Concise Synthesis of the Bacterial DNA Primase Inhibitor (+)-Sch 642305

Erica M. Wilson and Dirk Trauner
Department of Chemistry, University of California, Berkeley, CA 94720

Supporting Information

General Methods. All reactions were carried out under an inert N_{2} atmosphere in ovendried glassware. Reactions were monitored by thin-layer chromatography (TLC) which was performed using Merck® silica gel $60 \mathrm{~F}_{254}$ pre-coated plates (0.25 mm) and visualized by UV absorbance (254 or 366 nm), potassium permanganate, or anisaldehyde stain. Flash column chromatography was carried out with EcoChrom ICN SiliTech 32-63 D 60 \AA silica gel using the indicated solvent system as eluent. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was purified by passage over activated alumina. Tetrahydrofuran (THF) was distilled from benzophenone and sodium immediately prior to use. Benzene (PhH), diisopropylamine ($i-\mathrm{Pr}_{2} \mathrm{NH}$), triethylamine, and acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ were distilled from CaH_{2} immediately prior to use. n-Butyllithium was titrated with diphenylacetic acid prior to use. All other reagents and solvents were used without further purification from commercial sources. NMR spectra were measured on Bruker DRX-500, Av-500, AVQ400 , AVB- 400 and Av- 300 instruments, ${ }^{1} \mathrm{H}: 500 \mathrm{MHz}, 400 \mathrm{MHz}$ or 300 MHz and ${ }^{13} \mathrm{C}: 125 \mathrm{MHz}$ or $100 \mathrm{MHz} .{ }^{1} \mathrm{H}$ chemical shifts are reported using residual undeuterated solvent as an internal standard $\left(\mathrm{CHCl}_{3:} 7.26 \mathrm{ppm}, \mathrm{MeOH}: 4.78 \mathrm{ppm}\right)$. The abbreviations used for the multiplicity are: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet. ${ }^{13} \mathrm{C}$ chemical shifts are reported using the central peak of deuterochloroform or deuteromethanol as an internal standard (77.2 and 49.0, respectively). HPLC purification was performed using a Dynamax Microsorb 60 Si column ($21 \mathrm{x} 250 \mathrm{~mm}, 8 \mu \mathrm{~m}, 60 \AA$) with isopropanol and hexanes. IR spectra were measured with a Genesis FT-IR or Nicolaet FT-IR spectrometer by thin film on NaCl plates. Melting points were determined with an electrothermal apparatus and are uncorrected.

(-)-(S-Pent-4-en-2-yl)-(tert-butyldimethylsilyl)-ketenacetal (11). To a solution of LDA in THF ($50 \mathrm{~mL}, 1.22 \mathrm{M}$) at $-78^{\circ} \mathrm{C}$, was added ester $10(7.1 \mathrm{~g}, 55.4 \mathrm{mmol})$ dropwise over 15 min . The solution was stirred at the addition temperature for 50 min ., HMPA (5.54 $\mathrm{mL}, 45.2 \mathrm{mmol}$) was added, and the reaction was stirred an additional 5 min . A solution of TBSCl in n-pentane ($15 \mathrm{~mL}, 4.1 \mathrm{M}$) was added over 10 min . The solution was left to
stir at $-78^{\circ} \mathrm{C}$ for 1 h , was warmed to $0^{\circ} \mathrm{C}$, and quenched with cold water (50 mL). The organics were extracted with n-pentane ($3 \times 50 \mathrm{~mL}$), washed with brine (20 mL), dried over MgSO_{4}, and concentrated in vacuo. The crude liquid was purified via Kugelrohr distillation $\left(130^{\circ} \mathrm{C}, 0.5 \mathrm{~mm} \mathrm{Hg}\right)$ to provide $\mathbf{1 1}$ as a clear colorless liquid $(9.5 \mathrm{~g}, 39.0 \mathrm{mmol}$, $70 \%):[\alpha]^{25}{ }_{\mathrm{D}}-2.3$ (c 1.1, CHCl_{3}); $\mathrm{IR}(\mathrm{NaCl}) 2958,2859,1652,1472,1271 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta \quad 5.83-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~d}$, $1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 3.11(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}$, $3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 159.7,134.3$, 117.6, 73.0, 62.0, 40.4, 25.8, 18.9, 18.2, -4.3; HRMS (FAB+) calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+$ H^{+}): 243.1780, found: 243.1787.

(-)-S-Pent-4-en-2-yl (1R,6S)[3,6-Bis(tert-butyldimethylsilyloxy)-2-cyclohexen-1yl]acetate (12). To a solution of (4) ($3.5 \mathrm{~g}, 15.5 \mathrm{mmol}$) and TBSOTf ($0.2 \mathrm{~mL}, 0.87$ $\mathrm{mmol})$ in DCM at $0^{\circ} \mathrm{C}$ was added silyl ketene acetal $11(5.63 \mathrm{~g}, 23.3 \mathrm{mmol})$ in DCM in one portion. The reaction was stirred for 15 min . then quenched by stirring with 2 pyridinol ($0.08 \mathrm{~mL}, 0.87 \mathrm{mmol}$) for 15 min . The solution was warmed to room temperature then filtered over a plug of silica gel (deactivated with 1% TEA, eluted with $10 \% \mathrm{EtOAc}$ in hexanes). The residue was concentrated in vacuo and purified flash silica column chromatography (deactivated with 1% TEA, eluted a gradient of hexanes to 1% EtOAc in hexanes) to provide 12 as a colorless oil as a $3.7: 1$ mixture of syn : anti stereoisomers ($5.4 \mathrm{~g}, 11.5 \mathrm{mmol}, 81 \%$). The isomers could be separated only on an analytical scale by HPLC. Stereochemical assignments were based on NOE correlations. Syn isomer: $[\alpha]_{\mathrm{D}}^{25}-20.2\left(c 0.26, \mathrm{CHCl}_{3}\right) ;$ IR (NaCl) 2957, 2930, 2858, 1737, 1667, 1640, 1472, 1463, 1379, 1260, 1181, 1098, $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $5.80-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.96$ (sextet, $1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=6.0$ $\mathrm{Hz}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{dd}, 1 \mathrm{H}, J=15.5,5.5 \mathrm{~Hz}), 2.35(\mathrm{dt}, 1 \mathrm{H}, J=14.0$, $7.0 \mathrm{~Hz}), 2.26(\mathrm{dt}, 1 \mathrm{H}, J=14.0,6.9 \mathrm{~Hz}), 2.11(\mathrm{dd}, 1 \mathrm{H}, J=15.5,9.3 \mathrm{~Hz}), 2.15-2.09(\mathrm{~m}$, $1 \mathrm{H}), 2.01(\mathrm{dt}, 1 \mathrm{H}, J=17.3,6.8 \mathrm{~Hz}), 1.75$ (quintet, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.66-1.61(\mathrm{~m}, 1 \mathrm{H})$, $1.22(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.05$ $(\mathrm{d}, 6 \mathrm{H}, J=5.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 173.2,150.7,133.9,117.8,105.5$, $70.0,68.2,40.5,37.2,36.7,28.7,27.3,26.0,25.8,19.7,18.3,18.2,-4.2,-4.4,-4.4,-4.8$; HRMS (FAB+) calcd for $\mathrm{C}_{25} \mathrm{H}_{49} \mathrm{O}_{4} \mathrm{Si}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right): 469.3169$, found: 469.3167.

S-Pent-4-en-2-yl (1RS,2RS,6S)-[6-(tert-Butyldimethylsilyloxy)-2-(2-propenyl)-3-oxo-cyclohex-1-yl]acetate (3). A solution of silyl enol ether (mixture of C4-C5 isomers) $\mathbf{1 2}$ $(3.52 \mathrm{~g}, 7.5 \mathrm{mmol})$ and allyl bromide ($2.2 \mathrm{~mL}, 25.4 \mathrm{mmol}$) in dry THF (80 mL) was stirred for 20 min . over $4 \AA \mathrm{MS}$. To the reaction solution at $-35^{\circ} \mathrm{C}$, was added TASF ($2.350 \mathrm{~g}, 8.5 \mathrm{mmol}, 2 \mathrm{M}$ in DMF) dropwise. The solution was stirred at the addition temperature for 30 min . then at $0^{\circ} \mathrm{C}$ for an additional 2 h . The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ then the organics were extracted with diethyl ether ($3 \times 30 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated in vacuo. The crude product was purified by flash silica column chromatography ($20: 1$ hexanes : EtOAc) to afford 3 (mixture of inseparable 2.7:1 C4-C5 isomers) as a clear oil ($1.65 \mathrm{~g}, 4.18 \mathrm{mmol}, 56 \%$) : IR (NaCl) 2929, 2856, $1727,1700,1650,1250,1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.80-5.70(\mathrm{~m}, 2 \mathrm{H})$, 5.11-4.94 (m, 5H), 4.179-4.17 (m, 0.73H), 4.15-4.11 (m, 0.27H), 2.70-1.99 (m, 11H), $1.86-1.83(\mathrm{~m}, 0.74), 1.83-1.70(\mathrm{~m}, 0.29 \mathrm{H}), 1.23-1.21(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 6.8 \mathrm{H}), 0.89(\mathrm{~s}$, $2.2 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 211.1, 172.2, 135.9, 133.7, 118.0, $116.8,70.5,67.6,48.7,43.5,40.4,36.1,34.2,32.7,30.5,26.0,19.5,18.2,-4.2,-4.9$; HRMS (FAB+ $)$ calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right): 395.2618$, found: 395.2627.

(-)-\{(1R,2R,6S)-6-(tert-Butyldimethylsilyloxy)-2-[(S)-5-hydroxy-hex-2-enyl]-3-oxo-cyclohex-1-yl\}acetic acid lactone (13). To a solution of diene 3 ($206 \mathrm{mg}, 0.52 \mathrm{mmol}$) in DCM (100 mL), was added Grubbs II catalyst. The reaction was refluxed for 4 h , cooled and filtered through celite. Purification of the crude residue by flash silica column chromatography ($20: 1$ hexanes : EtOAc) afforded 13 as a white solid ($120 \mathrm{mg}, 0.34$ $\mathrm{mmol}, 63 \%$): mp 76-78 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }_{\mathrm{D}}-20.8$ (c $0.40, \mathrm{CHCl}_{3}$); IR (NaCl) 2927, 2856, 1727, $1700,1461,1250,1080 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.66-5.52(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~m}$, $1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{bs}, 1 \mathrm{H}), 2.80-2.63(\mathrm{~m}, 3 \mathrm{H}), 2.44(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.24(\mathrm{~m}, 1 \mathrm{H})$, 2.14-2.00 (m, 2H), 1.89-1.79 (m, 2H), $1.22(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$, $0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 210.5,172.9,132.1,123.8,71.6,68.9,50.6$, 43.0, 41.8, 35.1, 31.8, 29.4, 26.0, 24.2, 18.2, 18.0, -4.2, -4.7; HRMS (FAB+) calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{LiO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{Li}^{+}\right)$: 373.2386, found: 373.2396.

(-)-\{(1R,2R,6S)-6-(tert-Butyldimethylsilyloxy)-2-[(S)-5-hydroxyhexyl]-3-oxo-

cyclohex-1-yl\}acetic acid lactone (14). To a solution of $13(113 \mathrm{mg}, 0.31 \mathrm{mmol})$ in EtOAc (10 mL) was added $5 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg}, 0.048 \mathrm{mmol})$. The flask was purged with H_{2} several times and was left to stir at room temperature under an atmosphere of H_{2} for 2 h. The reaction mixture was filtered over celite and concentrated in vacuo to provided $\mathbf{1 4}$ as white needles ($108 \mathrm{mg}, 0.29 \mathrm{mmol}, 95 \%$): $\mathrm{mp} 100-10{ }^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }_{\mathrm{D}}-22.2$ (c 0.37 , CHCl_{3}); IR (NaCl) 2955, 2857, 1724, 1700, 1462, 1253, $1079 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $500 \mathrm{MHz}) \delta 5.06(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{td}, 1 \mathrm{H}, J=14.5,6.5 \mathrm{~Hz}), 2.58-2.45(\mathrm{~m}$, $4 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 3 \mathrm{H})$, $1.25(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~m}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 211.0,171.8,73.2,71.1,50.2,41.0,40.4,35.3,32.1,29.5,26.0$, 23.3, 23.0, 21.7, 18.4, 18.2, -4.2, -4.7; HRMS (FAB+) calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 369.2461, found: 369.2453.

(+)-O-(tert-Butyldimethylsilyl)Sch 642305 (15). To a solution of $14(46.6 \mathrm{mg}, 0.13$ $\mathrm{mmol})$ in dry THF (0.8 mL) at $-78^{\circ} \mathrm{C}$ was added TESCl ($24.1 \mathrm{mg}, 0.16 \mathrm{mmol}$) in THF $(0.2 \mathrm{~mL})$. The reaction was stirred for 30 min . then loaded directly on a plug of silica gel eluting with $4: 1$ hexanes : EtOAc and concentrated in vacuo. The TES enol ether was redissolved in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ to which was added $\mathrm{Pd}(\mathrm{OAc})_{2}(157 \mathrm{mg}, 0.7 \mathrm{mmol})$. The reaction mixture stirred at room temperature for 24 hrs then was filtered through a plug of celite and concentrated. Purification of the crude residue by flash silica column chromatography ($4: 1$ hexanes : EtOAc) afforded 15 as a white solid ($28.1 \mathrm{mg}, 0.08$ mmol, 61\%): $[\alpha]^{25}{ }_{\mathrm{D}}+52.1$ (c $0.48, \mathrm{CHCl}_{3}$); IR (NaCl) 2955, 1725, 1679, 1462, 1251, $1085,1034,1006 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.85(\mathrm{dd}, 1 \mathrm{H}, J=10.0,5.6 \mathrm{~Hz})$, $5.97(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.10-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{dd}, 1 \mathrm{H}, J=5.6,3.2 \mathrm{~Hz}), 2.85-2.78$ $(\mathrm{m}, 1 \mathrm{H}), 2.74-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.09(\mathrm{~m}, 2 \mathrm{H})$, $1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, 4 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.87$ (s, 9H), $0.11(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 200.6,171.7,146.9$, 130.2, 73.3, 67.7, 46.7, 39.4, 37.5, 29.5, 25.9, 22.9, 21.7, 18.3, 18.2, -3.7, -4.6; HRMS (FAB+) calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{LiO}_{4} \mathrm{Si}\left(\mathrm{M}+\mathrm{Li}^{+}\right)$: 373.2386, found: 373.2389.

(+)-Sch $642305(\mathbf{1})$. To a solution of TBS ether $\mathbf{1 5}(24 \mathrm{mg}, 0.07 \mathrm{mmol})$ in THF (2 mL) at room temperature, was added a solution of TBAF (0.79 mL of a 1 M sol. in THF, 0.79 $\mathrm{mmol})$ and acetic acid $(47 \mathrm{mg}, 0.79 \mathrm{mmol})$. The reaction was stirred for 12 h then poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and extracted with ether (3 x 4 mL). The organics were washed with $\mathrm{NaHCO}_{3 \text { sat., }}$, brine (3 mL), dried over MgSO 4 , and were concentrated in vacuo. The crude material was purified by flash silica column chromatography ($2: 1$ hexanes : EtOAc) to afford 1 as a white solid ($12 \mathrm{mg}, 0.05 \mathrm{mmol}, 73 \%$): $[\alpha]^{25}{ }_{\mathrm{D}}+76.1$ (c $0.92, \mathrm{MeOH}) ;$ IR (NaCl) 3423, 2917, 2850, 1720, 1676, 1460, 1386, 1279, 1249, 1202, $1076,1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (MeOD, 500 MHz$) \delta 7.04(\mathrm{dd}, 1 \mathrm{H}, J=10.0,5.5 \mathrm{~Hz}), 5.97(\mathrm{~d}$, $1 \mathrm{H}, J=10.0 \mathrm{~Hz}$), $5.06(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{dd}, 1 \mathrm{H}, J=5.5,3.5 \mathrm{~Hz}), 2.83(\mathrm{tdd}, 1 \mathrm{H}, J=11.5$, 3.52 .4 Hz), $2.69(\mathrm{dd}, 1 \mathrm{H}, J=17.0,2.5 \mathrm{~Hz}), 2.66(\mathrm{dt}, 1 \mathrm{H}, J=11.5,4.0 \mathrm{~Hz}), 2.54(\mathrm{dd}, 1 \mathrm{H}$, $J=17.0,11.5 \mathrm{~Hz}), 2.21-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.21$ $(\mathrm{m}, 3 \mathrm{H}), 1.29(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.10(\mathrm{ddd}, 1 \mathrm{H}, J=14.8,11.0,3.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (MeOD, 125 MHz) $\delta 202.3,173.7$, 149.4, 130.6, 74.7, 67.1, 47.7, 39.7, 37.8, 30.7, 24.2, 24.1, 22.6, 18.6; HRMS (FAB+) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 253.1440, found: 253.1443 .

