ELECTRONIC SUPPLEMENTARY INFORMATION

Synthesis of optically active bifunctional building blocks through enantioselective copper catalyzed allylic alkylation using Grignard reagents

Anthoni W. van Zijl, Fernando López, Adriaan J. Minnaard, Ben L. Feringa*

TABLE OF CONTENTS:
General Remarks S2
Experimental procedures and analytical data of compounds S3-S18
NMR-spectra of compounds S19-S40

General Remarks:

${ }^{1} \mathrm{H}$-NMR spectra were recorded at 300 or 400 MHz with CDCl_{3} as solvent. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were obtained at 75.4 or 100.59 MHz in CDCl_{3}. Chemical shifts were determined relative to the residual solvent peaks $\left(\mathrm{CHCl}_{3}, \delta=7.26 \mathrm{ppm}\right.$ for hydrogen atoms, $\delta=77.0$ for carbon atoms $)$. The following abbreviations are used to indicate signal multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad singlet. Enantiomeric excess determination was performed by capillary GC analysis or HPLC analysis using flame ionization detector or UV-detection, respectively (all in comparison with racemic products, column and conditions further specified in relevant experimentals). Optical rotations were measured in CHCl_{3} on a polarimeter with a 10 cm cell (c given in $\mathrm{g} / 100 \mathrm{~mL}$). Absolute configuration of the products was determined by comparison of optical rotations with those of compounds previously published. Thin-layer chromatography (TLC) was performed using commercial Kieselgel $60, \mathrm{~F}_{254}$ silica gel plates, and components were visualized with KMnO_{4} or phosphomolybdic acid reagent. Flash chromatography was performed on silica gel. Drying of solutions was performed with MgSO_{4} and concentrations were conducted with a rotary evaporator.

Taniaphos ligand $\mathbf{L 1}$ was prepared according to literature procedures ${ }^{1}$ or obtained through a donation. The substrates $\mathbf{1 a},{ }^{2} \mathbf{1 b},{ }^{3}$ and $\mathbf{1 c}{ }^{4}$ were prepared according to literature procedures. Grignard reagents were purchased as solutions in $\mathrm{Et}_{2} \mathrm{O}(\mathrm{EtMgBr}, \mathrm{MeMgBr}, n-\mathrm{PentMgBr})$ or prepared from the corresponding alkyl bromides and magnesium turnings in $\mathrm{Et}_{2} \mathrm{O}$ following standard procedures. Grignard reagents were titrated using $s-\mathrm{BuOH}$ and catalytic amounts of 1,10 -phenanthroline. $\mathrm{Et}_{2} \mathrm{O}$ (for preparation of Grignard reagents) and THF were distilled from Na /benzophenone and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was

[^0]distilled from CaH_{2}. All other solvents were used as purchased. Allylic alkylations were conducted under argon atmosphere using standard Schlenk techniques.

Racemic allylic alkylation products were obtained by reaction of the bromides with the corresponding Grignard reagent (5.0 equiv) at $-25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of $\mathrm{CuCN}(100 \mathrm{~mol} \%)$. Other racemic products were obtained through the transformations described, vide infra, on the racemic allylic alkylation products. The products $\mathbf{2 a}, \mathbf{2 c}, \mathbf{2 f}, \mathbf{3}, \mathbf{4 a}, \mathbf{5 a}, \mathbf{5 c}, \mathbf{6 a}$, and $\mathbf{1 0}$ have been previously described (see appropriate references in the following pages).

General Procedure for the Preparative Enantioselective Cu-catalysed Allylic Alkylation with Methyl Grignard:

In a Schlenk tube equipped with septum and stirring bar, $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(75 \mu \mathrm{~mol}, 15.4 \mathrm{mg})$ and ligand $\mathbf{L 1}(90 \mu \mathrm{~mol}, 61.9 \mathrm{mg})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and stirred under an argon atmosphere at room temperature for 10 min . The mixture was cooled to $-75^{\circ} \mathrm{C}$ and the methyl Grignard reagent ($9.0 \mathrm{mmol}, 3 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 3.0 \mathrm{~mL}$) was added dropwise. Allylic bromide 1a or $\mathbf{1 b}(7.5 \mathrm{mmol})$ was added dropwise as a solution in $2.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at that temperature over 60 min via a syringe pump. Once the addition was complete the resulting mixture was further stirred at $-75^{\circ} \mathrm{C}$ for 24h. The reaction was quenched by addition of $\mathrm{MeOH}(2.5 \mathrm{~mL})$ and the mixture was allowed to reach rt. Subsequently, aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(1 \mathrm{M}, 30 \mathrm{~mL})$ and $50 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ were added, the organic phase was separated and the resulting aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x} 25 \mathrm{~mL})$. The combined organic phases were dried and concentrated to yield a yellow oil which was purified by flash chromatography.

(-)-(S)-((2-Methylbut-3-enyloxy)methyl)benzene (2a): ${ }^{5}$

Purification by column chromatography $\left(\mathrm{SiO}_{2}, 1: 99 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.35\right)$ afforded $2 \mathbf{2 a}(1.24 \mathrm{~g})$ as a colorless oil. $\left[94 \%\right.$ yield, 92% ee, $[\alpha]_{\mathrm{D}}=-5.4\left(c 1.3, \mathrm{CHCl}_{3}\right) ;$ lit. ${ }^{5}[\alpha]_{\mathrm{D}}=-6$ (c 1.1, $\left.\mathrm{CHCl}_{3}\right)$]; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.32-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.81(\mathrm{ddd}, J=6.9,10.4$ and $17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.00(\mathrm{~m}$, $2 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{ddd}, \mathrm{J}=6.7,9.1$ and $23.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 141.3,138.6,128.3,127.5,127.4,114.0,75.0,72.9,37.8,16.6$; MS (EI) $\mathrm{m} / \mathrm{z} 176\left(\mathrm{M}^{+}, 16\right)$, 175 (6), 92 (11), 91 (100), 65 (6); HRMS Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}$ 176.1201, found 176.1207. Enantiomeric excess determined of derivatized product 3 .

(-)-(S)-(N-2-Methylbut-3-enyl)(N-t-butoxycarbonyl)

p-toluenesulfonamide (2b):

Purification by column chromatography $\left(\mathrm{SiO}_{2}, 10: 90 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.30\right)$ afforded $2 \mathbf{b}(2.45 \mathrm{~g})$ as a colorless oil. $\left[96 \%\right.$ yield, 95% ee, $\left.[\alpha]_{\mathrm{D}}=-7.7\left(\mathrm{c} 1.4, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\delta 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{ddd}, J=8.1,10.2$ and $17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-$ $5.00(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.72(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$-NMR $\delta 151.0,144.0,140.7,137.5,129.1,127.9,115.3,84.0,51.9,38.7,27.8,21.5,17.3 ;$ MS (EI) m/z 283 (9), 216 (20), 185 (6), 184 (64), 155 (42), 91 (39), 68 (7), 65 (11), 57 (100), 56 (5), 55 (13); MS (CI) m/z 359 (8), 358 (20), $357\left(\left[\mathrm{M}^{+} \mathrm{NH}_{4}\right]^{+}, 100\right), 302$ (7), 301 (40), 284 (6). HRMS Calcd. for [M$\left.\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}_{2}\right]^{+} \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ 283.0878, found 283.0887. Enantiomeric excess determined of derivatized product 7. The absolute configuration was assigned by comparison of the sign of the optical rotation of derivatized product $\mathbf{1 0}$ with the literature value.

[^1]
General Procedure for the Enantioselective Cu-catalysed Allylic Alkylations:

In a Schlenk tube equipped with septum and stirring bar, $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(15 \mu \mathrm{~mol}, 3.1 \mathrm{mg})$ and ligand $\mathbf{L} 1(18 \mu \mathrm{~mol}, 12.4 \mathrm{mg})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ and stirred under argon at room temperature for 10 min . The mixture was cooled to $-75^{\circ} \mathrm{C}$ and the Grignard reagent $(0.45 \mathrm{mmol}$, solution in $\mathrm{Et}_{2} \mathrm{O}$) was added dropwise. The allylic bromide (0.3 mmol) was then added dropwise as a solution in $0.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-75{ }^{\circ} \mathrm{C}$ over 15 min . Once the addition was complete the resulting mixture was further stirred at $-75^{\circ} \mathrm{C}$. After full conversion was established by TLC the reaction was quenched by addition of $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and the mixture was allowed to reach rt . Then, sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (1.5 mL) was added, the organic phase was separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2.5 \mathrm{~mL})$. The combined organic phases were dried and concentrated to yield a yellow oil which was purified by flash chromatography.

(-)-(S)-4-[(tert-Butyldiphenylsilyl)oxy]-3-methylbut-1-ene (2c): ${ }^{6}$

Purification by column chromatography $\left(\mathrm{SiO}_{2}, 0.2: 99.8 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.25\right)$ afforded 2c (70.3 mg) as a colorless oil. [72\% yield, 94% ee, $[\alpha]_{D}=-2.7(c 1.3$, $\left.\mathrm{CHCl}_{3}\right) ;$ lit. $^{6}[\alpha]_{\mathrm{D}}=-3.18\left(94 \%\right.$ ee, c $\left.\left.0.71, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.68(\mathrm{dd}, J=7.7$ and $1.6 \mathrm{~Hz}, 4 \mathrm{H})$, 7.45-7.36 (m, 6H), $5.81(\mathrm{ddd}, J=6.9,10.4$ and $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=9.7$ and $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=9.7$ and $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3H); ${ }^{13} \mathrm{C}$-NMR $\delta 141.3,135.6,133.9,129.5,127.6,114.0,68.5,40.2,26.9,19.3,16.2$; MS (EI) $\mathrm{m} / \mathrm{z} 268$ (24), 267 ([M-tBu] $\left.{ }^{+}, 100\right), 240$ (17), 239 (80), 237 (12), 211(9), 199 (15), 197 (14), 190 (7), 189 (36), 183 (23), 182 (7), 181 (19), 159 (19), 135 (18), 121 (10), 105 (11), 77 (7); MS (CI) m/z 344 (8), 343 (28), $342\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100\right), 325\left([\mathrm{M}+\mathrm{H}]^{+}, 14\right)$. HRMS Calcd. for $[\mathrm{M}-\mathrm{tBu}]^{+} \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{OSi}$ 267.1205, found 267.1197. Enantiomeric excess determined of derivatized product $5 \mathbf{a}$ (Scheme S1, page S16).

[^2]

(-)-(N-2-Ethylbut-3-enyl)(N-tert-butoxycarbonyl)

p-toluenesulfonamide (2e):
Purification by column chromatography $\left(\mathrm{SiO}_{2}, 5: 95 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.25\right)$
afforded $2 \mathbf{e}(87.5 \mathrm{mg})$ as a colorless oil. [83\% yield, 91% ee, $\left.[\alpha]_{\mathrm{D}}=-0.4\left(\mathrm{c} 8.5, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta$ $7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.59-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} 1.26-1.18(\mathrm{~m}, 1 \mathrm{H})$, $0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 151.0,143.9,139.3,137.5,129.0,127.8,117.2,83.9,50.8,46.7$, 27.7, 24.8, 21.5, 11.5; MS (EI) m/z 353 ($\mathrm{M}^{+}, 0.1$), 297 (15), 216 (10), 185 (9), 184 (88), 155 (49), 92 (5), 91 (39), 82 (39), 69 (7), 65 (9), 57 (100); MS (CI) m/z 373 (9), 372 (20), 371 ([M+NH4] $]^{+}, 100$), 317 (6), 316 (12), 315 (75), 298 (8), 271 (8). HRMS Calcd. for [$\left.\mathrm{M}-\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}_{2}\right]^{+} \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ 297.1035, found 297.1027. Enantiomeric excess determined of derivatized product $\mathbf{5 e}$. In accordance with the results obtained in the other allylic alkylations, the absolute configuration of this compound is assumed to be (S), analogous to the other products.

(+)-(S)-((2-n-Butylbut-3-enyloxy)methyl)benzene (2f): ${ }^{7}$

Purification by column chromatography $\left(\mathrm{SiO}_{2}, 1: 99 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.50\right)$ afforded $2 \mathrm{f}(60.5 \mathrm{mg})$ as a colorless oil. $\left[93 \%\right.$ yield, 94% ee, $\left.[\alpha]_{\mathrm{D}}=+18.5\left(\mathrm{c} 2.2, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta$ 7.38-7.27 (m, 5H), 5.70 (ddd, $J=8.4,10.6$ and $17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.20(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR $\delta 140.4,138.6,128.3,127.5,127.4,115.4,73.8,72.9,44.1,30.9,29.1,22.8,14.0 ;$ MS (EI) m / z $218\left(\mathrm{M}^{+}, 11\right), 107(13), 105(6), 104(7), 97(8), 96(6), 92(15), 91$ (100), 85 (11), 83 (16), $69(6), 65$ (8), 57 (8), 55 (21); HRMS Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}$ 218.1671, found 218.1665. Enantiomeric excess determined by chiral HPLC analysis, Chiralcel OD-H (100% heptane), $40^{\circ} \mathrm{C}$, retention times (min):

[^3]11.6 (minor) and 13.6 (major). The absolute configuration was assigned by comparison of the sign of optical rotation of the hydrogenated product 2-ethylhexan-1-ol $\left(\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right.$ in MeOH$)$ with the literature value. ${ }^{8}$

(+)-(S)-((2-n-Pentylbut-3-enyloxy)methyl)benzene (2g):

Purification by column chromatography $\left(\mathrm{SiO}_{2}, 1: 99 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\mathrm{R}_{\mathrm{f}}=$ $0.50)$ afforded $2 \mathrm{~g}(60.4 \mathrm{mg})$ as a colorless oil. [87\% yield, 94% ee, $\left.[\alpha]_{\mathrm{D}}=+14.4\left(\mathrm{c} 2.4, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-$ NMR $\delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.70(\mathrm{ddd}, J=8.4,10.6$ and $17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H})$, $3.42(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.21(\mathrm{~m}, 7 \mathrm{H}), 0.91(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 140.4,138.6,128.2,127.5,127.4,115.4,73.8,72.9,44.1,31.9,31.2,26.6,22.6,14.1 ;$

LRMS (EI) m/z 232 ($\mathrm{M}^{+}, 24$), 231 (6), 161 (7), 107 (8), 105 (5), 104 (11), 92 (14), 91 (100), 69 (14), 65 (5), 55 (8); HRMS Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O} 232.1827$, found 232.1835. Enantiomeric excess determined by chiral HPLC analysis, Chiralcel OD-H (100% heptane), $40^{\circ} \mathrm{C}$, retention times (min): 11.5 (minor) and 13.3 (major). The absolute configuration was assigned by comparison of the sign of optical rotation of the hydrogenated product 2-ethylheptan-1-ol $\left(\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right.$ in MeOH$)$ with the literature value. ${ }^{9}$

(+)-(S)-(2-Vinyl-hex-5-enyloxymethyl)-benzene (2h):

Purification by column chromatography $\left(\mathrm{SiO}_{2}, 1: 99 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.50\right)$ afforded 2 h as a colorless oil. $\left[89 \%\right.$ yield, 90% ee, $\left.[\alpha]_{\mathrm{D}}=+10.0\left(\mathrm{c} 2.5, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.40-7.27$ $(\mathrm{m}, 5 \mathrm{H}), 5.82(\mathrm{tdd}, J=6.6,10.2$ and $16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.14-4.94(\mathrm{~m}, 4 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H})$, 3.46-3.38 (m, 2H), 2.45-2.36(m, 1H), 2.18-1.97(m, 2H), 1.70-1.60(m, 1H), 1.44-1.34 (m, 1H); ${ }^{13} \mathrm{C}-$ NMR δ 139.9, 138.7, 138.5, 128.3, 127.5, 127.4, 115.8, 114.5, 73.7, 72.9, 43.5, 31.1, 30.4; MS (EI) m / z $216\left(\mathrm{M}^{+}, 0.4\right), 173$ (6), 95 (6), 92 (11), 91 (100), 79 (6), 67 (8), 65 (11), 55 (5); HRMS Calcd. For

[^4]$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O} 216.1514$, found 216.1513 . Enantiomeric excess determined by chiral HPLC analysis, Chiralcel OD (100% heptane), $40^{\circ} \mathrm{C}$, retention times (min): 7.5 (minor) and 8.5 (major). The absolute configuration was assigned by comparison of the sign of optical rotation of the hydrogenated product 2-ethylhexan-1-ol $\left(\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right.$ in MeOH$)$ with the literature value. ${ }^{8}$

(+)-(2-Vinyl-4-phenyl-butyloxymethyl)-benzene (2i):

Purification by column chromatography $\left(\mathrm{SiO}_{2}, 1: 99 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\mathrm{R}_{\mathrm{f}}=$ $0.50)$ afforded $2 \mathbf{i}(69.0 \mathrm{mg})$ as a colorless oil. [86% yield, $\left.92 \% \mathrm{ee},[\alpha]_{\mathrm{D}}=+3.8\left(\mathrm{c} 2.2, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-$ NMR $\delta 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.78(\mathrm{ddd}, J=8.5,11.0$ and 16.5 Hz , $1 \mathrm{H}), 5.21-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.51-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{ddd}, J=6.6,10.2$ and $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{dddd}, \mathrm{J}=4.6,6.6,11.1$ and $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 142.4,139.8,138.5,128.4,128.3,128.2,127.5,127.4,125.6,116.1,73.7,72.9,43.7,33.2$, 33.0; MS (EI) m/z $266\left(\mathrm{M}^{+}, 3\right), 162(5), 157$ (10), 129 (6), 104 (5), 92 (10), 91 (100), 65 (10); HRMS Calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}$ 266.1671, found 266.1682. Enantiomeric excess determined by chiral HPLC analysis, Chiralcel OD (99.5\% heptane/i-PrOH), $40^{\circ} \mathrm{C}$, retention times (min): 8.1 (minor) and 10.0 (major). In accordance with the results obtained in the other allylic alkylations, the absolute configuration of this compound is assumed to be (S), analogous to the other products.

(+)-(S)-4-Benzyloxy-3-methylbutan-1-ol (3): ${ }^{10}$
To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of $\mathbf{2 a}(0.5 \mathrm{mmol}, 88 \mathrm{mg})$ in THF $(3.5 \mathrm{~mL})$ a solution of 9-BBN ($0.75 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF, 1.5 mL) was added. The reaction mixture was stirred for 3h, then it was allowed to reach rt , after which sequentially $\mathrm{EtOH}(2.5 \mathrm{~mL})$, aq. $\mathrm{NaOH}(1 \mathrm{M}, 2.5 \mathrm{~mL})$ and aq. $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 2.0 \mathrm{~mL})$ were added. The resulting mixture was stirred vigorously overnight at rt ,

[^5]then quenched with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \%, 10 \mathrm{~mL}) . \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added, the organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The combined organic layers were dried and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{SiO}_{2}, 40: 60\right.$ $\mathrm{Et}_{2} \mathrm{O} /$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.25\right)$ afforded $\mathbf{3}(77.3 \mathrm{mg})$ as a colorless oil. $\left[80 \%\right.$ yield, 92% ee, $[\alpha]_{\mathrm{D}}=+1.8(\mathrm{c}$ $2.9, \mathrm{EtOH}),-5.5\left(\mathrm{c} 2.7, \mathrm{CHCl}_{3}\right)$, lit. $\left.{ }^{11}[\alpha]_{\mathrm{D}}=+2.2(c 1.1, \mathrm{EtOH}),+6.26\left(\mathrm{c} 5.5, \mathrm{CHCl}_{3}\right)^{11 \mathrm{c}}\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta$ 7.39-7.26 (m, 5H), 4.52 (s, 2H), 3.75-3.61 (m, 2H), $3.35(\mathrm{ddd}, J=6.2,9.1$ and $16.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{bs}$, $1 \mathrm{H}), 1.95(\mathrm{tq}, \mathrm{J}=6.9$ and $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.51(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 138.0$, 128.4, 127.7, 76.1, 73.2, 61.2, 38.1, 31.4, 17.7; MS (EI) m/z $194\left(\mathrm{M}^{+}, 7\right), 108$ (11), 107 (37), 105 (6), 92 (28), 91 (100), 85 (12), 79 (7), 77 (8), 65 (15), 55 (8); HRMS Calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2} 194.1307$, found 194.1309. Enantiomeric excess determined by chiral HPLC analysis, Chiralcel OD-H (99\% heptane/iPrOH), $40^{\circ} \mathrm{C}$, retention times (min): 57.7 (major) and 64.9 (minor).

O (-)-(R)-4-Benzyloxy-3-methylbutan-2-one (4a): ${ }^{12}$

A suspension of $\mathrm{PdCl}_{2}(50 \mu \mathrm{~mol}, 8.9 \mathrm{mg})$ and $\mathrm{CuCl}(1.0 \mathrm{mmol}, 99 \mathrm{mg})$ in DMF/ $\mathrm{H}_{2} \mathrm{O}(6: 1,5 \mathrm{~mL})$ was stirred vigorously under an O_{2}-stream for 1.5 h at rt . After addition of 2a $(0.5 \mathrm{mmol}, 88 \mathrm{mg})$ vigorous stirring was continued for 32 h under an O_{2}-atmosphere at rt . Then, $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O} /$ pentane $(1: 1,10 \mathrm{~mL}, 3 \mathrm{x})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, dried and concentrated in vacuo. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 10: 90 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.20\right)$ afforded $\mathbf{4 a}(82.4 \mathrm{mg})$ as a colorless oil. $\left[86 \%\right.$ yield, 92% ee, $[\alpha]_{\mathrm{D}}=-14.0\left(\mathrm{c} 4.0, \mathrm{CHCl}_{3}\right)$, lit. $\left.{ }^{12 \mathrm{~b}}[\alpha]_{\mathrm{D}}=-16.7\left(\mathrm{c} 3.91, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta$ $7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{dd}, J=7.5$ and $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=5.5$ and

[^6]$9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 211.1,138.0,128.4$, 127.6, 127.6, 73.2, 72.1, 47.2, 29.0, 13.4; MS (EI) m/z $192\left(\mathrm{M}^{+}, 4\right), 134$ (27), 108 (18), 107 (46), 105 (12), 92 (14), 91 (100), 86 (43), 85 (6), 79 (8), 77 (7), 71 (27), 65 (9); HRMS Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ 192.1150, found 192.1144. Enantiomeric excess determined by chiral HPLC analysis, Chiralcel AS (99.5\% heptane $/ i-\mathrm{PrOH}$), $40^{\circ} \mathrm{C}$, retention times (min): 11.8 (minor) and 16.4 (major).

(-)-(S)-3-Benzyloxy-2-methylpropan-1-ol (5a): ${ }^{13}$

Ozone was bubbled for 10 min through a solution of $\mathbf{2 a}(0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(1: 1,15 \mathrm{~mL})$ cooled to $-78^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}(2.5$ eq., $2.5 \mathrm{mmol}, 95 \mathrm{mg})$ was added at $-78^{\circ} \mathrm{C}$ after which the cooling bath was removed and the reaction mixture was stirred at rt for 2 h . The reaction was quenched by addition of aq. $\mathrm{HCl}(1 \mathrm{M}, 15 \mathrm{~mL})$. The organic layer was separated and the resulting aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}, 2 \mathrm{x})$ the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 30: 70\right.$ $\mathrm{Et}_{2} \mathrm{O} /$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.30\right)$ afforded $\mathbf{5 a}(47.0 \mathrm{mg})$ as a colorless oil. $\left[52 \%\right.$ yield, 92% ee, $[\alpha]_{\mathrm{D}}=-13.0(\mathrm{c}$ 2.3, $\left.\mathrm{CHCl}_{3}\right)$, lit. $\left.{ }^{13}[\alpha]_{\mathrm{D}}=-15.5\left(\mathrm{c} 1.8, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.66-3.53$ $(\mathrm{m}, 3 \mathrm{H}), 3.43(\mathrm{dd}, J=8.0$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{bs}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR} \delta 138.0,128.4,127.6,127.5,75.1,73.3,67.5,35.5,13.4 ;$ LRMS (EI) $\mathrm{m} / \mathrm{z} 180\left(\mathrm{M}^{+}, 10\right)$, 108 (13), 107 (51), 105 (6), 92 (23), 91 (100), 89 (5), 79 (15), 78 (5), 77 (13), 65 (18), 51 (7); HRMS Calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$ 180.1150, found 180.1157. Enantiomeric excess determined by chiral HPLC analysis, Chiralcel AS (98.5\% heptane $/ \mathrm{i}-\mathrm{PrOH}$), $40^{\circ} \mathrm{C}$, retention times (min): 11.9 (minor) and 14.0 (major).

[^7]

(-)-(R)-3-Benzyloxy-2-methylpropionic acid (6a):

 $\mathrm{CCl}_{4} / \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1: 1: 1.5,5 \mathrm{~mL}), \mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(25 \mu \mathrm{~mol}, 5.2 \mathrm{mg})$ was added and the reaction was stirred vigorously overnight. Afterwards, $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were added and the organic layer was separated, the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x 5 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(10$ $\mathrm{mL})$ and extracted with sat. aq. $\mathrm{NaHCO}_{3}(3 \mathrm{x} 5 \mathrm{~mL})$, the combined aqueous layers were acidified and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$ and concentrating the combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers in vacuo afforded $6 \mathbf{a}(50.3 \mathrm{mg})$ as a colorless oil. [52% yield, $92 \% \mathrm{ee},[\alpha]_{\mathrm{D}}=-6.7\left(\mathrm{c} 2.7, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{12 \mathrm{~b}}$ $\left.[\alpha]_{\mathrm{D}}=-8.5\left(\mathrm{c} 3.7, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 10.78(\mathrm{bs}, 1 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{dd}, \mathrm{J}=$ 7.5 and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=5.7$ and $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR $\delta 180.8,137.8,128.3,127.6,127.6,73.1,71.5,40.1,13.7$; MS (EI) $\mathrm{m} / \mathrm{z} 194\left(\mathrm{M}^{+}, 16\right), 108$ (9), 107 (83), 105 (8), 92 (13), 91 (100), 89 (5), 79 (23), 77 (14), 73 (6), 65 (18), 51 (7); HRMS Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$ 194.0943, found 194.0948. Enantiomeric excess determined by chiral GC analysis, CP-Chiralsil-Dex-CB (25 m x 0.25 mm), isothermic $150^{\circ} \mathrm{C}$, retention times (min): 41.5 (minor) and 42.9 (major).
(-)-(S)-(N-tert-Butoxycarbonyl)(2-methylbut-3-enyl)amine (7):
To a solution of $\mathbf{2 b}(0.5 \mathrm{mmol}, 170 \mathrm{mg})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ Mg-powder (2.5 $\mathrm{mmol}, 61 \mathrm{mg}$) was added and the mixture was sonicated for 60 min at rt . The resulting suspension was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and poured in aq. $\mathrm{HCl}(0.5 \mathrm{M}, 20 \mathrm{~mL})$. The organic phase was separated and washed with aq. sat. $\mathrm{NaHCO}_{3}(2 \mathrm{x} 10 \mathrm{~mL})$, dried and concentrated in vacuo, affording $7(83.3 \mathrm{mg})$ as a colorless oil. $\left[90 \%\right.$ yield, 95% ee, $\left.[\alpha]_{\mathrm{D}}=-16.1\left(\mathrm{c} 2.7, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 5.67(\mathrm{ddd}, J=7.6$, 10.4 and $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{bs}, 1 \mathrm{H}), 3.20-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{ddd}, J=5.4,8.0$ and
$13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 155.9,141.3,114.9$, $78.9,45.6,38.3,28.3,17.3$; MS (EI) $m / z 130$ (6), 129 (17), 59 (19), 57 (100), 56 (7), 55 (11); MS (CI) $\mathrm{m} / \mathrm{z} 204$ (13), $203\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100\right), 202(5), 187(7), 186\left([\mathrm{M}+\mathrm{H}]^{+}, 58\right), 163$ (9), 148 (5), 147 (63), 130 (33), 86 (7). HRMS Calcd. for [$\left.\mathrm{M}-\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}_{2}\right]^{+} \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{2}$ 129.0790, found 129.0797. Enantiomeric excess determined by chiral GC analysis, CP-Chiralsil-Dex-CB (25 mx 0.25 mm), initial temp. $85^{\circ} \mathrm{C}$, rate $10^{\circ} \mathrm{C} / \mathrm{min}$., fin. temp. $120^{\circ} \mathrm{C}$, retention times (min): 61.4 (major) and 64.7 (minor).

(+)-(R)-4-((tert-Butoxycarbonyl)(p-toluenesulfonyl)amino)-

3-methylbutan-2-one (4b):

The title compound was prepared in an analogous way to $\mathbf{4 a}$ from $\mathbf{2 b}$. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 10: 90 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.05\right)$ afforded $\mathbf{4 b}(145.3$ mg) as a colorless oil. [82\% yield, 95% ee, $[\alpha]_{\mathrm{D}}=+2.6\left(\mathrm{c} 7.1, \mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{dd}, J=6.0$ and $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=8.0$ and $14.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.16-3.02 (m, 1H), $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 210.1$, $150.8,144.2,136.9,129.1,127.7,84.4,48.5,47.1,28.6,27.6,21.4,14.2 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 282\left([\mathrm{M}-\mathrm{tBuO}]^{+}\right.$, 5), 200 (9), 198 (6), 191 (27), 184 (35), 156 (5), 155 (53), 144 (31), 120 (15), 108 (27), 102 (7), 100 (27), 91 (50), 72 (10), 65 (11), 61 (9), 58 (20), 57 (100), 56 (6); MS (CI) m/z 375 (11), 374 (31), 373 $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100\right), 317$ (5), 219 (6), 69 (5). HRMS Calcd. for $[\mathrm{M}-t \mathrm{BuO}]^{+} \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{~S} 282.0800$, found 282.0805. Enantiomeric excess determined by chiral HPLC analysis, Chiralcel AD (98% heptane/iPrOH), $40^{\circ} \mathrm{C}$, retention times (min): 16.8 (major) and 20.9 (minor).

(-)-(R)-3-((tert-Butoxycarbonyl)(p-toluenesulfonyl)amino)-

2-methylpropan-1-ol (5b):

The title compound was prepared in an analogous way to $\mathbf{5 a}$ from $\mathbf{2 b}$.

Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 50: 50 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.25\right)$ afforded $\mathbf{5 b}(132.8$ mg) as a colorless oil, which crystallized upon standing. [77\% yield, 95% ee, $[\alpha]_{\mathrm{D}}=-3.3$ (c 8.1, $\left.\left.\mathrm{CHCl}_{3}\right), \mathrm{mp}=59.8-60.4{ }^{\circ} \mathrm{C}\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{dd}, J=$ 9.1 and $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=5.3$ and $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.63$ (bs, 1H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 1 \mathrm{H}), \mathrm{m} 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 151.9$, 144.3, 137.1, 129.2, 127.6, 84.8, 63.6, 49.1, 36.4, 27.7, 21.5, 14.5; MS (EI) m/z 270 ([M-tBuO] ${ }^{+}, 5$), 184 (47), 179 (28), 155 (48), 120 (14), 108 (26), 92 (8), 91 (52), 65 (12), 58 (6), 57 (100), 56 (6); MS (CI) $m / z 363$ (8), 362 (22), $361\left(\left[M+\mathrm{NH}_{4}\right]^{+}, 100\right), 305$ (11). HRMS Calcd. for [M-tBuO] ${ }^{+} \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{~S}$ 270.0800, found 270.0787. Enantiomeric excess determined by chiral HPLC analysis, Chiralcel AD (98% heptane $/ \mathrm{i}-\mathrm{PrOH}$), $40^{\circ} \mathrm{C}$, retention times (min): 38.6 (major) and 51.0 (minor).

(-)-3-((tert-Butoxycarbonyl)(p-toluenesulfonyl)amino)-

2-ethylpropan-1-ol (5e):

The title compound was prepared in an analogous way to $5 \mathbf{5}$ from $\mathbf{2 e}$. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 50: 50 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.25\right)$ afforded $5 \mathbf{e}(131.0$ $\mathrm{mg})$ as a colorless oil. $\left[74 \%\right.$ yield, 90% ee, $[\alpha]_{\mathrm{D}}=-6.8\left(\mathrm{c} 5.8, \mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.73(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{bs}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.86-$ $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta$ $152.0,144.3,137.0,129.2,127.6,85.0,60.3,48.0,42.9,27.7,21.6,21.5,11.5$; MS (EI) m/z 284 ([M$\left.t \mathrm{BuO}]^{+}, 2\right), 216(5), 193$ (15), 184 (25), 155 (29), 120 (5), 108 (14), 92 (9), 91 (49), 65 (14), 57 (100), 56 (8), 55 (7); MS (CI) m/z 377 (10), 376 (27), 375 ([M+NH4] $]^{+}$100), 319 (47). HRMS Calcd. for [M$t \mathrm{BuO}]^{+} \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S} 284.0956$, found 284.0973. Enantiomeric excess determined by chiral HPLC analysis, Chiralcel $\mathrm{AD}\left(98 \%\right.$ heptane $/ \mathrm{i}-\mathrm{PrOH}$), $40^{\circ} \mathrm{C}$, retention times (min): 35.2 (major) and 52.7 (minor).

Ozone was bubbled for 10 min through a solution of $\mathbf{2 b}(0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(1: 1,15 \mathrm{~mL})$ cooled to $-78^{\circ} \mathrm{C}$. $\mathrm{NaBH}_{4}\left(2.5\right.$ eq., $2.5 \mathrm{mmol}, 95 \mathrm{mg}$) was added at $-78^{\circ} \mathrm{C}$ after which the cooling bath was removed and the reaction mixture was stirred at rt for 2 h . The solvents were removed from the reaction mixture by rotavap (waterbath at $60^{\circ} \mathrm{C}$), followed by addition of aq. $\mathrm{HCl}(1 \mathrm{M}, 15 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. The organic layer was separated and the resulting aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x}$ 25 mL), the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 30: 70 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.30\right)$ afforded $\mathbf{8}(123.8 \mathrm{mg})$ as a colorless oil. $\left[69 \%\right.$ yield, 95% ee, $\left.[\alpha]_{\mathrm{D}}=+0.6\left(\mathrm{c} 7.9, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=4.7$ and $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=6.7$ and $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 153.6,143.2,136.9,129.6,126.9,82.2,68.8,45.6,33.2,27.6,21.4,14.4$; MS (EI) m / z 226 (25), 225 (6), 224 (23), 199 (7), 197 (8), 188 (9), 185 (9), 184 (88), 157 (6), 156 (9), 155 (100), 133 (8), 132 (25), 119 (6), 92 (12), 91 (80), 70 (73), 65 (17), 59 (6), 57 (71), 56 (12); MS (CI) m/z 363 (7), 362 (19), $361\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100\right), 333$ (14), 305 (6), 289 (14). HRMS Calcd. for [M-tBuO] ${ }^{+}$ $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{~S} 270.0800$, found 270.0795. Enantiomeric excess determined by chiral HPLC analysis, Chiralcel AS-H (90% heptane/i-PrOH), $40^{\circ} \mathrm{C}$, retention times (min): 40.3 (minor) and 43.0 (major).

(-)-(R)-3-((tert-Butoxycarbonyl)(p-toluenesulfonyl)amino)-2methylpropionic acid (6b):

The title compound was prepared in an analogous way to $\mathbf{6 a}$ from $\mathbf{2 b}$. The product $\mathbf{6 b}(140.9 \mathrm{mg})$ was obtained as a white crystalline solid. $\left[79 \%\right.$ yield, 95% ee, $[\alpha]_{\mathrm{D}}=-9.5(\mathrm{c}$ 3.6, $\left.\left.\mathrm{CHCl}_{3}\right), \mathrm{mp}=114.4-116.3^{\circ} \mathrm{C}\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 10.27(\mathrm{bs}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=$
$8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{dd}, J=6.8$ and $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=7.7$ and $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.01(\mathrm{~m}, 1 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 180.5,150.9,144.3,137.0,129.2$, 127.9, 84.7, 48.7, 39.7, 27.7, 21.6, 14.5; MS (EI) m/z 284 ([M-tBuO] ${ }^{+}$, 4), 194 (5), 193 (44), 185 (5), 184 (54), 156 (5), 155 (55), 120 (18), 112 (7), 108 (34), 102 (11), 92 (7), 91 (57), 65 (14), 57 (100), 56 (7); MS (CI) m/z 377 (8), 376 (19), 375 ([M+NH4] ${ }^{+}$, 100), 319 (16), 275 (6), 174 (7). HRMS Calcd. for [M-tBuO] ${ }^{+} \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{5} \mathrm{~S}$ 284.0592, found 284.0607. Enantiomeric excess determined on derivatized product 9 .

(-)-(R)-Methyl 3-((tert-butoxycarbonyl)(p-toluenesulfonyl)amino)-2methylpropionate (9):

To a solution of $\mathbf{6 b}(0.19 \mathrm{mmol}, 65 \mathrm{mg})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ in toluene $(3 \mathrm{~mL})$, $\mathrm{TMSCHN}_{2}\left(1.0 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.5 \mathrm{~mL}\right)$ was added. The reaction mixture was stirred at rt for 1 h , then $\mathrm{MeOH}(2 \mathrm{~mL})$ was added and the excess TMSCHN_{2} was destroyed through addition of $\mathrm{AcOH}(0.5$ $\mathrm{mL})$. The mixture was diluted with toluene (5 mL) and washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL}, 2 \mathrm{x})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to yield $9(63.6 \mathrm{mg})$ as a colorless oil, which crystallised upon standing. [94\% yield, $95 \% \mathrm{ee},[\alpha]_{\mathrm{D}}=-20.8\left(\mathrm{c} 2.8, \mathrm{CHCl}_{3}\right), \mathrm{mp}=75.8-78.6$ $\left.{ }^{\circ} \mathrm{C}\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=7.3$ and $14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89(\mathrm{dd}, J=7.2$ and $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 174.6,150.9,144.2,137.2,129.2,127.8,84.4,51.8,49.1,39.8,27.7,21.5$, 14.6; MS (EI) m/z 298 ([M-tBuO] $]^{+}$4), 284 (12), 208 (7), 207 (56), 185 (6), 184 (56), 160, (7), 156 (5), 155 (59), 120 (17), 116 (29), 112 (8), 108 (32), 92 (7), 91 (54), 88 (9), 84 (6), 65 (12), 57 (100), 56 (7); MS (CI) m/z 391 (7), 390 (20), $389\left(\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+}, 100\right), 333$ (13), 289 (6). HRMS Calcd. for [M-tBuO] ${ }^{+}$ $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{~S} 298.0749$, found 298.0733. Enantiomeric excess determined by chiral HPLC analysis, Chiralcel $\mathrm{AD}\left(99 \%\right.$ heptane $/ i-\mathrm{PrOH}$), $40^{\circ} \mathrm{C}$, retention times (min): 26.9 (major) and 35.2 (minor).
 (-)-(R)-Methyl 3-tert-butoxycarbonylamino-2-methyl-propionate (10): ${ }^{14}$ The title compound was prepared in an analogous way to 7 from 9 (0.104 mmol, 38.8 mg). Work-up afforded compound $\mathbf{1 0}(20.5 \mathrm{mg})$ as a colorless oil. [90\% yield, $95 \% \mathrm{ee}$, $\left.[\alpha]_{\mathrm{D}}=-21.8\left(\mathrm{c} 1.9, \mathrm{CHCl}_{3}\right) ; \mathrm{lit}^{14}[\alpha]_{\mathrm{D}}=-17.6\left(\mathrm{c} 2.74, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} 4.94(\mathrm{bs}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, 3.35-3.19 (m, 2H), 2.72-2.61 (m, 1H), $1.41(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 175.8,155.9$, 79.3, 51.8, 42.9, 39.9, 28.3, 14.7; MS (EI) m/z 217 (M ${ }^{+}, 1$), 161 (29), 160 (8), 144 (19), 130 (30), 116 (6), 112 (20), 101 (7), 88 (24), 84 (8), 59 (17), 58 (6), 57 (100), 56 (8); MS (CI) $\mathrm{m} / \mathrm{z} 452$ ([2M+NH $]^{+}$, 10), 236 (12), $235\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100\right), 219(6), 218\left([\mathrm{M}+\mathrm{H}]^{+}, 45\right), 179(16), 162(11), 69$ (9); HRMS Calcd. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{4}$ 217.1314, found 217.1327. Enantiomeric excess determined by chiral GC analysis, CP-Chiralsil-Dex-CB (25 mx 0.25 mm), isothermic $130^{\circ} \mathrm{C}$, retention times (min): 13.3 (major) and 14.6 (minor).

Scheme S1: Derivatizations to establish ee of product 2c

Reagents and conditions: i) $1 . \mathrm{O}_{3}, \mathrm{DCM} / \mathrm{MeOH},-78^{\circ} \mathrm{C}, 2 . \mathrm{NaBH}_{4}(5$ eq.), rt, 77%; ii) $\mathrm{BnOC}(\mathrm{NH}) \mathrm{CCl}_{3}, \mathrm{TfOH}$, cyclohexane, $\mathrm{CCl}_{4}, \mathrm{rt}, 25 \%$; iii) TBAF, THF, rt.

[^8]

(-)-(S)-3-(tert-Butyl-diphenyl-silanyloxy)-2-methylpropan-1-ol (5c): ${ }^{15}$

The title compound was prepared in an analogous way to $\mathbf{5 a}$ from $\mathbf{2 c}(0.29$ $\mathrm{mmol}, 93.1 \mathrm{mg})$. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 15: 85\right.$ $\mathrm{Et}_{2} \mathrm{O} /$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.20\right)$ afforded $5 \mathrm{c}(73.0 \mathrm{mg})$ as a colorless oil. $\left[77 \%\right.$ yield, 94% ee, $[\alpha]_{\mathrm{D}}=-6.0(\mathrm{c}$ $\left.1.5, \mathrm{CHCl}_{3}\right) ;$ lit. $\left.^{15}[\alpha]_{\mathrm{D}}=-5.3\left(\mathrm{c} 3.3, \mathrm{CHCl}_{3}\right)\right] ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.71(\mathrm{dd}, \mathrm{J}=1.6$ and $7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.49-7.39$ (m, 6H), 3.77-3.59 (m, 4H), $2.68(\mathrm{bs}, 1 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 135.5,135.5,133.1,133.1,129.7,127.7,68.6,67.5,37.3,26.8,19.1,13.1$; MS (EI) m/z 272 (7), 271 ([M-tBu] $\left.{ }^{+}, 30\right), 229$ (8), 201 (5), 200 (19), 199 (100), 197 (7), 193 (18), 181 (9), 139 (20), 77 (7); MS (CI) m/z 348 (8), 347 (28), 346 ([M+NH4] $]^{+}, 100$), $330(13), 329\left([\mathrm{M}+\mathrm{H}]^{+}, 47\right), 69$ (14). HRMS Calcd. for [M-tBu] ${ }^{+} \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Si} 271.1154$, found 271.1149. Enantiomeric excess determined on derivatized product $\mathbf{5 a}$.

(S)-1-Benzyloxy-3-(tert-butyl-diphenyl-silanyloxy)-2methylpropane (11):

To a solution of $5 \mathbf{c}(0.15 \mathrm{mmol}, 49.8 \mathrm{mg})$, benzyltrichloroacetimidate ($0.3 \mathrm{mmol}, 56 \mu \mathrm{~L}$) and cyclohexane ($0.3 \mathrm{mmol}, 33 \mu \mathrm{~L}$) in $\mathrm{CCl}_{4}(1 \mathrm{~mL})$ a catalytic amount of TfOH (2 $\mu \mathrm{L}$) was added. The mixture was stirred at rt for 2.5 h and quenched with 1 mL sat. aq. NaHCO_{3}, after which $10 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ was added and the resulting solution washed with $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and 10 mL sat. aq. NaCl . The organic layer was dried with MgSO_{4} and concentrated in vacuo. Purification by flash column chromatography $\left(\mathrm{SiO}_{2}, 1: 99 \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane, $\left.\mathrm{R}_{\mathrm{f}}=0.20\right)$ afforded an inseparable mixture of $\mathbf{1 1}$ and the byproduct dibenzylether ${ }^{16}(32.4 \mathrm{mg})$ as a colorless oil. $\left[\mathbf{1 1}: \mathrm{Bn}_{2} \mathrm{O}=4: 3,25 \%\right.$ calc. yield of $\mathbf{1 1}$, 94% ee]; ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.69-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.26\left(\mathrm{~m}, 11 \mathrm{H}+\mathrm{Bn}_{2} \mathrm{O}, 10 \mathrm{H}\right), 4.58\left(\mathrm{Bn}_{2} \mathrm{O}, \mathrm{s}, 4 \mathrm{H}\right), 4.50(\mathrm{~s}$,

[^9]$2 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{dd}, J=6.4$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=6.1$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.97$ $(\mathrm{m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 138.8,138.3\left(\mathrm{Bn}_{2} \mathrm{O}\right), 135.6,133.9,129.5$, $128.4\left(\mathrm{Bn}_{2} \mathrm{O}\right), 128.3,127.8\left(\mathrm{Bn}_{2} \mathrm{O}\right), 127.6\left(\mathrm{Bn}_{2} \mathrm{O}\right), 127.6,127.5,127.3,73.0,72.5,72.1\left(\mathrm{Bn}_{2} \mathrm{O}\right), 65.7$, 36.3, 26.9, 19.3, 14.1; MS (EI) $m / z 199$ (8), 195 (7), 194 (18), 193 ([M - Ph, tBu, Bn] ${ }^{+}, 100$), 181 (6), 91 (50); MS (CI) m/z 438 (13), 437 (35), $436\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100\right), 419\left([\mathrm{M}+\mathrm{H}]^{+}, 14\right)$. HRMS Calcd. for $[\mathrm{M}-\mathrm{Ph}, t \mathrm{Bu}, \mathrm{Bn}]^{+} \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Si}$ 193.0685, found 193.0676. Enantiomeric excess determined of derivatized product 5a. To the mixture of $\mathbf{1 1}$ and dibenzylether (approx. $37 \mu \mathrm{~mol} \mathbf{1 1}, 21 \mathrm{mg}$) 4 equivalents of TBAF ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF, 0.15 mL) were added at room temperature. After stirring for 2.5 h , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O} /$ pentane $(1: 1,1 \mathrm{~mL})$ and the resulting mixture was flushed over a MgSO_{4} and SiO_{2} plug. The solution was concentrated providing the mixture of $5 \mathbf{a}$ and $\mathrm{Bn}_{2} \mathrm{O}$ as an oil. The enantiomeric excess of $5 \mathbf{a}$ was determined to be 94% by chiral HPLC analysis, Chiralcel AS $(98.5 \%$ heptane $/ i-\mathrm{PrOH}), 40^{\circ} \mathrm{C}$, retention times (min): $4.7\left(\mathrm{Bn}_{2} \mathrm{O}\right), 11.8$ (major) and 14.1 (minor).

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$-NMR:

(-)-(S)-((2-Methylbut-3-enyloxy)methyl)benzene (2a):

(-)-(S)-(N-2-Methylbut-3-enyl)(N-t-butoxycarbonyl)-p-toluenesulfonamide (2b):

(-)-(S)-4-[(tert-Butyldiphenylsilyl)oxy]-3-methylbut-1-ene (2c):

ppm (f1)

(-)-(N-2-Ethylbut-3-enyl)(N-tert-butoxycarbonyl)-p-toluenesulfonamide (2e):

(+)-(S)-((2-n-Butylbut-3-enyloxy)methyl)benzene (2f):

(+)-(S)-((2-n-Pentylbut-3-enyloxy)methyl)benzene (2g):

(+)-(S)-(2-Vinyl-hex-5-enyloxymethyl)-benzene (2h):

(+)-(2-Vinyl-4-phenyl-butyloxymethyl)-benzene (2i):

(+)-(S)-4-Benzyloxy-3-methylbutan-1-ol (3):

$\begin{aligned} & 140 \\ & \text { pom (f1) } \end{aligned}$	130	120	110	100	90	80	70	60	50	40	30	20	10	0

(-)-(R)-4-Benzyloxy-3-methylbutan-2-one (4a):

(-)-(S)-3-Benzyloxy-2-methylpropan-1-ol (5a):

(-)-(R)-3-Benzyloxy-2-methylpropionic acid (6a):

(-)-(S)-(N-tert-Butoxycarbonyl)(2-methylbut-3-enyl)amine (7):

(+)-(R)-4-((tert-Butoxycarbonyl)(p-toluenesulfonyl)amino)-3-methylbutan-2-one (4b):

(-)-(R)-3-((tert-Butoxycarbonyl)(p-toluenesulfonyl)amino)-2-methylpropan-1-ol (5b):

(-)-3-((tert-Butoxycarbonyl)(p-toluenesulfonyl)amino)-2-ethylpropan-1-ol (5e):

(+)-(R)-3-(p-Toluenesulfonylamino)-1-(tert-butoxycarbonyloxy)-2-methylpropane (8):

nom (f1)

(-)-(R)-3-((tert-Butoxycarbonyl)(p-toluenesulfonyl)amino)-2-methylpropionic acid (6b):

(-)-(R)-Methyl 3-((tert-butoxycarbonyl)(p-toluenesulfonyl)amino)-2-methylpropionate (9):

(-)-(R)-Methyl 3-tert-butoxycarbonylamino-2-methyl-propionate (10):

(-)-(S)-3-(tert-Butyl-diphenyl-silanyloxy)-2-methylpropan-1-ol (5c):

(S)-1-Benzyloxy-3-(tert-butyl-diphenyl-silanyloxy)-2-methylpropane (11):

[^0]: ${ }^{1}$ Ireland, T.; Grossheimann, G.; Wieser-Jeunesse, C.; Knochel, P. Angew. Chem. Int. Ed. 1999, 38, 3212.
 ${ }^{2}$ Kottirsch, G.; Koch, G.; Feifel, R.; Neumann, U. J. Med. Chem. 2002, 45, 2289.
 ${ }^{3}$ a.) Cerezo, S.; Cortès, J.; Galvan, D.; Lago, E.; Marchi, C.; Molins, E.; Moreno-Mañas, M.; Pleixats, R.; Torrejón, J.; Vallribera, A. Eur. J. Org. Chem. 2001, 329; b.) Neustadt, B. R. Tetrahedron Lett. 1994, 35, 379.
 ${ }^{4}$ a.) Lemieux, R. M.; Devine, P. N.; Mechelke, M. F.; Meyers, A. I. J. Org. Chem. 1999, 64, 3585; b.) Thurner, A.; Faigl, F.; Tőke, L.; Mordini, A.; Valacchi, M.; Reginato, G.; Czira, G. Tetrahedon 2001, 57, 8173; c.) McDonald, W. S.; Verbicky, C. A.; Zercher, C. K. J. Org. Chem. 1997, 62, 1215.

[^1]: ${ }^{5}$ López, F.; van Zijl, A. W.; Minnaard, A. J.; Feringa. B. L. Chem. Commun. 2006, 409.

[^2]: ${ }^{6}$ H. Lebel, V. Paquet J. Am. Chem. Soc. 2004, 126, 320.

[^3]: ${ }^{7}$ Yadav, J. S.; Reddy, P. S. Synth. Commun. 1986, 16, 1119.

[^4]: ${ }^{8}$ Larpent, C.; Chasseray, X. Tetrahedron 1992, 48, 3903.
 ${ }^{9}$ Garcia-Ruiz, V.; Woodward, S. Tetrahedron: Asymm. 2002, 13, 2177.

[^5]: ${ }^{10}$ Smith, A. B., III; Adams, C. M.; Kozmin, S. A.; Paone, D. V. J. Am. Chem. Soc. 2001, 123, 5925.

[^6]: ${ }^{11}$ a.) Fuganti, C.; Grasselli, P. J. Chem. Soc. Chem. Commun. 1979, 995; b.) Schmid, R.; Hansen, H.-J. Helv. Chim. Acta 1990, 73,1258 ; c.) The optical rotation in CHCl_{3} is reported only once, but appears to be given in the wrong sign: Schmid, R.; Antoulas, S.; Rüttimann, A.; Schmid, M.; Vecchi, M.; Weiser, H. Helv. Chim. Acta 1990, 73, 1276.
 ${ }^{12}$ a.) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496; b.) McGuirk, P. R.; Collum, D. B. J. Org. Chem. 1984, 49, 843.

[^7]: ${ }^{13}$ Paquette, L. A.; Guevel, R.; Sakamoto, S.; Kim, I. H.; Crawford, J. J. Org. Chem. 2003, 68, 6096.

[^8]: ${ }^{14}$ Ghosh, A. K.; Bischoff, A. Eur. J. Org. Chem. 2004, 2131.

[^9]: ${ }^{15}$ P. R. Blakemore, C. C. Browder, J. Hong, C. M. Lincoln, P. A. Nagornyy, L. A. Robarge, D. J. Wardrop, J. D. White J. Org. Chem. 2005, 70, 5449.
 ${ }^{16}$ The identity of the byproduct was established through comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and GCMS-data with a commercial sample. The characterisation of $\mathbf{1 0}$ was performed with the mixture of compounds.

