Supplemental Information for: Molecular Self Assembly at Bare Semiconductor Surfaces: III. Chemical Properties of the Alkanethiol-GaAs (001) Interface Christine L. McGuiness, ¹ Andrey Shaporenko, ² Michael Zharnikov, ² Amy V. Walker, ³ and David L. Allara ^{1*} ¹Departments of Chemistry and Materials Science, The Pennsylvania State University, 104 Chemistry Building, University Park, PA 16801-6300 ² Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heildelberg, Germany ³Department of Chemistry, Washington University, Department of Chemistry, Campus Box 1134, Washington University, St. Louis, MO 63130 # 1. TOF-SIMs # Positive Ion Mass Spectra of DDT: m/z = 0 - 800 # Negative Ion Mass Spectra of DDT: m/z = 0 - 800 # Positive Ion Mass Spectra of ODT: m/z = 0 - 800 # Negative Ion Mass Spectra of ODT: m/z = 0 - 800 ### 2. Raman Scattering **Figure 1.** The Raman Spectra of a GaAs (100) wafer n+ doped at ~1.1 x 10^{18} cm⁻³ shown for (a) the native oxide, (b) the NH₄OH etched surface, (c) the wafer functionalized with an **ODT** monolayer, and (d) the wafer functionalized with a **DDT** monolayer. Although overall intensities of the peaks changed under each treatment of the starting native oxide covered wafer, the ratio of the I_{LO}/I_{L-} modes. Inset: Detailed spectra of the L- and LO phonon modes. **Figure 2.** Image captures from the Raman microscope of the GaAs surface functionalized with Na₂S·9H₂O. The position of Ar⁺ ion laser is seen as the green spot located in the center of both images. (a) Top. Surface inhomogeneities were observed on a surface freshly coated with 1M aqueous solution of Na₂S·9H₂O. The two spots marked in the image were identified to have different Raman spectra. Spot 1 corresponds with scans in **Figure 3**c and **Figure 4**a. Spot 2 corresponds with **Figure 3**b. (b) Bottom. The surface inhomogeneities were removed upon rinsing with H₂O and ethanol. The resulting spectrum from this cleaned surface is shown in **Figure 4**d. This is also the typical visual appearance for an **ODT** SAM surface. **Figure 3.** A comparison of the Raman spectra of a GaAs (100) wafer n+ doped at ~2.7 x 10¹⁸cm⁻³ shown for (a) immediately, within 1-5 minutes after functionalization with Na₂S·9H₂O. The additional peaks seen in this spectrum gradually diminished after this time. (b) spot 2 – this spectrum is taken from one of the inhomogeneous regions observed after Na₂S·9H₂O functionalization and noted in **Figure 2**. (c) spot 1 – this spectrum is taken from one of the homogeneous regions observed after Na₂S·9H₂O functionalization and noted in **Figure 2**. (d) the freshly etched NH₄OH surface. See text for details. **Figure 4.** A comparison of the Raman spectra of a GaAs (001) wafer n+ doped at ~2.7 x 10^{18} cm⁻³ shown for (a) Spot 1 in **Figure 2** of a Na₂S·H₂O functionalized wafer in comparison with the (b) native oxide, (c) the freshly etched NH₄OH surface, (d) the Na₂S·H₂O functionalized wafer after rinsing with H₂O and ethanol, and (e) the **ODT** functionalized surface. See text for details. **Table 1.** The changes in LO and L- phonon mode intensities as a function of surface treatment of the N_e = $2.7 \times 10^{18} \text{cm}^{-3} n$ + GaAs (001) | | $ m I_{LO}/I_{L}$ | | | | | | | |--------------------------------|-------------------|------------------------------|---------------|---|---------------------|---------------------|---| | $N_{\rm e}$, cm ⁻³ | native
oxide | NH ₄ OH
etched | ODT | initial
Na ₂ S·9H ₂ O ^a | Spot 1 ^b | Spot 2 ^c | rinsed
Na ₂ S· 9H ₂ O ^d | | 2.7×10^{18} | 0.76±0.00 | 0.74 ± 0.02 | 0.74 ± 0.03 | 0.16 ± 0.02 | 0.61±0.06 | 0.57±0.02 | 0.75 ± 0.03 | ^{a.}The I_{LO}/I_L ratio taken in the first 5 minutes after spin coating the GaAs wafer with Na₂S⋅9H₂O. ^bSpot 1 is noted in **Figure 2**. ^cSpot 2 is noted in **Figure 2**. ^dThe I_{LO}/I_L taken from the spectra after rinsing with ethanol. See text for details.