathbf{5 4}(272 \mathrm{mg}, 1.22 \mathrm{mmol})$ in THF (10 mL). Flash chromatography of the residue over silica gel ($1.7 \times 32 \mathrm{~cm}$), using 10% EtOAc-hexane, gave 24 ($571 \mathrm{mg}, 98 \%$) as a foam, which was a $1: 1$ mixture of Z and E isomers (${ }^{1} \mathrm{H}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3057,3023,2928$, 1958, 1741, $1596 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 1.71-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.89-2.09(\mathrm{~m}$ including two $\mathrm{s}, 4 \mathrm{H}$), 2.11-2.31 (m, 1 H), 2.44-2.72 (m, 1 H), 3.23-3.34 (m, 1 H), 3.42-3.59 (m, $1 \mathrm{H}), 4.78-5.10(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=6 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.11-7.42(\mathrm{~m}, 15 \mathrm{H}), 7.60(\mathrm{t}, J=6 \mathrm{~Hz}, 0.5 \mathrm{H})$; ${ }^{13}{ }^{13}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 20.8(\mathrm{q}), 20.9(\mathrm{q}), 22.2(\mathrm{t}), 25.4(\mathrm{t}), 28.82(\mathrm{t}), 28.83(\mathrm{t}), 33.3$ (t), 33.8 (t), 71.3 (d), 71.9 (d), 90.4 (s$), 90.6$ (s$), 126.96$ (d), 127.1 (d), 127.4 (d), 127.9 (d), 128.9 (d), 129.1 (d), 144.3 (s), 144.4 (s), 149.3 (d), 150.1 (d), 170.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{26}{ }^{79} \mathrm{BrNNaO}_{3} 502.0993$, found 502.0993.

Trans-[(2-Iodocyclohexyl)oxy]acetaldehyde \boldsymbol{O}-(Triphenylmethyl)oxime (25). (a) Trans-[(2-Iodocyclohexyl)oxy]acetaldehyde.

O_{3} was bubbled through a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of alkene trans-1-(allyloxy)-2-iodocyclohexane ${ }^{28,29}$ ($504 \mathrm{mg}, 1.90 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ for 1 h and the mixture was then flushed with O_{2} for 0.5 h at $-78{ }^{\circ} \mathrm{C} . \mathrm{Ph}_{3} \mathrm{P}(1.49 \mathrm{~g}, 5.68 \mathrm{mmol})$ was tipped in, the cold bath was removed and the mixture was stirred overnight. Evaporation of the solvent and flash chromatography of the residue over silica gel ($3 \times 20 \mathrm{~cm}$), using 30% EtOAc-hexane, gave trans-[(2-iodocyclohexyl)oxy]acetaldehyde ($280 \mathrm{mg}, 59 \%$) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $2934,2857,1735,1446 \mathrm{~cm}^{-1}$; 1 H NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.21-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.59$ (m, 1 H), 1.78-1.87 (m, 1 H$), 1.91-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.48(\mathrm{~m}, 1 \mathrm{H}), 3.39$ (ddd, $J=9.2, ~ 9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{ddd}, J=13.1,8.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 9.79$ (t, $J=$
$1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 23.4(\mathrm{t}), 26.9(\mathrm{t}), 31.1(\mathrm{t}), 34.4(\mathrm{~d}), 37.8(\mathrm{t}), 75.0$ $(\mathrm{t}), 83.9(\mathrm{~d}), 201.0(\mathrm{~d})$; exact mass m / z calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{IO}\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right) 224.97765$, found 224.97771.
(b) Trans-[(2-Iodocyclohexyl)oxy]acetaldehyde \boldsymbol{O}-(Triphenylmethyl)oxime (25).

TrONH_{2} ($103 \mathrm{mg}, 0.373 \mathrm{mmol}$) was added in one portion to a stirred solution of trans-[(2-iodocyclohexyl)oxy]acetaldehyde ($100 \mathrm{mg}, 0.373 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the mixture was refluxed overnight. Evaporation of the solvent and flash chromatography of the residue over silica gel ($3 \times 20 \mathrm{~cm}$), using 20\% EtOAc-hexane, gave $\mathbf{2 5}(200 \mathrm{mg}, 100 \%)$ as an oil, which was a mixture (ca 1:1) of Z and E isomers (${ }^{1} \mathrm{H}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3086,3056 , 3022, 2935, 2858, 1954, 1811, 1491, 1447, 699; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.05-2.24(\mathrm{~m}, 7$ H), 2.29-2.48 (m, 1 H), 3.15 (ddd, $J=8.9,8.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39 (ddd, $J=8.9,8.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.86-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.68(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=3.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.17-7.40(\mathrm{~m}, 15 \mathrm{H}), 7.75(\mathrm{t}, J$ $=5.9 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 23.5(\mathrm{t}), 27.06(\mathrm{t}), 27.12(\mathrm{t}), 31.0(\mathrm{t}), 31.1(\mathrm{t})$, 34.7 (d), 35.1 (d), 37.87 (t), 37.89 (t), 64.2 (t), 65.8 (t), 81.3 (d), 83.2 (d), 90.7 (s$), 90.9$ (s$), 127.0$ (d), 127.2 (d), 127.5 (d), 127.6 (d), 128.9 (d), 129.1 (d), 144.2 (), 146.8 (s), 147.9 (d), 151.1 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{INO}_{2} 548.10570$, found 548.10578.

2-(2-Bromoethoxy)benzaldehyde O-(Diphenylmethyl)oxime (26).

$\mathrm{Ph}_{2} \mathrm{CHONH}_{2}{ }^{30}(0.0868 \mathrm{~g}, 0.436 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ was added dropwise to a stirred solution of 2-(2-bromoethoxy)benzaldehyde ${ }^{17}$ ($100.0 \mathrm{mg}, 0.436 \mathrm{mmol}$) in THF (2 mL), and the mixture was heated at $65^{\circ} \mathrm{C}$ for 4 h . Evaporation of the solvent and flash chromatography of the residue over silica gel ($2 \times 30 \mathrm{~cm}$), using 10\% EtOAc-hexane, gave 26 ($176 \mathrm{mg}, 98 \%$) as an oil which was a single isomer (${ }^{1} \mathrm{H}$ NMR $)$: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3061,3029,1601,1451,1249 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.64(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H})$, 6.80-6.98 (m, 2 H), 7.22-7.44 (m, 11 H), 7.70-7.77 (m, 1 H), 8.67 ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 100.6 MHz) $\delta 28.9$ (t), 68.2 (t), 86.8 (d), 112.3 (d), 121.2 (s), 121.4 (d), 126.7 (d), 127.47 (d), 127.5 (d), 128.3 (d), 131.0 (d), 141.2 (s), 145.1 (d), 155.9 (s); exact mass m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{20}{ }^{79} \mathrm{BrNO}_{2}$ 409.06775, found 409.06671.

O-(Diphenylmethyl)- N -(chroman-4-yl)hydroxylamine (27).

General procedure A for radical cyclization was followed, using 26 ($67.6 \mathrm{mg}, 0.165$ mmol) in THF (20 mL), $\mathrm{Bu}_{3} \mathrm{SnH}(0.18 \mathrm{~mL}, 0.669 \mathrm{mmol})$ in THF (2 mL), ABC (0.0041 mg , $0.0017 \mathrm{mmol})$ in THF (2 mL), and $i-\operatorname{Pr}_{2} \mathrm{NEt}(0.144 \mathrm{~mL}, 0.83 \mathrm{mmol})$. Evaporation of the solvent and flash chromatography of the residue over silica gel ($2 \times 30 \mathrm{~cm}$), using 5\% EtOAc-hexane, gave hydroxylamine 27 ($13.2 \mathrm{mg}, 49 \%$) as an oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3257, 3061, 3029, 2883, 1951, 1904, 1808, 1608, 1584, 1489, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.95-2.07(\mathrm{~m}, 1$ H), 2.22 (dddd, $J=14.2,3.0,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.12-4.29 (m, 3 H), 5.30-6.0 (br signal containing s at $\delta 5.73,2 \mathrm{H}$ in all), 6.74-6.90 (m, 2 H), 7.10-7.20 (m, 2 H$), 7.22-7.42(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 25.7$ (t), 53.7 (d), 62.0 (t), 87.4 (d), 117.0 (d), 119.8 (s), 120.1 (d), 127.2 (d), 127.4 (d), 127.60 (d), 127.65 (D), 128.3 (d), 128.4 (d), 129.3 (d), 130.3 (d), 141.3 (s), 141.4 (s), 155.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H}) 332.16451$, found 332.16431.

Cis-Hexahydrobenzofuran-3(2H)-one oxime (28).

General procedure B for radical cyclization was followed, using 25 ($180 \mathrm{mg}, 0.343$ mmol), $\mathrm{PhSeSePh}(24.0 \mathrm{mg}, 0.077 \mathrm{mmol})$ and Hünig's base ($0.26 \mathrm{~mL}, 1.49 \mathrm{mmol}$) in THF (20 $\mathrm{mL}), \mathrm{Bu}_{3} \mathrm{SnH}(0.165 \mathrm{~mL}, 0.613 \mathrm{mmol})$ in THF (5 mL) and ABC ($92.0 \mathrm{mg}, 0.377 \mathrm{mmol}$) in THF
(5 mL). After evaporation of the solvent, flash chromatography of the residue over silica gel (2 x 20 cm), using 20% EtOAc-hexane, gave $28(4.9 \mathrm{mg}, 91 \%)$ as an oil which was a mixture (ca 1:2.4) of geometric isomers (${ }^{1} \mathrm{H}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $2934,2857 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.10-2.11(\mathrm{~m}, 8 \mathrm{H}), 2.64(\mathrm{ddd}, J=10.3,5.7,5.7 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.04$ (ddd, $J=$ $10.9,5.1,5.1 \mathrm{~Hz}, 0.3 \mathrm{H}$), 3.91 (ddd, $J=3.7,3.7,3.7 \mathrm{~Hz}, 0.3 \mathrm{H}$), 4.03 (ddd, $J=4.5,4.5,4.5 \mathrm{~Hz}$, 0.7 H), 4.15-4.66 (two overlapping m, 2 H), $8.38(\mathrm{~s}, 0.3 \mathrm{H}), 8.54(\mathrm{~s}, 0.7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100.6 \mathrm{MHz}) \delta 20.0(\mathrm{t}), 20.5(\mathrm{t}), 22.95(\mathrm{t}), 23.02$ (t), 23.7 (t), $25.5(\mathrm{t}), 27.25(\mathrm{t}), 27.26(\mathrm{t}), 38.8(\mathrm{~d})$, $40.6(\mathrm{~d}), 65.2(\mathrm{t}), 67.0(\mathrm{t}), 77.2(\mathrm{~d}), 77.4(\mathrm{~d}), 166.3(\mathrm{~s}), 166.5(\mathrm{~s})$; exact mass m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}$ 155.09464, found 155.09474.

5-Iodopentanal \boldsymbol{O}-(Triphenylmethyl)oxime (29).

$\mathrm{TrONH}_{2}(460 \mathrm{mg}, 1.673 \mathrm{mmol})$ was added to a solution of 5-iodopentanal ${ }^{18,19,20}$ (355 mg , 1.675 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and the mixture was refluxed for 1 h . Evaporation of solvent and flash chromatography of the residue over silica gel ($2 \times 20 \mathrm{~cm}$), using 20% EtOAchexane, gave 29 ($694 \mathrm{mg}, 89 \%$) as an oil, which was a mixture of two isomers. The isomers were separated by preparative tlc (silica, 3% EtOAc-hexane, plate developed twice): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast, isomer mixture) $3056,2930,1953,1813,1596,1447,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ (less polar isomer, presumably E-isomer) $\delta 1.45-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.67(\mathrm{~m}$, $2 \mathrm{H}), 2.15(\mathrm{ddd}, J=7.0,6.1,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.38(\mathrm{~m}, 15 \mathrm{H}), 7.54(\mathrm{t}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ (more polar isomer, presumably Z-isomer) $\delta 1.60-$ $1.70(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{ddd}, J=7.6,7.6,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.72(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.38(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ (less polar isomer) $\delta 6.4(\mathrm{t}), 26.8(\mathrm{t}), 28.1(\mathrm{t}), 31.9(\mathrm{t}), 90.2(\mathrm{~s}), 126.9(\mathrm{~d}), 127.4(\mathrm{~d}), 129.1(\mathrm{~d}), 144.4(\mathrm{~s})$, 150.2 (d); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}$) (more polar isomer) $\delta 6.0(\mathrm{t}), 25.1$ (t), 26.9 (t), 32.9 (t), 90.3 (s$), 127.0(\mathrm{~d}), 127.5$ (d), 128.9 (d), 144.5 (s$), 151.2$ (d); exact mass (electrospray) (less polar isomer) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{INNaO} 492.07949$, found 492.07974 ; exact mass (electrospray) (more polar isomer) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{INNaO} 492.07949$, found 492.07961.

Acetic Acid 1-(Iodomethyl)-4-[(triphenylmethyloxy)imino]butyl Ester (30). (a) Acetic Acid (1-Iodomethyl)pent-4-enyl Ester.

$\mathrm{Ac}_{2} \mathrm{O}(2.6 \mathrm{~mL}, 27.41 \mathrm{mmol})$ and then pyridine ($2.22 \mathrm{~mL}, 27.41 \mathrm{mmol}$) were added successively to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ portion of 1-iodohex-5-en-2-ol ${ }^{31}(774 \mathrm{mg}, 3.426$ mmol). Stirring at $0^{\circ} \mathrm{C}$ was continued for 4 h , the ice bath was left in place, but not recharged, and stirring was continued overnight. The solution was diluted with water, extracted with $\mathrm{Et}_{2} \mathrm{O}$, and washed with saturated aqueous NaHCO_{3}, water and brine. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (2 x 30 cm), using 30\% EtOAc-hexane, gave acetic acid (1-iodomethyl)pent-4-enyl ester (763.9 mg , 83%) as an oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $2924,1740,1235,914 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 1.68-1.80 (m, 2 H), 2.03-2.14 (m including s at δ at $2.08,5 \mathrm{H}$), 3.29 (dddd, $J=10.6,10.6,10.6$, $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.70$ (dddd, $J=10.9,5.1,5.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-5.06(\mathrm{~m}, 2 \mathrm{H}), 5.76$ (dddd, $J=$ $16.9,10.2,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 8.1$ (t), 21.0 (q), 29.3 (t$), 33.3$ (t$)$, 71.7 (d), 115.5 (t), $137.0(\mathrm{~d}), 170.3(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{INaO}_{2}$ 290.98525 , found 290.98494 .

(b) Acetic Acid 1-(Iodomethyl)-4-oxobutyl Ester.

$\mathrm{OsO}_{4}(0.1 \mathrm{M}$ in $\mathrm{PhMe}, 2.85 \mathrm{~mL}, 0.285 \mathrm{mmol})$ was added in one portion to a stirred solution of acetic acid (1-iodomethyl)pent-4-enyl ester ($763.9 \mathrm{mg}, 2.85 \mathrm{mmol}$) in water (7 mL) and dioxane (21 mL). The solution was stirred at room temperature under Ar for 20 min . Then NaIO_{4} was added in small portions over 20 min . The mixture was stirred at room temperature for an additional 2 h , quenched with water and extracted with EtOAc. The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of solvent and flash chromatography of the residue over silica gel ($2 \times 20 \mathrm{~cm}$), using 30\% EtOAc-hexane, gave acetic acid 1-(iodomethyl)-4-oxobutyl ester ($614 \mathrm{mg}, 79 \%$) as an oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 2830,1734 , $1720,1235 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.80-2.20$ (m including s at $\delta 2.05,5 \mathrm{H}$), 2.422.54 (m, 2 H), 3.29 (dddd, $J=10.7,10.7,10.7,5.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.73 (dddd, $J=5.3,5.3,4.2,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 9.75(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 7.1(\mathrm{t}), 20.8(\mathrm{q}), 26.5(\mathrm{t}), 39.4$
(t), 71.4 (d), 170.1 (s), 200.4 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{INaO}_{3}$ 292.96452, found 292.96427 .

(c) Acetic Acid 1-(Iodomethyl)-4-[(triphenylmethyloxy)imino]butyl Ester (30).

$\mathrm{TrONH}_{2}(623 \mathrm{mg}, 2.265 \mathrm{mmol})$ was added to a stirred solution of acetic acid 1-(iodomethyl)-4-oxobutyl ester ($611.4 \mathrm{mg}, 2.265 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and stirring was continued for 1 h (Ar atmosphere). Evaporation of the solvent and flash chromatography of the residue over silica gel ($2 \times 30 \mathrm{~cm}$), using 15\% EtOAc-hexane, gave $30(892.8 \mathrm{mg}, 75 \%)$ as a mixture (ca 1:1) of Z and E isomers (${ }^{1} \mathrm{H}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3057,1740,1233,700 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ (the spectrum of the isomer mixture is too complicated to be informative); one isomer had: $\delta 1.74$ (ddd, $J=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.05(\mathrm{~s}, 3 \mathrm{H}), 2.17$ (ddd, J $=7.0,7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-3.20(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{dddd}, J=5.8,5.8,5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.48$ $(\mathrm{m}, 15 \mathrm{H}), 7.55(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ (isomer mixture) $\delta 7.3(\mathrm{t})$,
 (s), 90.7 (s), 127.1 (d), 127.2 (d), 127.5 (d), 127.6 (d), 127.9 (d), 129.0 (d), 129.2 (d), 144.4 (s), 144.5 (s), 149.4 (d), 150.3 (d), 170.1 (s), 170.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{INNaO}_{3} 550.08497$, found 550.08463.

6-Iodohexanal \boldsymbol{O}-(Triphenylmethyl)oxime (32).

$\mathrm{TrONH}_{2}\left(426 \mathrm{mg}, 1.549 \mathrm{mmol}\right.$) was added to a stirred solution of 6-iodohexanal ${ }^{18,19,20}$ ($350 \mathrm{mg}, 1.549 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$) and stirring was continued for 2 h (Ar atmosphere). Evaporation of the solvent and flash chromatography of the residue over silica gel ($3 \times 30 \mathrm{~cm}$), using 30% EtOAc-hexane, gave 32 ($684.1 \mathrm{mg}, 91 \%$) as an oil, which was a mixture of two isomers (${ }^{1} \mathrm{H}$ NMR). These could be separated but only the less polar was obtained pure, and the
isomer mixture was used for radical cyclization: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) (isomer mixture) 2930, $1597,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ (less polar isomer) $\delta 1.20-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.73$ (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.15(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 15$ $\mathrm{H}), 7.57(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ (less polar isomer) $\delta 6.8(\mathrm{t}), 25.3$ (t), 29.2 (t), 29.5 (t), 33.2 (t), 90.2 (s$), 127.0$ (d), 127.5 (d), 129.2 (d), 144.6 (s$), 150.8$ (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{INNaO} 506.09514$, found 506.09458.

Cyclohexanone Oxime (33). ${ }^{25}$

General procedure B for radical cyclization was followed using 32 ($666 \mathrm{mg}, 1.379$ mmol), $\mathrm{PhSeSePh}(86.0 \mathrm{mg}, 0.276 \mathrm{mmol}$) and Hünig's base ($0.96 \mathrm{~mL}, 5.511 \mathrm{mmol}$) in THF (25 mL), $\mathrm{Bu}_{3} \mathrm{SnH}(2.066 \mathrm{mmol})$ in THF (8 mL) and ABC ($336 \mathrm{mg}, 1.375 \mathrm{~mL}$) in THF (8 mL). After evaporation of the solvent, flash chromatography of the residue over silica gel ($2 \times 30 \mathrm{~cm}$), using $30 \% \mathrm{EtOAc}$-hexane, gave cyclohexanone oxime (33) ${ }^{25}$ ($136 \mathrm{mg}, 87 \%$).

3-(Hydroxyimino)cyclopentane-1,1-dicarboxylic Acid Diethyl Ester (34) (from 22).

General procedure B for radical cyclization was followed, using 22 ($110 \mathrm{mg}, 0.194$ mmol), $\mathrm{PhSeSePh}(12.2 \mathrm{mg}, 0.0391 \mathrm{mmol})$ and Hünig's base (0.1 mL .0 .776 mmol) in dry THF $(20 \mathrm{~mL}), \mathrm{Bu}_{3} \mathrm{SnH}(0.063 \mathrm{~mL}, 0.234 \mathrm{mmol})$ in THF (3 mL) and ABC ($47.5 \mathrm{mg}, 0.194 \mathrm{mmol}$) in THF (3 mL). After evaporation of the solvent, flash chromatography of the residue over silica gel ($2 \times 30 \mathrm{~cm}$), using 30% EtOAc-hexane, gave 34 ($36.4 \mathrm{mg}, 77 \%$) as a mixture (ca $1: 1$) of Z and E isomers, identical with material made from the iodide.

$\mathrm{TrONH}_{2}(51.0 \mathrm{mg}, 0.186 \mathrm{mmol})$ was added in one portion to a stirred solution of $\mathbf{5 8}$ (probably largely one isomer) ($47.0 \mathrm{mg}, 0.187 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and stirring was continued for 1 h . Evaporation of the solvent and flash chromatography of the residue over silica gel ($1.5 \times 25 \mathrm{~cm}$), using 10% EtOAc-hexane, gave $35(77.8 \mathrm{mg}, 82 \%)$ as an oil, which was a mixture (1:1.3) of isomers (${ }^{1} \mathrm{H}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 2954 , 2922, 1954, 1887, 1811, $1631,1448,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.6-2.80(\mathrm{~m}, 11 \mathrm{H}), 4.31(\mathrm{t}, J=4.3 \mathrm{~Hz}, 0.5$ $\mathrm{H}), 4.52(\mathrm{t}, J=4.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.75(\mathrm{t}, J=5.6 \mathrm{~Hz}, 0.42 \mathrm{H}), 7.16-7.44(\mathrm{~m}, 15 \mathrm{H}), 7.57(\mathrm{t}, J=6.1$ $\left.\mathrm{Hz}, 0.57 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 21.6(\mathrm{t}), 21.8(\mathrm{t}), 24.8(\mathrm{t}), 27.9(\mathrm{t}), 28.7(\mathrm{t}), 29.0$ (t), $33.205(\mathrm{t}), 33.213$ (t$), 38.9$ (t), 44.3 (d), 45.1 (d), 45.2 (d), 46.4 (d), 90.2 (s), 90.4 (s$), 127.0$ (d), 127.1 (d), 127.5 (d), 127.6 (d), 129.0 (d), 129.2 (d), 144.56 (s), 144.58 (s), 150.5 (d), 151.6 (d). A satisfactory mass spectrum could not be obtained by electron impact or electrospray methods.

3-[(1-Iodomethyl)cyclohexyl]propanal \boldsymbol{O}-(Triphenylmethyl)oxime (37).

$\mathrm{TrONH}_{2}(610 \mathrm{mg}, 2.22 \mathrm{mmol})$ was added in one portion to a stirred solution of $\mathbf{6 2}$ (620 $\mathrm{mg}, 2.22 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ containing $4 \AA$ molecular sieves. Stirring was continued for 4 h and the mixture was filtered and evaporated. Flash chromatography of the residue over silica gel ($3 \times 30 \mathrm{~cm}$), using 10% EtOAc-hexane, gave 37 ($1.12 \mathrm{~g}, 94 \%$) as a mixture (1:1.3) of geometric isomers (${ }^{1} \mathrm{H}$ NMR): FTIR (neat film, microscope) 2926, 2853, 1953, 1886, 1810, 1723, 1449, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.30-1.60(\mathrm{~m}, 12 \mathrm{H}), 2.0-2.10(\mathrm{~m}, 1.43 \mathrm{H})$, 2.38-2.50 (m, 0.64 H$), 3.10(\mathrm{~s}, 1.31 \mathrm{H}), 3.25(\mathrm{~s}, 0.63 \mathrm{H}), 6.75(\mathrm{t}, J=5.6 \mathrm{~Hz}, 0.29 \mathrm{H}), 7.15-7.40$ $(\mathrm{m}, 15 \mathrm{H}), 7.56(\mathrm{t}, J=6.1 \mathrm{~Hz}, 0.65 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 20.2(\mathrm{t}), 20.9(\mathrm{t}), 21.2$ $(\mathrm{t}), 21.7(\mathrm{t}), 21.8(\mathrm{t}), 23.7(\mathrm{t}), 25.96(\mathrm{t}), 26.01(\mathrm{t}), 34.83(\mathrm{~s} / \mathrm{t}), 34.85(\mathrm{~s} / \mathrm{t}), 35.05(\mathrm{~s} / \mathrm{t}), 35.07(\mathrm{~s} / \mathrm{t})$, 90.2 (s), 90.4 (s), 126.9 (d), 127.1 (d), 127.4 (d), 127.6 (d), 129.0 (d), 129.2 (d), 144.5 (s$), 144.6$ (s), 151.4 (d), 151.8 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{INNaO} 560.14209$, found 560.14210 .

3-(2-Iodophenyl)propanal \boldsymbol{O}-(Triphenylmethyl)oxime (39).

$\mathrm{TrONH}_{2}(30 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added to a stirred solution of 3-(2iodophenyl)propanal ${ }^{21}$ ($29.1 \mathrm{mg}, 0.11 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirring was continued for 2 h . Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 20 cm), using 10% EtOAc-hexane, gave $39(0.054 \mathrm{~g}, 94 \%)$ as an oil which was a mixture of Z and E isomers (${ }^{1} \mathrm{H} \mathrm{NMR}$), containing some impurities; the material was used directly in the next step.

2,3-O-(1-Methylethylidene)-d-ribose O-(Triphenylmethyl)oxime (41).

The general procedure for making O-trityl oximes was followed, using TrONH_{2} (475.1 $\mathrm{mg}, 1.723 \mathrm{mmol}$) and 2,3-O-(1-methylethylidene)-D-ribose ${ }^{32}(\mathbf{4 0})(298.4 \mathrm{mg}, 1.571 \mathrm{mmol})$ in THF (10 mL). Flash chromatography of the residue over silica gel ($1.7 \times 35 \mathrm{~cm}$), using 40% EtOAc-hexane, gave 41 ($604 \mathrm{mg}, 86 \%$) as a foam, which was a $2.8: 1$ mixture of geometric isomers (${ }^{1} \mathrm{H}$ NMR): FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $3438,3057,3033,2986,2934,1597 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$) $\delta 1.28,1.38,1.45,1.50$ (four s, 6 H in all), 1.63-2.01 (br s, 2 H), 3.31-3.72 $(\mathrm{m}, 3 \mathrm{H}), 3.97-4.02(\mathrm{~m}, 0.86 \mathrm{H}), 4.33-4.41(\mathrm{~m}, 0.32 \mathrm{H}), 4.64(\mathrm{t}, J=7.0 \mathrm{~Hz}, 0.76 \mathrm{H}), 5.45(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 0.27 \mathrm{H}), 6.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.26 \mathrm{H}), 7.18-7.38(\mathrm{~m}, 15 \mathrm{H}), 7.62(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 0.73 \mathrm{H})$; ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right) \delta 25.4(\mathrm{q}), 25.6(\mathrm{q}), 27.6(\mathrm{q}), 27.8(\mathrm{q}), 64.0(\mathrm{t}), 64.2(\mathrm{t}), 69.6(\mathrm{~d})$, 70.4 (d), 72.2 (d), 75.3 (d), 78.4 (d), 79.1 (d), 91.3 ($s), 92.5$ (s$), 110.1$ (s$), 110.5$ (s$), 127.2$ (d), 127.3 (d), 127.6 (d), 127.7 (d), 128.8 (d), 129.0 (d), 143.4 (s), 143.8 (s), 150.5 (d), 150.7 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NNaO}_{5} 470.1943$, found 470.1942.

5-Bromo-5-deoxy-2,3-O-(1-methylethylidene)-d-ribose O-(Triphenylmethyl)oxime (42).

$\mathrm{Ph}_{3} \mathrm{P}(3.1 \mathrm{~g}, 11.7 \mathrm{mmol})$ was added to a stirred and cooled (ice-water) solution of 41 (2.6 $\mathrm{g}, 5.9 \mathrm{mmol})$ in pyridine (30 mL), and then $\mathrm{CBr}_{4}(2.14 \mathrm{~g}, 6.45 \mathrm{mmol})$ was added in several portions at the same temperature. After the addition, the mixture was heated at $65^{\circ} \mathrm{C}$ for 2 h , cooled, and diluted with $\mathrm{MeOH}(10 \mathrm{~mL})$. Evaporation of the solvent, and flash chromatography of the residue over silica gel ($4 \times 32 \mathrm{~cm}$), using 10% EtOAc-hexane, gave $\mathbf{4 2}(2.65 \mathrm{~g}, 89 \%)$ as a foam. The material was a single isomer, but the oxime geometry was not determined: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3564 , 3087, 3057, 3033, 2987, 2934, 1595, $1491 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}) \delta 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.61(\mathrm{~m}, 3 \mathrm{H}), 3.93-4.09(\mathrm{~m}, 1$ $\mathrm{H}), 4.72(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.51(\mathrm{~m}, 15 \mathrm{H}), 7.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $50.3 \mathrm{MHz}) \delta 25.5$ (q), 27.7 (q), 36.8 (t), 68.8 (d), 75.1 (d), 79.1 (d), 91.2 (s$), 110.5$ (s$), 127.3$ (d), 127.8 (d), 128.9 (d), 143.9 (s , 149.8 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{28}{ }^{79} \mathrm{BrNNaO}_{4} 532.1099$, found 532.1100.

D-Ribose O-(Triphenylmethyl)oxime (43).

The general procedure for making O-trityl oximes was followed, using $\mathrm{TrONH}_{2}(1.06 \mathrm{~g}$, 3.86 mmol) and D-ribose ($580 \mathrm{mg}, 3.86 \mathrm{mmol}$) in THF (10 mL). Flash chromatography of the residue over silica gel ($1.7 \times 35 \mathrm{~cm}$), using 80% EtOAc-hexane, gave 43 ($1.438 \mathrm{~g}, 91 \%$) as a foam. The material was used directly, without characterization.

D-Ribose 5-(4-Methylbenzenesulfonate) \boldsymbol{O}-(Triphenylmethyl)oxime (44).

$\mathrm{TsCl}(460 \mathrm{mg}, 2.41 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 43 (890 $\mathrm{mg}, 2.19 \mathrm{mmol})$ in pyridine $(5 \mathrm{~mL})$, and stirring was continued overnight. Water (10 mL) was added to quench the reaction, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.7 \times 30 \mathrm{~cm}$), using 50% EtOAc-hexane, gave 44 ($658 \mathrm{mg}, 54 \%$) as a foam. The material was used directly, without characterization.

D-Ribose 2,3,4-Triacetate 5-(4-Methylbenzenesulfonate) \boldsymbol{O}-(Triphenylmethyl)oxime (45).

Pyridine ($4.6 \mathrm{~mL}, 80 \mathrm{mmol}$) was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $44(405$ $\mathrm{mg}, 0.722 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(10.6 \mathrm{~mL}, 144 \mathrm{mmol})$, and stirring was continued overnight. Water $(15 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 10 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous NaHCO_{3} and water (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel ($1.7 \times 30 \mathrm{~cm}$), using 20% EtOAc-hexane, gave 45 ($459 \mathrm{mg}, 93 \%$) as a foam. The material, which contained small impurities, appeared to be a single isomer, but was used with only partial characterization (${ }^{1} \mathrm{H}$ NMR): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 6 \mathrm{H}), 2.4(\mathrm{~s}, 3 \mathrm{H}), 4.01-4.3(\mathrm{~m}$, $2 \mathrm{H}), 4.94-5.09(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.48(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.42(\mathrm{~m}, 17 \mathrm{H}), 7.49(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}$).

The oxime geometry was not determined.

2,3,4-Tris- O-(phenylmethyl)-d-ribose \boldsymbol{O}-(Triphenylmethyl)oxime (47).

The general procedure for making O-trityl oximes was followed, using $\mathrm{TrONH}_{2}(80 \mathrm{mg}$, $0.29 \mathrm{mmol})$ and $4 \mathbf{4 6}^{33}$ ($110 \mathrm{mg}, 0.26 \mathrm{mmol}$) in THF (5 mL). Flash chromatography of the residue over silica gel ($1.7 \times 25 \mathrm{~cm}$), using 15% EtOAc-hexane, gave 47 ($167 \mathrm{mg}, 94 \%$) as a foam, which was a 5:1 mixture of geometrical isomers (${ }^{1} \mathrm{H}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3462,3060 , 2869, $1597 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$) (in some regions the multiplets include AB quartet signals) $\delta 3.24-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.78(\mathrm{~m}, 2.3 \mathrm{H}), 3.85(\mathrm{dd}, J=7.0,2.8 \mathrm{~Hz}, 0.93 \mathrm{H})$, 3.95 (dd, $J=7.0,2.8 \mathrm{~Hz}, 0.25 \mathrm{H}), 4.01-4.22(\mathrm{~m}, 3.6 \mathrm{H}), 4.37-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.89(\mathrm{~m}, 2 \mathrm{H})$, $5.24(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 6.98-7.44(\mathrm{~m}, 30 \mathrm{H}), 7.66(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 0.98 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7 \mathrm{MHz}\right) \delta 61.0(\mathrm{t}), 70.5(\mathrm{t}), 72.4(\mathrm{t}), 74.5(\mathrm{t}), 77.1$ (d), 78.5 (d), 80.4 (d), 90.8 (s), 127.0 (d), 127.46 (d), 127.49 (d), 127.53 (d), 127.55 (d), 127.57 (d), 127.6 (d), 127.7 (d), 127.81 (d), 127.84 (d), 128.1 (d), 128.21 (d), 128.23 (d), 128.3 (d), 128.31 (d), 128.34 (d), 129.0 (d), 129.1 (d), 137.6 (s$), 137.7$ (s$), 138.0$ (s$), 144.2$ (s$), 148.9$ (d); exact mass m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{43} \mathrm{NO}_{5} 678.3219$, found 678.3217.

Trans-2-[2-Bromocyclohexyl)oxy]acetaldehyde (49).

Ozone was bubbled through a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 8}{ }^{34}(697.4 \mathrm{mg}$, $3.184 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ for 1 h . The mixture was then flushed with O_{2} for 10 min , and $\mathrm{Ph}_{3} \mathrm{P}(2.5 \mathrm{~g}, 9.6 \mathrm{mmol})$ was added. Stirring was continued overnight, the cold bath being left in place, but not recharged. Evaporation of the solvent and flash chromatography of the residue over silica gel ($1.7 \times 30 \mathrm{~cm}$), using 15% EtOAc-hexane, gave 49 ($609 \mathrm{mg}, 87 \%$) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3450,2937,2860,1735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.19-2.42$ $(\mathrm{m}, 8 \mathrm{H}), 3.29-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.82-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 100.6 MHz) $\delta 22.9$ (t), 25.1 (t), 30.9 (t$), 35.5$ (t$), 54.8$ (d), 75.3 (t), 83.3 (d), 200.8 (d); exact mass m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{13}{ }^{79} \mathrm{BrNaO}_{2}$ 242.9996, found 242.9991.

Diethyl (2-Bromoethyl)(2-oxoethyl)propanedioate (51).

OsO_{4} (0.1 M in $\mathrm{PhMe}, 0.19 \mathrm{~mL}, 0.019 \mathrm{mmol}$) was added in one portion to a stirred solution of $\mathbf{5 0}{ }^{35}(59.0 \mathrm{mg}, 0.192 \mathrm{mmol})$ in a mixture of dioxane (3 mL) and water (1 mL). The mixture was stirred for 30 min and then $\mathrm{NaIO}_{4}(102.7 \mathrm{mg}, 0.48 \mathrm{mmol})$ was added in several small portions. The resulting solution was stirred for 2 h , then quenched with water and extracted with EtOAc. The combined organic extracts were washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and flash chromatography of the residue over silica gel ($1.5 \times 20 \mathrm{~cm}$), using 30% EtOAc-hexane, gave aldehyde $51^{36}(56 \mathrm{mg}, 94 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.52-2.62(\mathrm{~m}, 2 \mathrm{H}), 3.02$ (apparent d, $J=1.3 \mathrm{~Hz}$, 2 H), 3.32-3.42 (m, 2 H$), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 9.74(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$.
(1-Bromomethyl)-4-penten-1-yl Acetate (53).

Pyridine (1 mL) was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of $\mathrm{Ac}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathbf{5 2}^{37}(310 \mathrm{mg}, 1.73 \mathrm{mmol})$, and stirring was continued overnight. Water (15 mL) was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous NaHCO_{3}, and water ($1 \times 10 \mathrm{~mL}$), dried, and evaporated. Flash chromatography of the residue over silica gel ($1.7 \times 30 \mathrm{~cm}$), using 5\% EtOAc-hexane, gave 53 ($365 \mathrm{mg}, 96 \%$) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3465,3078,2977,2924,1742,1641 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.73-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.14(\mathrm{~m}$, including a singlet at $\delta 2.07,5$ H in all), 3.38-3.57 (m, 2 H), 4.87-5.09 (m, 3 H), 5.70-5.82 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.7\right.$
 satisfactory mass spectrum could not be obtained by electron impact or electrospray methods.

(1-Bromomethyl)-4-oxobutyl Acetate (54).

$\mathrm{OsO}_{4}(2.5 \% \mathrm{w} / \mathrm{w}$ in $t-\mathrm{BuOH}, 2.0 \mathrm{~mL}, 0.16 \mathrm{mmol})$ was added to a stirred mixture of $\mathbf{5 3}$ $(358 \mathrm{mg}, 1.62 \mathrm{mmol})$, water $(8 \mathrm{~mL}), \mathrm{CCl}_{4}(8 \mathrm{~mL})$ and $t-\mathrm{BuOH}(4 \mathrm{~mL})$. After 20 min , the mixture had become black. $\mathrm{NaIO}_{4}(870 \mathrm{mg}, 4.05 \mathrm{mmol})$ was then added in one portion and the resulting mixture was stirred for 6 h . Brine (10 mL) was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with water (10 mL) and aqueous $\mathrm{NaHSO}_{3}(10 \%, 15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel ($1.7 \times 28 \mathrm{~cm}$), using 20% EtOAc-hexane, gave 54 ($289 \mathrm{mg}, 80 \%$) as a colorless oil. The material appeared to be a mixture of the aldehyde and its hydrate (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR $)$: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3459,2966,2936,1739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.44-$ $2.56(\mathrm{~m}$, including a singlet at $\delta 2.07,7 \mathrm{H}$ in all), 3.37-3.49 (m, 2 H), 4.82-5.11 (m, 1.6 H), 9.76 $(\mathrm{t}, J=1.3 \mathrm{~Hz}, 0.3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 20.8(\mathrm{q}), 20.9(\mathrm{q}), 25.0(\mathrm{t}), 26.4(\mathrm{t}), 29.7$ (t), 33.4 t), 33.8 (t), 39.5 (t), 71.5 (d), 71.8 (d), 100.5 (d), 170.2 (s), 170.3 (s), 200.4 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{12}{ }^{79} \mathrm{BrO}(\mathrm{M}+\mathrm{H}) 222.9969$, found 222.9967.

2-(But-3-enyl)cyclopentanol (56).

$\mathrm{NaBH}_{4}(340 \mathrm{mg}, 8.99 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right) \mathbf{5 5}^{38}(618 \mathrm{mg}$, 4.478 mmol) and dry $\mathrm{MeOH}(40 \mathrm{~mL})$. Stirring was continued for 5 h , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 30 \mathrm{~cm}$), using 30% EtOAc-hexane, gave $\mathbf{5 6}{ }^{39}(590 \mathrm{mg}, 94 \%)$ as an oil, which was a mixture of cis and trans isomers, with one of these greatly predominating $\left({ }^{1} \mathrm{H}\right.$ NMR): FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) $3339,2954,2925,2872,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 1.03-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.75(\mathrm{~m}, 6 \mathrm{H}), 1.78-2.20(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-5.05$ (m, 2 H), 5.80 (dddd, $J=16.9,10.2,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ (major isomer only) $\delta 21.7(\mathrm{t}), 29.8(\mathrm{t}), 32.3(\mathrm{t}), 32.9(\mathrm{t}), 34.6(\mathrm{t}), 47.7(\mathrm{~d}), 79.0(\mathrm{~d}), 114.2(\mathrm{t}), 138.8(\mathrm{~d})$;
exact mass m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}$ 140.12012, found 140.11971.

1-(But-3-enyl)-2-iodocyclopentane (57).

Imidazole ($698 \mathrm{mg}, 10.25 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{5 6}(377.8 \mathrm{mg}, 2.699$ mmol) in THF (30 ml). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and stirred for $10 \mathrm{~min} . \mathrm{Ph}_{3} \mathrm{P}(1.91 \mathrm{~g}$, $7.282 \mathrm{mmol})$ was added in one portion and stirring was continued for additional 10 min . $\mathrm{I}_{2}(1.78$ $\mathrm{g}, 7.013 \mathrm{mmol}$) was then added in one portion and stirring at $0^{\circ} \mathrm{C}$ was continued for 2 h . The ice bath was left in place, but not recharged, and stirring was continued overnight. The mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 20 \mathrm{~cm}$), using hexane, gave 57 (383.6 mg , 57%) as an oil, which appeared to be a single isomer (NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 2959,2924 , 2867, $910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.84-0.99(\mathrm{~m}, 1 \mathrm{H}), 1.09-2.43(\mathrm{~m}, 10 \mathrm{H}), 3.79(\mathrm{q}$, $J=8.2 \mathrm{~Hz}, 0.1 \mathrm{H}), 4.55(\mathrm{ddd}, J=4.1,4.1,4.1 \mathrm{~Hz}, 0.9 \mathrm{H}), 4.92-5.10(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{dddd}, J=$ 16.7, 10.2, 6.7, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 21.7(\mathrm{t}), 28.9$ (t), 32.2 (t$), 35.9$ (t), 38.9 (t), 45.2 (d), 46.2 (d), 114.7 (t), 138.5 (d); exact mass m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{15}(\mathrm{M}-\mathrm{I})$ 123.11738, found 122.11701 .

3-(2-Iodocyclopentyl)propanal (58).

OsO_{4} in $\mathrm{PhMe}(0.1 \mathrm{M}, 0.40 \mathrm{~mL}, 0.04 \mathrm{mmol})$ was added in one portion to a stirred solution of $57(100 \mathrm{mg}, 0.40 \mathrm{mmol})$ in water $(1 \mathrm{~mL})$ and dioxane (3 mL). Stirring was continued for 20 min and then $\mathrm{NaIO}_{4}(220 \mathrm{mg}, 1.029 \mathrm{mmol})$ was added in small portions over 10 min . The mixture was stirred for an additional 2 h , diluted with EtOAc and washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.5×30
cm), using 10% EtOAc-hexane, gave $58(57.2 \mathrm{mg}, 57 \%)$ as an oil, which was largely a single isomer (${ }^{1} \mathrm{H}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $2952,2865,1723,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 0.84-2.60(\mathrm{~m}, 11 \mathrm{H}), 3.70(\mathrm{q}, ~ J=8.3 \mathrm{~Hz}, 0.11 \mathrm{H}), 4.51(\mathrm{ddd}, J=4.3,4.3,4.3 \mathrm{~Hz}, 0.89$ $\mathrm{H}), 9.78(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 21.7(\mathrm{t}), 28.9(\mathrm{t}), 29.1(\mathrm{t}), 38.7(\mathrm{t})$, 42.1 (t), 43.7 (d), 45.9 (d), 201.9 (d); exact mass m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}$ (M - I) 125.09664, found 125.09652 .

[1-(But-3-enyl)cyclohexyl]methanol (60).

DIBAL ($1 \mathrm{M}, 15.6 \mathrm{~mL}, 15.6 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of ester $5 \mathbf{5 9}^{40}(1.17 \mathrm{~g}, 5.97 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL}$. The mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 4 h . The mixture was quenched with solid sodium potassium tartrate (ca 3 g) and glycerol (ca 6 mL) and the cold bath was removed and stirring was continued overnight, by which stage two layers had formed. The mixture was extracted with EtOAc (3 times) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3 \times 20 \mathrm{~cm}$), using 10% EtOAc-hexane, gave $\mathbf{6 0}(780 \mathrm{mg}, 78 \%$) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3345,2926,2853,1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 1.23-1.51 (m, 12 H), 1.92-2.05 (m, 2 H), $3.43(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.87-5.09(\mathrm{~m}, 2 \mathrm{H}), 5.84$ (dddd, $J=16.8,10.1,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 21.4(\mathrm{t}), 26.3(\mathrm{t}), 27.4$ (t), 32.3 (t), $33.9(\mathrm{t}), 36.9(\mathrm{~s}), 68.2(\mathrm{t}), 113.9(\mathrm{t}), 139.6(\mathrm{~d})$; exact mass m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{18}(\mathrm{M}-$ $\mathrm{H}_{2} \mathrm{O}$)150.14085, found 150.14043 .

1-(But-3-enyl)-1-(iodomethyl)cyclohexane (61).

Imidazole ($110 \mathrm{mg}, 1.67 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{6 0}(74 \mathrm{mg}, 0.44 \mathrm{mmol})$ in THF (5 mL) and the mixture was cooled to $0^{\circ} \mathrm{C}$. Stirring was continued until all the
imidazole had dissolved and then $\mathrm{Ph}_{3} \mathrm{P}(312 \mathrm{mg}, 1.19 \mathrm{mmol})$ was added. Stirring was continued for an additional $10 \mathrm{~min}, \mathrm{I}_{2}(290 \mathrm{mg}, 1.14 \mathrm{mmol})$ was added in one portion and stirring was continued for 2 h . The cold bath was left in place, but not recharged, and stirring was continued overnight. The mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 times). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 25 \mathrm{~cm}$), using 10% EtOAchexane, gave $61(120 \mathrm{mg}, 100 \%)$: FTIR (neat film microscope) 2926, 2851, 1641, $910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.26-1.55(\mathrm{~m}, 12 \mathrm{H}), 1.86-2.03(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 4.91-5.13(\mathrm{~m}$, $2 \mathrm{H}), 5.85$ (dddd, $J=16.8,10.2,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 21.7(\mathrm{t})$, $21.8(\mathrm{t}), 26.0(\mathrm{t}), 27.0(\mathrm{t}), 34.9(\mathrm{t}), 34.9(\mathrm{t}), 37.1(\mathrm{~s}), 114.2(\mathrm{t}), 138.8(\mathrm{~d})$; exact mass m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{I} 278.05316$, found 278.05280.

3-[(1-Iodomethyl)cyclohexyl]propanal (62).

OsO_{4} (0.1 M in $\mathrm{PhMe}, 3.2 \mathrm{~mL}, 0.32 \mathrm{mmol}$) was added in one portion to a stirred solution of alkene $\mathbf{6 1}(896 \mathrm{mg}, 3.22 \mathrm{mmol})$ in water $(8 \mathrm{~mL})$ and dioxane $(24 \mathrm{~mL})$. The mixture was stirred for 20 min and then $\mathrm{NaIO}_{4}(1.72 \mathrm{~g}, 8.0 \mathrm{mmol})$ was added in small portions and stirring was continued for 2 h . The mixture was diluted with water and extracted with EtOAc (3 times). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 20 \mathrm{~cm}$), using 10% EtOAc-hexane, gave 62 ($636 \mathrm{mg}, 71 \%$): FTIR (neat film microscope) 2927, 2854, $1725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 1.32-1.54(\mathrm{br} \mathrm{s}, 10 \mathrm{H}), 1.64-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.40(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 9.80(\mathrm{t}, \mathrm{J}=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 20.4(\mathrm{t}), 21.7(\mathrm{t}), 25.9(\mathrm{t}), 30.1(\mathrm{~s}), 34.6(\mathrm{t}), 34.8$ (t), $37.8(\mathrm{t}), 202.0(\mathrm{~d})$; exact mass m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{IO} 280.03241$, found 280.03232.

Trans-2-[(2-Bromocyclohexyl)oxy]acetaldehyde O-(Phenylmethyl)oxime.

O-Benzylhydroxylamine hydrochloride ($330 \mathrm{mg}, 2.66 \mathrm{mmol}$) was added to a stirred solution of $49(490 \mathrm{mg}, 2.22 \mathrm{mmol})$ in THF (10 mL). Pyridine ($350 \mathrm{mg}, 4.44 \mathrm{mmol}$) was then added, and the mixture was refluxed for 10 h , cooled, filtered and evaporated. Flash chromatography of the residue over silica gel ($1.7 \times 32 \mathrm{~cm}$), using 8% EtOAc-hexane, gave trans-2-[(2-bromocyclohexyl)oxy]acetaldehyde O-(phenylmethyl)oxime ($632 \mathrm{mg}, 88 \%$) as a light yellow oil, which was a mixture of Z and E isomers (${ }^{1} \mathrm{H}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3087, 3063, 2937, 2860, $1452 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.19-2.4(\mathrm{~m}, 8 \mathrm{H}), 3.27-3.39(\mathrm{~m}, 1$ H), 3.88-3.99 (m, 1 H), 4.12-4.51 (m, 2 H), $5.09(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=4.0 \mathrm{~Hz}, 0.42 \mathrm{H})$, 7.23-7.59 (m, 5 H), $\left.7.53(\mathrm{t}, J=4.0 \mathrm{~Hz}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 23.2(\mathrm{t}), 25.4$ (t), 30.7 (t), 30.9 (t), 35.6 (t), $54.9(\mathrm{~d}), 55.2(\mathrm{~d}), 64.0(\mathrm{t}), 66.4(\mathrm{t}), 75.9(\mathrm{t}), 76.3(\mathrm{t}), 81.5(\mathrm{~s}), 82.4$ (s), 127.8 (d), 127.9 (d), 128.0 (d), 128.1 (d), 128.4 (d), 137.4 (s), 137.5 (s), 147.9 (d), 151.1 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20}{ }^{79} \mathrm{BrNNaO}_{2} 348.0575$, found 348.0570.

The oxime geometry was not established.

O-Benzyl- N-[(3a $\alpha, 7 a \alpha)$ octahydrobenzofuran-3-yl]hydroxylamine.

General procedure A for radical cyclization was followed, using trans-2-[(2bromocyclohexyl)oxy]acetaldehyde O-(phenyl-methyl)oxime ($281 \mathrm{mg}, 0.865 \mathrm{mmol}$) in THF (50 $\mathrm{mL}), \mathrm{Bu}_{3} \mathrm{SnH}(370 \mathrm{mg}, 1.30 \mathrm{mmol})$ in THF (5 mL), and ABC ($4 \mathrm{mg}, 0.02 \mathrm{mmol}$) in THF (5 mL). Flash chromatography of the residue over silica gel ($1.7 \times 20 \mathrm{~cm}$), using 20% EtOAchexane, gave O-benzyl- N-[(3a $\alpha, 7 \mathrm{a} \alpha$) octahydrobenzofuran-3-yl]hydroxylamine ($129 \mathrm{mg}, 61 \%$) as a foam, which was a mixture of two isomers (${ }^{1} \mathrm{H}$ NMR $)$: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3242,3086 , 3062, $2931 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.12-2.23(\mathrm{~m}, 9 \mathrm{H}), 3.41-3.46(\mathrm{~m}, 0.68 \mathrm{H})$, 3.48-3.57 (m, 1 H), 3.91-4.20 (m, 1.8 H), $4.12(\mathrm{dd}, J=10.3,6.4 \mathrm{~Hz}, 0.7 \mathrm{H}$), 4.69, 4.70 (two s, 2 H in all), 4.83-5.92 (br s, 1 H), 7.22-7.43 (m, 5 H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 20.4(\mathrm{t})$,
 68.3 (t$), 69.8$ (t$), 75.6$ (d), 76.0 (t$), 76.6$ (t$), 77.3$ (d), 127.8 (d), 127.9 (d), 128.3 (d), 128.4 (d), $128.5(\mathrm{~d}), 137.7(\mathrm{~s}) ;$ exact mass m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H}) 248.1650$, found 248.1654.

References and footnotes

(25) Hwu, J. R.; Tseng, W, N.; Patel, H. V.; Wong, F. F.; Horng, D.-N.; Liaw, B. R.; Lin, L. C. J. Org. Chem. 1999, 64, 2211-2218.
(26) Hardy, J.-C.; Venet, M. Tetrahedron Lett. 1982, 23, 1255-1256.
(27) Pratap, R.; Gupta, R. C.; Anand, N. Indian J. Chem. Sect. B 1981, 20, 1063-1067.
(28) Talybov, G. M.; Mekhtieva, V. Z.; Karaev, S. F. Russian J. Org. Chem. 2001, 37, 600.
(29) We used NIS instead of $\mathrm{I}_{2} / \mathrm{HgO}$.
(30) Dutta, A. K.; Fei, X.-S.; Beardsley, P. M.; Newman, J. L.; Reith, M. E. A. J. Med. Chem. 2001, 44, 937-948.
(31) Bonini, C.; Giuliano, C.; Righi, G.; Rossi, L. Synth. Commun. 1992, 22, 1863-1870.
(32) Kaskar, B.; Heise, G. L.; Michalak, R. S.; Vishnuvajjala, B. R. Synthesis, 1990, 10311032.
(33) Tejima, S.; Ness, R. K.; Kaufman, R. L.; Fletcher, Jr., H. G. Carbohydr. Res. 1968, 7, 485-490.
(34) Beckwith, A. L. J.; Page, D. M. Tetrahedron 1999, 55, 3245-3254.
(35) Bunce, R. A.; Burns, S. E. Org. Prep. Proc. Intl. 1999, 31, 99-123.
(36) Kim, S.; Kee, I. S.; Lee, S. J. Am. Chem. Soc. 1991, 113, 9882-9883.
(37) Dolbier, Jr., W. R.; Rong, X. X.; Bartberger, M. D.; Koroniak, H.; Smart, B. E.; Yang, Z.-Y. J. Chem. Soc., Perkin Trans. 2 1998, 219-231.
(38) Molander, G. A.; McKie, J. A. J. Org. Chem. 1992, 57, 3132-3139.
(39) The trans isomer corresponding to 56 is known: Hegedus, L. S.; McKearin, J. M. J. Am. Chem. Soc. 1982, 104, 2444-2451.
(40) Nuhrich, A.; Moulines, J. Tetrahedron 1991, 47, 3075-3088. Our material had: FTIR 2936, 2854, 1731, $1455 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.14-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.50-$ $1.65(\mathrm{~m}, 5 \mathrm{H}), 1.89-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.15(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.88-5.03(\mathrm{~m}, 2 \mathrm{H})$, 5.76 (dddd, $J=16.8,10.2,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 23.2(\mathrm{t})$, 25.9 (t), 28.4 (t), 34.1 (t), 39.6 (t), 46.8 (s), $51.4(\mathrm{q}), 114.4$ (t), 138.4 (d), 177.0 (s$)$; exact mass m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ 196.14633, found 196.14612.
RS F-70

2SF-57
Pulse Sequence: al

RS G-21
Pulse Sequence

15
$-$

'
$\mathbf{2 9 6} \cdot 697$
092.695

 $\overbrace{621}^{621}-1$
$02 \cdot 62 \mathrm{I}$

$69 \cdot \mathrm{EDI}$
$189 \cdot 8 b I_{2}=$

.

25

27

Pulse Sequence: apt

RSH-23

RS G-71

51

Trans-[(2-lodocyclohexyl)oxy]acetaldehyde

No
Pulse Sequence: apt

Trans-2-[(2-bromocyclohexyl)oxy]acetaldehyde O-(phenylmethyl)oxime

