Supporting Information for "Direct Spectroscopic Observation of Inter-Ligand Energy Transfer in Cyclometalated Heteroleptic Iridium(III) Complexes: A Strategy for Phosphorescence Color Tuning and White Light Generation"
 Youngmin You, Kil Suk Kim, ${ }^{\dagger}$ Tae Kyu Ahn, ${ }^{\dagger}$ Dongho Kim, ${ }^{+*}$ and Soo Young Park* School of Materials Science \& Engineering, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul 151-744, Korea
 ${ }^{\dagger}$ Center for Ultrafast Optical Characteristics Control and Department of Chemistry, Yonsei University, Seoul 120-749, Korea,

List of Supporting Information

1. SI 1. A plot of correlation between the difference in calculated ${ }^{1} \mathrm{~T}-{ }^{0} \mathrm{~S}$ energy (eV) and calculated band gap energy (eV) of the ancillary ligands.
2. SI 2. A plot of correlation between the difference in calculated LUMO energies (eV) and triplet emission energy (eV) of $\operatorname{Ir}(\mathrm{III})$ complexes.
3. SI 3. Photoluminescence spectrum of $\operatorname{Ir}(d f p p y)_{3}$ in Ar -saturated solution state $\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in PhMe).
4. SI 4. Photographs and photoluminescence spectra of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing $\mathbf{3}$ at 300 and 78 K.
5. SI 5. A photograph and photoluminescence spectra of $\mathbf{1}$ in solutions of CHCl_{3}, DMF, EtOAc, n hexane, and MeCN. Polarity of the solvents increase from right to left in the photograph.
6. SI 6. A photograph and photoluminescence spectra of $\mathbf{3}$ in solutions of $\mathrm{CHCl}_{3}, \mathrm{DMF}, \mathrm{EtOAc}$, n hexane, and MeCN. Polarity of the solvents increase from right to left in the photograph.
7. SI 7. A photograph and photoluminescence spectra of $\mathbf{5}$ in solutions of $\mathrm{CHCl}_{3}, \mathrm{DMF}, \mathrm{EtOAc}, n$ hexane, and MeCN. Polarity of the solvents increase from right to left in the photograph.
8. SI 8. A photograph and photoluminescence spectra of $\mathbf{6}$ in solutions of $\mathrm{CHCl}_{3}, \mathrm{DMF}, \mathrm{EtOAc}, n$ hexane, and MeCN. Polarity of the solvents increase from right to left in the photograph.
9. SI 9. A plot of excitation and absorption spectra of $\mathbf{1}\left(1 \times 10^{-5} \mathrm{M}\right.$ in PhMe).
10. SI 10. A plot of excitation and absorption spectra of $2\left(1 \times 10^{-5} \mathrm{M}\right.$ in PhMe$)$.
11. SI 11. A plot of excitation and absorption spectra of $3\left(1 \times 10^{-5} \mathrm{M}\right.$ in PhMe$)$.
12. SI 12. A plot of excitation and absorption spectra of $\mathbf{4}\left(1 \times 10^{-5} \mathrm{M}\right.$ in PhMe$)$.
13. SI 13. A plot of excitation and absorption spectra of $5\left(1 \times 10^{-5} \mathrm{M}\right.$ in PhMe$)$.
14. SI 14. A plot of excitation and absorption spectra of $6\left(1 \times 10^{-5} \mathrm{M}\right.$ in PhMe$)$.
15. SI 15. A plot of fluorescence spectrum of free ancillary ligand of 3 . Fast, delayed components and total spectrum of $\mathbf{3}$ are included for comparison.
16. SI 16. (a) A plot of transient PL spectra of 2. (b) Fast, delayed components and total spectrum of 2. (c) Deconvoluted transient PL profiles of 2.
17. SI 17. (a) A plot of transient PL spectra of 4. (b) Fast, delayed components and total spectrum of 4. (c) Deconvoluted transient PL profiles of 4.
18. SI 18. (a) A plot of transient PL spectra of 5. (b) Fast, delayed components and total spectrum of 5. (c) Deconvoluted transient PL profiles of 5.
19. SI 19. (a) A plot of transient PL spectra of 6. (b) Fast, delayed components and total spectrum of 6. (c) Deconvoluted transient PL profiles of 6 .
20. SI 20. An evolution of the photoluminescence spectra varying total molar concentration of solutes. Molar ratios of blue emitting $\mathbf{1}$ and red emitting $\mathbf{6}$ were fixed to 6 to 4 .
21. SI 21. An evolution of the photoluminescence spectra varying total molar concentration of solutes. Molar ratios of blue emitting 1 and red emitting $(B t p)_{2}$ Iracac were fixed to 6 to 4 .

SI 1. A plot of correlation between the difference in calculated ${ }^{1} \mathrm{~T}-{ }^{0} \mathrm{~S}$ energy (eV) and calculated band gap energy (eV) of the ancillary ligands.

SI 2. A plot of correlation between the difference in calculated LUMO energies (eV) and triplet emission energy (eV) of $\operatorname{Ir}(\mathrm{III})$ complexes.

SI 3. Photoluminescence spectrum of $\operatorname{Ir}(d f p p y)_{3}$ in Ar -saturated solution state $\left(1.0 \times 10^{-5} \mathrm{M}\right.$ in PhMe).

SI 4. Photographs and photoluminescence spectra of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing 3 at 300 and 78 K .

SI 5. A photograph and photoluminescence spectra of 1 in solutions of CHCl_{3}, DMF, EtOAc, n-hexane, and MeCN. Polarity of the solvents increase from right to left in the photograph.

SI 6. A photograph and photoluminescence spectra of $\mathbf{3}$ in solutions of CHCl_{3}, DMF, EtOAc, n-hexane, and MeCN. Polarity of the solvents increase from right to left in the photograph.

SI 7. A photograph and photoluminescence spectra of 5 in solutions of CHCl_{3}, DMF, EtOAc, n-hexane, and MeCN. Polarity of the solvents increase from right to left in the photograph.

SI 8. A photograph and photoluminescence spectra of 6 in solutions of CHCl_{3}, DMF, EtOAc, n-hexane, and MeCN. Polarity of the solvents increase from right to left in the photograph.

SI 9. A plot of excitation and absorption spectra of $1\left(1 \times 10^{-5} \mathrm{M}\right.$ in PhMe$)$.

SI 10. A plot of excitation and absorption spectra of $2\left(1 \times 10^{-5} \mathrm{M}\right.$ in PhMe $)$.

SI 11. A plot of excitation and absorption spectra of $3\left(1 \times 10^{-5} \mathrm{M}\right.$ in PhMe).

SI 12. A plot of excitation and absorption spectra of $4\left(1 \times 10^{-5} \mathrm{M}\right.$ in PhMe$)$.

SI 13. A plot of excitation and absorption spectra of $5\left(1 \times 10^{-5} \mathrm{M}\right.$ in PhMe$)$.

SI 14. A plot of excitation and absorption spectra of $6\left(1 \times 10^{-5} \mathrm{M}\right.$ in PhMe$)$.

SI 15. A plot of fluorescence spectrum of free ancillary ligand of 3. Fast, delayed components and total spectrum of $\mathbf{3}$ are included for comparison.

SI 16. (a) A plot of transient PL spectra of 2. (b) Fast, delayed components and total spectrum of 2.

SI 17. (a) A plot of transient PL spectra of 4. (b) Fast, delayed components and total spectrum of 4. (c) Deconvoluted transient PL profiles of 4.

SI 18. (a) A plot of transient PL spectra of 5. (b) Fast, delayed components and total spectrum of 5. (c) Deconvoluted transient PL profiles of 5.

SI 19. (a) A plot of transient PL spectra of 6. (b) Fast, delayed components and total spectrum of 6. (c) Deconvoluted transient PL profiles of 6.

SI 20. An evolution of the photoluminescence spectra varying total molar concentration of solutes. Molar ratios of blue emitting 1 and red emitting 6 were fixed to 6 to 4 .

SI 21. An evolution of the photoluminescence spectra varying total molar concentration of solutes. Molar ratios of blue emitting 1 and red emitting (Btp) $)_{2}$ Iracac were fixed to 6 to 4 .

