Design, Synthesis and Characterization of Binuclear Ni(II) Complexes with Inherent Helical Chirality.

Vadim A. Soloshonok* and Hisanori Ueki

[#]Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019

vadim@ou.edu

List of Contents

Experimental Section, General method	S2
Experimental Section, General Procedure for the synthesis of binuclear	
Ni(II) complex	S2
Experimental Section , Physical properties for (<i>P/M</i>)-5	S2
Experimental Section, Physical properties for (<i>P/M</i>)-7a	S 3
Experimental Section , Physical properties for (<i>P</i> / <i>M</i>)- 7b	S 3
Experimental Section , Physical properties for (<i>P/M</i>)-7c	S4
Experimental Section , Physical properties for (P,S,S) -9 and (M,S,S) -9	S4
Figure 1 CD spectrum of (P) and (M) -9.	S 6
Figure 2 UV-visible spectrum of (<i>P</i>) and (<i>M</i>)-9.	S7
¹ H NMR of (<i>P</i> / <i>M</i>)- 5	S 8
¹ H NMR of (P/M) -7a	S 9
¹ H NMR of (<i>P</i> / <i>M</i>)- 7b	S 10
¹ H NMR of (P/M)-7c	S 11
¹ H NMR of (P,S,S)-9	S12
¹ H NMR of (M,S,S) -9	S 13
Figure 3 Space filling model of (P/M) -5.	S14

Experimental section

General. Unless otherwise noted, all reagents and solvents were obtained from commercial suppliers and used without further purification. Unless indicated, ¹H and ¹³C NMR spectra, were taken in CDCl₃ solutions at 300 and 75 MHz, respectively, on an instrument in the University of Oklahoma NMR Spectroscopy Laboratory. Chemical shifts refer to TMS and CDCl₃ as the internal standards.

All new compounds were characterized by ¹H and ¹³C NMR.

General Procedure for the synthesis of binuclear Ni(II) complexes. To a flask containing Ni(II) glycine complex (0.10 g scale) and 3 ml of CH₃CN, was added KO'Bu (4.0 eq.) at rt and the reaction mixture was stirred at rt under aerobic condition until the starting **1a-d** consumed completely as controlled by TLC. After evaporation of solvent, water and calculated amount of 5% AcOH aq. (4.0 eq.) was added and extracted with CH_2Cl_2 three times. The combined organic layer was dried over MgSO₄ anhydrous. After evaporation of solvents and short path flash silica gel column (4 g of silica gel was used.), the desired binuclear Ni(II) complex was obtained in high yield.

The binuclear Ni(II) complexes are relatively unstable on TLC and silica gel column. Therefore, silica gel column for their purification should be run quickly to prevent from decomposition.

(P/M)-5: Yield 96%. ¹H NMR δ 6.66 (2 H, d, J = 4.99 Hz), 6.79 (2 H, ddd, J = 7.33, 5.87, 1.46 Hz), 6.94 (2 H, t, J = 7.18 Hz), 7.10-7.40 (12 H, m), 7.66 (2 H, td, J = 7.62, 1.47 Hz), 7.78 (2 H, d, J = 7.63Hz), 8.74 (2 H, d, J = 8.21 Hz), 9.56 (2 H, d, J = 7.18 Hz). ¹³C NMR δ 121.0, 123.3, 125.3, 126.4, 128.3, 128.6, 129.2, 129.6, 130.2, 130.4, 130.8, 138.3, 139.6, 142.3, 148.0, 154.0, 167.2, 168.3. HRMS [M+H⁺] found *m/s* 715.0959, calcd for $C_{38}H_{27}N_6Ni_2O_2$ 715.0824. mp >230 °C (decomp.).

The crystal of (P/M)-5 for X ray crystallography was grown by vapor-diffusion method using CHCl₃ and MeOH as solvents.

(*P/M*)-**7a**: Yield >99%. ¹H NMR δ 0.47 (2 H, m), 0.60-1.15 (12 H, m), 1.00 (6 H, t, J = 7.33 Hz), 1.15-1.42 (6 H, m), 1.78-2.00 (6 H, m), 2.73 (2 H, d, J = 15.8 Hz), 2.94 (2 H, m), 4.76 (2 H, d, J = 15.8 Hz), 5.21 (2 H, m), 6.75-6.95 (6 H, m), 7.19-7.29 (4 H, m), 7.40 (2 H, m), 7.54 (2 H, m), 8.16 (2 H, d, J = 8.21 Hz), 8.42 (2 H, bd, J = 7.62 Hz). ¹³C NMR δ 13.7, 13.9, 20.3, 20.9, 28.8, 30.5, 59.2, 61.8, 62.5, 120.3, 122.7, 128.0, 129.1, 129.4, 129.5, 130.2, 130.5, 141.3, 141.8, 166.9, 174.6. HRMS [M] found *m/s* 842.3, calcd for C₄₆H₅₈N₆Ni₂O₂ 842.3. mp 290.2 °C (decomp.).

This compound was used for variable temperature studies taking NMR data at various temperature (20, 40, 60, 80 and 100 $^{\circ}$ C).

The crystal of (P/M)-7a for X ray crystallography was grown by vapor-diffusion method using C₂HCl₂ and MeOH as solvents.

(*P/M*)-**7b**: Yield 51%. ¹H NMR δ 1.75 (2 H, d, *J* = 13.2 Hz), 2.77 (2 H, d, *J* = 12.8 Hz), 2.78 (2 H, d, *J* = 15.2 Hz), 3.04 (2 H, d, *J* = 13.0 Hz), 3.63 (2 H, d, *J* = 12.8 Hz), 4.67 (2 H, d, *J* = 15.2 Hz), 6.82 (2 H, ddd, *J* = 8.06, 6.89, 1.17 Hz), 6.91 (2 H, dd, *J* = 8.06, 1.76 Hz), 7.00-7.07 (6 H, m), 7.16-7.44 (22 H, m), 7.62 (2 H, m), 7.99 (2 H, dd, *J* = 8.35, 1.17 Hz), 8.67 (2 H, bd, *J* = 7.47 Hz). ¹³C NMR δ 59.5, 59.8, 60.0, 120.4, 123.2, 127.2, 128.0, 128.1, 128.1, 128.3, 128.7, 129.2, 129.3, 129.6, 129.9, 130.3, 130.3, 131.2, 131.9, 132.4, 132.6, 141.2, 141.8, 167.5, 173.9. mp 316.1 °C (decomp.).

The crystal of (P/M)-7b for X ray crystallography was grown by vapor-diffusion method using CHCl₃ and MeOH as solvents.

(*P/M*)-**7c**: Yield 98%. ¹H NMR δ 0.40 (2 H, m), 0.46-0.55 (4 H, m), 1.19 (2 H, bd, J = 13.8 Hz), 1.27-1.63 (6 H, m), 1.85-2.08 (4 H, m), 3.76 (2 H, d, J = 15.4 Hz), 4.13 (2 H, bd, J = 13.5 Hz), 4.53 (2 H, d, J = 15.2 Hz), 6.83 (2 H, ddd, J = 8.06, 7.03, 1.17 Hz), 6.93 (2 H, bd, J = 7.62 Hz), 6.97 (2 H, dd, J = 8.06, 1.47 Hz), 7.18-7.29 (4 H, m), 7.38 (2 H, tt, J = 7.47, 1.17 Hz), 7.59 (2 H, td, J = 7.63, 1.32 Hz), 8.20 (2 H, dd, J = 8.50, 1.18 Hz), 8.54 (2 H, ddd, J = 7.63, 1.47, 1.32 Hz). ¹³C NMR δ 18.1, 20.1, 22.2, 50.8, 58.0, 61.1, 120.4, 123.0, 127.0, 128.1, 128.8, 128.9, 129.5, 130.1, 130.6, 131.1, 141.4, 141.7, 166.7, 173.3. HRMS [M+Na⁺] found *m/s* 777.1897, calcd for C₄₀H₄₂N₆NaNi₂O₂ 777.1974. mp >340 °C (decomp.).

The crystal of (P/M)-7c for X ray crystallography was grown by vapor-diffusion method using CH₂Cl₂ and Et₂O as solvents.

(P,S,S)-9 and (M,S,S)-9 Yield 76%. Ratio (M)-9 / (P)-9 = 21 / 79.

(*M*,*S*,*S*)-**9**: ¹H NMR δ 0.36 (2 H, m), 1.30-1.80 (4 H, m), 1.63-1.80 (2 H, m), 2.29 (2 H, m), 2.42 (2 H, d, J = 12.9 Hz), 2.61 (2 H, m), 3.28 (2 H, d, J = 12.9 Hz), 4.61 (2 H, d, J = 8.21 Hz), 6.79 (2 H, m), 6.90-6.98 (4 H, m), 7.18 (2 H, ddd, J = 7.34, 7.04, 1.76 Hz), 7.22-7.37 (8 H, m), 7.43 (2 H, dd, J = 7.48, 7.33 Hz), 7.64 (2 H, dd, J = 7.48, 7.18 Hz), 7.88-8.06 (4 H, m), 8.20 (2 H, d, J = 8.06 Hz), 8.72 (2 H, d, J = 7.48 Hz). ¹³C NMR δ 21.1, 26.7, 55.9, 59.4, 69.7, 120.2, 123.3, 126.9, 127.9, 128.6, 128.9, 129.0, 129.6, 130.2, 130.4, 131.4, 131.8, 133.5, 141.9, 142.0, 167.0, 177.2. HRMS [M+Na⁺] found *m/s* 901.2275, calcd for C₅₀H₄₆N₆NaNi₂O₂ 901.2287. mp 307.8 °C (decomp.). [α]_D²⁵ -1022 (*c* 0.55, CHCl₃). (*P*,*S*,*S*)-**9**: ¹H NMR δ 1.51 (2 H, d, J = 13.5 Hz), 1.73 (2 H, m), 2.00-2.30 (4 H, m),

2.70 (2 H, m), 2.85 (2 H, d, J = 13.5 Hz), 3.15 (2 H, m), 3.95 (2 H, m), 5.10 (2 H, m), 6.80 (2 H, ddd, J = 8.06, 6.89, 1.17 Hz), 6.86-7.01 (8 H, m), 7.11-7.20 (8 H, m), 7.28-7.39 (4 H, m), 7.56 (2 H, m), 8.02 (2 H, dd, J = 8.50, 1.17 Hz), 8.47 (2 H, d, J = 7.62 Hz). ¹³C NMR δ 24.3, 30.3, 53.7, 53.7, 58.1, 69.2, 120.2, 122.9, 127.0, 127.9, 128.0, 128.3, 129.1, 129.1, 129.7, 130.0, 130.3, 130.4, 131.3, 131.9, 141.5, 141.9, 167.5, 177.0. HRMS [M+Na⁺] found *m/s* 901.2262, calcd for C₅₀H₄₆N₆NaNi₂O₂ 901.2287. mp 301.4 °C (decomp.). [α]_D²⁵ +1222 (*c* 0.55, CHCl₃).

The crystal of (M,S,S)-9 for X ray crystallography was grown by vapor-diffusion method using CH₂Cl₂ and MeOH as solvents.

The crystal of (P,S,S)-9 for X ray crystallography was grown by vapor-diffusion method using CHCl₃ and Et₂O as solvents.

Figure 1 CD spectrum of (*P*) and (*M*)-9 in CH₂Cl₂. Since even trace amount of (*P*) and (*M*)-9 possessed enough high absorption, the concentration $[10(\pm 1) \,\mu \text{mol/L}]$ was adjusted to 0.8 abs.

Figure 2 UV-visible spectrum of (*P*) and (*M*)-9 in CH₂Cl₂. Since even trace amount of (*P*) and (*M*)-9 possessed enough high absorption, the concentration $[10(\pm 1) \,\mu \text{mol}/\text{L}]$ was adjusted to 0.8 abs.

Figure 3. Space filling model of (P/M)-5.

