DOES AROMATICITY IN A REACTION PRODUCT INCREASE OR DECREASE THE INTRINSIC BARRIER? KINETICS OF THE REVERSIBLE DEPROTONATION OF BENZOFURAN-3(2H)-ONE AND BENZOTHIOPHENE-3(2H)-ONE

Claude F. Bernasconi and Moisés Pérez-Lorenzo

Supporting Information

Table of Contents

		page
Figure S1	Spectrophotometric pK_a^{KH} determination for 3H-O .	S 3
Figure S2	Reaction of 3H-O with piperidine.	S4
Figure S3	Reaction of 3H-O with piperidine. Plot of slopes versus a_{H^+} according to eq 9.	S5
Figure S4	Reaction of 3H-O with glycinamide. Plot of slope ^{$^{-1}$} versus $a_{H^+}^{-1}$ according to eq 11.	S 6
Figure S5	Reaction of 3H-S with HEPA.	S7

Figure S1. Spectrophotometric pK_a^{KH} determination for **3H-O**.

Figure S2. Reaction of **3H-O** with piperidine: J, pH 10.89; C, pH 11.09; H, pH 11.29; G, pH 11.39, B, pH 11.49; E, pH 11.69; J, pH 11.89.

Figure S3. Reaction of **3H-O** with piperidine. Plot of slopes versus a_{H^+} according to eq 10.

Figure S4. Reaction of **3H-O** with glycinamide. Plot of slope⁻¹ versus $a_{H^+}^{-1}$ according to eq 12.

Figure S5. Reaction of **3H-S** with HEPA: J, pH 9.43; C, pH 9.58; H, pH 9.73; G, pH 9.88, B, pH 10.03; E, pH 10.18; J, pH 10.43.