AUCO2.SI.FINAL ## 11/13/2006 ## **Supporting Information:** ## Dynamics of CO₂-Plasticized Electron Transport in Au Nanoparticle Films: Opposing Effects of Tunneling Distance and Local Site Mobility Jai-Pil Choi, Melissa M. Coble, Matthew R. Branham, Joseph M. DeSimone, and Royce W. Murray* Kenan Laboratories of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290 **Table S-1.** Rest potential (E_R) and Charge-State Composition of Mixed-Valent Au₃₈ Nanoparticles Prepared by Ce(IV) Oxidation | $E_{\rm R}$ (V vs. Ag/Ag ⁺) | ${\rm Au_{38}}^0 \ (\%)^a$ | $\text{Au}_{38}^{1+} \ (\%)^a$ | |---|----------------------------|--------------------------------| | - 0.472 | 99 | 1 | | - 0. 390 | 78 | 22 | | -0.365 | 68 | 32 | | -0.352 | 58 | 42 | a. Calculated from the Nernst equation: $E_{\rm R} - E^{\circ'} = 0.059 \log \frac{[{\rm Au_{38}}^{1+}]}{[{\rm Au_{38}}^{0}]}$, where $E^{\circ'} = -0.357$ V taken from the half-wave potential of the $Au_{38}^{1+/0}$ couple. **Figure S-1.** Diagrams of a high-pressure σ_{EL} measurement cell and a high-pressure platform (HPP) electrode. Figure S-2. Diagram of a flow cell Figure S-3. UV-vis spectrum of Au₃₈ MPCs in CH₂Cl₂. **Figure S-4.** UV-Vis spectra of Au₃₈ films on glass in (a) ethanol and (b) hexane. In both (a) and (b), black line spectra were measured immediately after the film slide was immersed in liquid solvents (0 min), and red lines were measured after 20 min in liquid solvents. **Figure S-5.** Cyclic voltammograms of Au_{38} (5 mg, blue line) and Au_{38} -PEG₃₅₀ (8 mg, red line) measured at the Pt-disk electrode (2 mm diameter) at 100 mV/s. Solvents used for Au_{38} and Au_{38} -PEG₃₅₀ MPCs were CH_2Cl_2 and CH_3CN (5 mL each), respectively, containing 0.1 M $Bu_4N^+ClO_4^-$.