Supporting Information for:

Dynamic Diastereoselectivity During Iron Carbonyl Mediated Spirocyclization

 ReactionsAnthony J. Pearson,* Huikai Sun and Xiaolong Wang
Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
ajp4@case.edu
\section*{Table of Contents:}

1. Experimental procedures and characterization.

Compounds 23 and 31... 57

Compounds 37.. S 9

Compounds 46 and 47...S11
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for all reported compounds. S13-S71

Experimental Section

General Methods: All glassware used was oven dried (overnight at $140^{\circ} \mathrm{C}$) or flame dried prior to use. Organic solvents/reagents were purified prior to use as follows: THF, diethyl ether, benzene and toluene were freshly distilled from $\mathrm{Na} /$ benzophenone; $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled from $\mathrm{CaH}_{2} ;$ n$\mathrm{Bu}_{2} \mathrm{O}$ was distilled from Na ; All other solvents were used as purchased. Column chromatography was performed with silica gel $(0.04-0.063 \mathrm{~mm})$. Eluting solvents are reported as V/V percent mixture. All yields given refer to as isolated yields. Optical rotations were measured on a precision automated polarimeter. NMR spectra were recorded on a 200 MHz or 400 MHz spectrometer. Chemical shifts (δ) are reported in ppm downfield from tetramethylsilane. HRMS experiments were performed on a high resolution magnetic sector mass spectrometer. Melting points are uncorrected.
(4S, 2E)-Ethyl 4-[tert-butoxycarbonyl-(4-methoxybenzyl)amino]-5-phenylpent-2-enoate (6). To a solution of ethyl 2-(diethoxyphosphoryl)propanoate ($0.51 \mathrm{~g}, 2.26 \mathrm{mmol}$) in THF (23 mL) under Ar at $-78{ }^{\circ} \mathrm{C}$, was slowly added $n-\mathrm{BuLi}(0.83 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexanes, 2.07 mmol) via a syringe. The reaction mixture was stirred at this temperature for 1 h . A solution of aldehyde $5(0.70 \mathrm{~g}, 1.89 \mathrm{mmol})$ in THF (5.5 mL) was added, then the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . After the temperature was allowed to rise to rt over 30 min , the reaction mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL} x 3)$. The combined organic layer was washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography (Hex:EA/8:1) to provide $6(0.44 \mathrm{~g}, 53 \%) . \mathrm{R}_{\mathrm{f}}=0.70(\mathrm{Hex}: \mathrm{EA} / 4: 1) \cdot[\alpha]_{\mathrm{D}}{ }^{25}=-53\left(c=1.26, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.22-6.90(7 \mathrm{H}), 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.50-6.30(\mathrm{br}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.20(\mathrm{br}, 1 \mathrm{H}), 4.40-4.15(\mathrm{br}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.00$ (br, 1H), 2.96-2.82(m, 1H), $1.47(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $166.0,158.8,147.8,138.2,130.9,129.6,129.1,128.5,126.4,119.4,113.8,60.3,59.4,57.5,55.4$, 52.5, 38.2, 28.8, 14.4. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{5}\right)$ 440.2437, found, 440.2435. This
reaction also afforded (4S, 2Z)-ethyl 4-[tert-butoxycarbonyl-(4-methoxybenzyl)amino]-5-phenylpent-2enoate in 39% yield. $\mathrm{R}_{\mathrm{f}}=0.75$ (Hex:EA/4:1). $[\alpha]_{\mathrm{D}}{ }^{25}=+97\left(c=2.74, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.24-7.06(7 \mathrm{H}), 7.00-6.82(\mathrm{br}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.80-5.60(\mathrm{br}, 1 \mathrm{H}), 4.65-4.20$ $(\mathrm{m}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-3.80(\mathrm{br}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.00(\mathrm{br}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=$ $13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.4,138.0$, $129.4,128.7,126.8,114.0,60.6,59.5,55.5,49.9,28.6,14.4$. Some peaks were not recorded due to the presence of amide resonance rotamers. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{5}\right) 440.2437$, found, 440.2430 .
(4S, 2E)-Ethyl 4-(4-methoxy-benzylamino)- 5-phenylpent-2-enoate (7). Ester 6 ($322 \mathrm{mg}, 0.73$ mmol) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.8 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. TFA $(1.9 \mathrm{~mL})$ was added slowly to the reaction solution, which was then stirred at the same temperature for 1 h , quenched by aq sat NaHCO_{3} solution at $0{ }^{\circ} \mathrm{C}(\mathrm{pH}=8-9)$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude product $7(236 \mathrm{mg}, 96 \%)$ was used in the next reaction without further purification. $[\alpha]_{\mathrm{D}}{ }^{25}=-27\left(c=1.18, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.30-7.04(7 \mathrm{H}), 6.85(\mathrm{dd}, J=15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dt}, J=8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{dd}, J=15.6,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73,3.51(\mathrm{ABq}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 1 \mathrm{H})$, $2.85(\mathrm{dd}, J=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=13.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{br}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.6,158.8,150.4,137.8,132.2,129.5,129.3,128.8,126.9,122.3$, $114.0,60.6,59.9,55.5,51.0,41.9,14.5$. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{3}\right) 340.1913$, found, 340.1918.
(4S, 2E)-Ethyl 4-[tert-butoxycarbonyl-(4-methoxybenzyl)amino]-2-methyl-5-phenyl-pent-2enoate (13) and (4S, 2Z)-ethyl 4-[tert-butoxycarbonyl-(4-methoxybenzyl)amino]-2-methyl-5-phenyl-pent-2-enoate (14). Method A: To a solution of ethyl 2-(diethoxyphosphoryl) propanoate (3.50 $\mathrm{g}, 14.6 \mathrm{mmol}$) in THF (82 mL) under Ar at $-78^{\circ} \mathrm{C}$, was slowly added $n-\mathrm{BuLi}(5.2 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexanes, 13.0 mmol) via a syringe. The reaction mixture was stirred at this temperature for 30 min and
then warmed to $0{ }^{\circ} \mathrm{C}$ for 10 minutes. The temperature was again cooled to $-78{ }^{\circ} \mathrm{C}$, aldehyde $5(2.99 \mathrm{~g}$, $8.1 \mathrm{mmol})$ dissolved in THF (20 mL) was added, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . After the temperature was allowed to rise to rt for 15 min , the reaction mixture was quenched with sat. aq $\mathrm{NH}_{4} \mathrm{Cl}$ $(30 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine (20 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The product was purified by flash chromatography (Hex:EA/6:1) to provide $13\left(2.40 \mathrm{~g}, 67 \%\right.$, ee $\left.=94 \%,[\alpha]_{\mathrm{D}}{ }^{25}=-2.9\left(c=5.07, \mathrm{CHCl}_{3}\right)\right)$ and $14\left(0.50 \mathrm{~g}, 14 \%,[\alpha]_{\mathrm{D}}{ }^{25}=+73\left(c=0.80, \mathrm{CHCl}_{3}\right)\right)$ as colorless viscous oils. Method B: To a solution of ethyl 2-(diethoxyphosphoryl)propanoate ($199 \mathrm{mg}, 0.83 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ (5.5 mL), was added $\mathrm{LiCl}(36.0 \mathrm{mg}, 0.83 \mathrm{mmol}$, dried in a vacuum oven), followed by $\mathrm{DBU}(0.13 \mathrm{~mL}, 0.83 \mathrm{mmol})$. The reaction mixture was stirred at rt for 20 min until the LiCl dissolved completely, then cooled to 0 ${ }^{\circ}$ C. Aldehyde $5(190 \mathrm{mg}, 0.51 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added dropwise via syringe and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h (monitored by TLC). The same workup and purification procedure as method A afforded $13(150 \mathrm{mg}, 65 \%$, ee $=74 \%)$ and $14(30 \mathrm{mg}, 13 \%)$ as colorless viscous oils. Method C: To a solution of aldehyde $5(115 \mathrm{mg}, 0.31 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$, was added a solution of (carbethoxyethylidene)triphenylphosphorane ($141 \mathrm{mg}, 0.39 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. Then the temperature was allowed to rise to rt and the mixture was stirred for 22 h . The same workup and purification procedure as method A afforded $\mathbf{1 3}(103 \mathrm{mg}, 73 \%$, ee $=71 \%)$ and $\mathbf{1 4}(18 \mathrm{mg}$, 13\%). 13: $\mathrm{R}_{\mathrm{f}}=0.50$ (Hex:EA/4:1). ${ }^{1} \mathrm{H}$ NMR (200 MHz, DMSO-d): $\delta 7.35-7.05(7 \mathrm{H}), 6.86-6.82(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.76-6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.62(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.09-2.78(2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 167.8,158.7,155.6,139.0,137.9,131.1,129.3,128.8,128.4,126.5,113.8,80.2,60.7$, $56.2,55.3,48.7,39.8,39.7,28.5,14.3,12.5$. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{5}\right) 454.2593$, found, 454.2593. 14: $\mathrm{R}_{\mathrm{f}}=0.65$ (Hex:EA/4:1).. ${ }^{1} \mathrm{H}$ NMR (200 MHz, CDCl_{3}): $\delta 7.21-6.70(9 \mathrm{H}), 6.50-$ $6.00(\mathrm{br}, 1 \mathrm{H}), 5.20-5.00(\mathrm{br}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.30-4.00(\mathrm{br}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.00$ (br, 1H), 2.80-2.75 (m, 1H), $1.83(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 167.2,158.5,140.3,138.8,130.9,129.4,128.8,128.2,127.9,127.8,126.2,113.6,60.4$, 55.3, 29.6, 20.6, 14.3. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{5}\right)$ 454.2593, found, 454.2586.
(5S)-5-Benzyl-1-(4-methoxybenzyl)-3-methyl-1,5-dihydropyrrol-2-one (15). Compound 14 (90 $\mathrm{mg})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. TFA $(0.5 \mathrm{~mL})$ was then added slowly to the reaction mixture, which was stirred at the same temperature for 15 min , quenched by slow addition of sat NaHCO_{3} solution $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, and concentrated to give $15(61 \mathrm{mg}, 100 \%)$ as a light yellow oil. $\mathrm{R}_{\mathrm{f}}=0.47(\mathrm{Hex}: \mathrm{EA} / 19: 1) .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.40-6.80(9 \mathrm{H}), 6.48(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.85$ $(\mathrm{m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=13.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=13.2,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{t}, J=1.7$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 MHz, CDCl_{3}): 171.9, 159.0, 140.2, 136.7, 134.9, 129.8, 129.3, 129.2, 128.6, $126.9,114.1,60.5,55.3,43.7,38.0,11.3$. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}\right) 308.1650$, found, 308.1646.
(4S, 2Z)-Ethyl 4-(4-methoxybenzylamino)-2-methyl-5-phenylpent-2-enoate (16). Following the procedure for preparation of compound 7, compound $13(600 \mathrm{mg}, 1.32 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, followed by addition of TFA (3 mL). Stirring was continued for 1 h . Crude product 16 was used in the following reaction without further purification. $R_{f}=0.50$ $(\mathrm{Hex}: \mathrm{EA} / 1: 1) .[\alpha]_{\mathrm{D}}{ }^{25}=+3.4\left(c=1.02, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26-7.16(2 \mathrm{H}), 7.11$ $(\mathrm{dt}, J=6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{dt}, J=8.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{dt}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.59(\mathrm{~m}$, $1 \mathrm{H}), 4.17(\mathrm{dq}, J=14.4,0.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.73$ and $3.49(\mathrm{ABq}, J=13.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.81-2.68(2 \mathrm{H}), 1.60(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~s}, b r, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.1,158.8,144.2,138.0,132.4,129.6,129.3,128.6,126.7,113.9,60.8,56.8,55.4$, 51.2, 41.7, 14.4, 12.9. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{3}\right)$ 354.2069, found, 354.2075.

Preparation of racemic N -(tert-butoxycarbonyl)-N-(methoxybenzyl)-L-phenylalaninal (5). To a solution of aldehyde $5(88 \mathrm{mg}, 0.24 \mathrm{mmol})$ in freshly distilled acetonitrile $(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added lithium chloride ($17 \mathrm{mg}, 0.4 \mathrm{mmol}$, dried in a vacuum oven) and $\mathrm{DBU}(0.06 \mathrm{~mL})$. The reaction mixture
was stirred at this temperature for 2 h , quenched by $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$, and extracted with ether (15 mL x 3). The combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Purification by flash chromatography (Hex:EA/ 2:1) afforded racemic aldehyde 5 ($75 \mathrm{mg}, 85 \%$) as a colorless oil.

(4S, 2E)-Ethyl 4-(N-(4-methoxybenzyl)-((2S)-3,3,3-trifluoro-2-ethoxy-2-phenylpropanoxamido))-2-methyl-5-phenylpent-2-enoate (17a) and (4R, 2E)-ethyl 4-(N-(4-methoxybenzyl)-((2S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoxamido))-2-methyl-5-

phenylpent-2-enoate (17b). To a solution of racemic amine $\mathbf{1 6}(4.0 \mathrm{mg}, 11.4 \mu \mathrm{~mol})$ and diisopropylethylamine ($9.3 \mu \mathrm{~L}, 56.8 \mu \mathrm{~mol})$ in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.30 \mathrm{~mL})$, was added Mosher's chloride $(8.6 \mu \mathrm{~L}, 56.8 \mu \mathrm{~mol})$ under argon. The reaction solution was stirred at rt for 12 h , quenched with $1 \mathrm{~N} \mathrm{HCl}(0.5 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL} x 3)$. The combined organic layer was washed with brine (1 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Purification by preparative TLC (Hex:EA/ 6:1) afforded $\mathbf{1 7 a}(2.5 \mathrm{mg}, 41 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.35(\mathrm{Hex}: \mathrm{EA} / 4: 1)$. Two rotamers. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Major rotamer: $\delta 7.61-6.42(15 \mathrm{H}), 4.44-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.37$ and $4.00(\mathrm{ABq}, J$ $=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.15(2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{q}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=7.6,13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.79(\mathrm{dd}, J=8.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$. Minor rotamer: δ 7.61-6.35 (15H), 5.00, $4.59(\mathrm{ABq}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.06-4.01(2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{q}, J=2.0 \mathrm{~Hz}$, $3 \mathrm{H}), 3.06(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=13.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.21(\mathrm{~d}, J$ $=1.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{HRMS}(\mathrm{FAB})$ calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{NO}_{5}\right) 570.2467$, found, $570.2475 .17 \mathbf{b}(2.7 \mathrm{mg}$, 42%, colorless oil). $\mathrm{R}_{\mathrm{f}}=0.30$ (Hex:EA/4:1). Two rotamers. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Major rotamer: $\delta 7.70-6.00(15 \mathrm{H}), 4.93-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.85$ and $4.66(\mathrm{ABq}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.09(2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{q}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.56(\mathrm{dd}, J=12,12 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=3.2,13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H})$. Minor rotamer: $\delta 7.65-6.40(15 \mathrm{H}), 4.60,4.02(\mathrm{ABq}, J$ $=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.44-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{q}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.25(\mathrm{dd}, J=13.6,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.00(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{HRMS}(\mathrm{FAB})$ calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{NO}_{5}\right)$ 570.2467, found, 570.2460.

Preparation of tricyclic lactam 22a and 22b via a Diels-Alder reaction. Method A: To a small vial was added the mixture of $\mathbf{1 8 a}$ and $\mathbf{1 8 b}(10.0 \mathrm{mg}, 16.7 \mu \mathrm{~mol})$ and sat. CuCl_{2} solution in $\mathrm{EtOH}(0.3$ mL). The reaction solution was stirred at rt for 24 h and then concentrated in vacuo. Water (1.5 mL) was added to the residue, which was extracted with ether ($2 \mathrm{~mL} \times 3$). The combined ether layers were washed with brine $(1.5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Purification by preparative TLC (Hex:EA/3:1) afforded inseparable 22a and 22b ($6.5 \mathrm{mg}, 86 \%$) in $9: 1$ ratio as a colorless oil. Method B: To a solution of methanesulfonyl chloride ($42 \mu \mathrm{~L}, 0.54 \mathrm{mmol}$) in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ under argon at $0{ }^{\circ} \mathrm{C}$, was slowly added a solution of carboxylic acid $\mathbf{2 6}$ (45 $\mathrm{mg}, 0.36 \mathrm{mmol})$ and diisopropylethylamine ($78 \mu \mathrm{~L}, 0.47 \mathrm{mmol}$) in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL})$. Stirring was continued at this temperature for 1 h , then diisopropylethylamine ($0.13 \mathrm{~mL}, 0.80 \mathrm{mmol}$) was added, followed by a solution of amine $\mathbf{1 6}(204 \mathrm{mg}, 0.58 \mathrm{mmol})$ in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.6 mL). The temperature was allowed to reach rt and the reaction mixture was stirred for 20 h , and quenched with $1 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$. After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, the organic layer was washed with 1 $\mathrm{NHCl}(3 \mathrm{~mL} \times 2)$ and brine (5 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography (Hex:EA/8:1) to provide 22a and 22b (140 $\mathrm{mg}, 84 \%$) in 9:1 ratio.

Preparation of Compound 23 from reduction of tricyclic lactam 22a and 22b. Following the procedure to prepare 12a and $\mathbf{1 2 b}$, the mixture of 22a and $\mathbf{2 2 b}(11.0 \mathrm{mg}, 24.0 \mu \mathrm{~mol})$ was hydrogenated in $\mathrm{MeOH}(1 \mathrm{~mL})$ in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(5 \mathrm{mg})$. Removal of solvent in vacuo provided $\mathbf{2 3}$ (10.8 $\mathrm{mg}, 98 \%)$ as a colorless solid without further purification. $\mathrm{R}_{\mathrm{f}}=0.30\left(4 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot \mathrm{MP} 110-$ $114{ }^{\circ} \mathrm{C} \cdot[\alpha]_{\mathrm{D}}{ }^{25}=-28\left(c=0.95, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-6.68(9 \mathrm{H}), 4.99$ and 3.82 $(\mathrm{ABq}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-4.05(2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.93(2 \mathrm{H}), 2.80(\mathrm{dd}, J=$ $9.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.74(3 \mathrm{H}), 1.64-1.40(5 \mathrm{H}), 1.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 178.5,177.5,158.9,138.9,129.4,129.3,129.2,128.6,126.6,113.9,61.2,57.3,55.5$,
46.3, 45.8, 43.4, 41.8, 40.0, 35.1, 26.3, 23.7, 23.1, 20.8, 19.1, 14.3. HRMS (FAB) calcd for MH^{+} $\left(\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}_{4}\right)$ 462.2644, found, 462.2644 .
(2S)-Methyl 2-(4-methoxybenzylamino)-3-phenylpropanoate (31). To a solution of (S)-methyl 2-amino-3-phenylpropanoate hydrochloride ($\mathbf{3 0}$) ($1.0 \mathrm{~g}, 4.6 \mathrm{mmol}$) in $\mathrm{MeOH}(26 \mathrm{~mL})$ which was neutralized with $\mathrm{NaOH}(0.19 \mathrm{~g}, 4.8 \mathrm{mmol})$, anisaldehyde $(0.94 \mathrm{~g}, 6.8 \mathrm{~mL})$ and acetic acid $(0.26 \mathrm{~mL}, 4.6$ mmol) were added at room temperature. After stirring for 10 min at this temperature, the solution was cooled with an ice bath and NaBH_{4} pellets $(0.17 \mathrm{~g}, 4.6 \mathrm{mmol})$ were added. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, then the solvent was evaporated in vacuo. The residue was dissolved in ethyl acetate $(25 \mathrm{~mL})$ and the solution was filtered, then washed with saturated sodium carbonate solution ($15 \mathrm{~mL} \times 2$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Further purification by flash chromatography (Hex:EA/3:1) afforded $31(1.13 \mathrm{~g}, 82 \%$, ee $=100 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.45(\mathrm{Hex}: \mathrm{EA} / 2: 1) .[\alpha]_{\mathrm{D}}{ }^{25}=-5\left(c=0.63, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30-6.78(9 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74$ and $3.57(\mathrm{ABq}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.53(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.94(2 \mathrm{H}), 1.78(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.3$, $158.9,137.6,131.9,129.6,129.4,128.6,126.9,114.0,62.2,55.5,51.9,51.6,40.0$. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}\right) 300.1600$, found, 300.1602 .
(2S)-Methyl 2-[N-(4-methoxybenzyl)-((2S)- 3, 3, 3-trifluoro-2-methoxy-2-phenyl propanoxamido))]-3-phenylpropanoate (32). Following the procedure to prepare $\mathbf{1 7 a}$ and $\mathbf{1 7 b}$, compound 31 ($9.5 \mathrm{mg}, 0.032 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$, and diisopropylethylamine (32 $\mu \mathrm{L}, 0.191 \mathrm{mmol}$) was added. To this mixture, was added (2S)-3, 3, 3-trifluoro-2-methoxy-2-phenyl propionyl chloride (Mosher's chloride, $24 \mu \mathrm{~L}, 0.128 \mathrm{mmol}$), and stirring was continued for 14 h at rt . The solvent was evaporated, and the residue was held under vacuum oil pump for 12 h to afford $\mathbf{3 2}$ ($15.0 \mathrm{mg}, 91 \%$). This material was not further purified to avoid fractionation of the diastereomers and erroneous determination of de. $\mathrm{R}_{\mathrm{f}}=0.50$ (Hex:EA/2:1). Two rotamers. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Major rotamer: $\delta 7.64-6.42(15 \mathrm{H}), 4.30$ and $4.24(\mathrm{ABq}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{dd}, J=6.8,6.40 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{q}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=$
14.0, $6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Major rotamer: $\delta 66.51 .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.9,167.1,159.7,138.5,134.2,130.7,129.7,129.6,128.7,128.4,127.1,126.7,126.6,114.2$, $76.9,60.9,56.3,55.5,52.4,51.8,35.7$. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NO}_{5}\right) 516.1998$, found, 516.1960.
(2S)-Ethyl 2-[(3S, 4S)-3-benzyl-2-(4-methoxybenzyl)-1-oxo-2-azaspiro[4.5]decadien-4$\mathbf{y l}]$ propanoate (36). The procedure was the same as for the preparation of compound 12a and $\mathbf{1 2 b}$. The mixture of decomplexed products 29a and 29b ($6.2 \mathrm{mg}, 13.5 \mu \mathrm{~mol}$) in methanol (0.7 mL) was hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}(6 \mathrm{mg})$ for 24 h . The crude product was purified by preparative TLC (Hex:EA/2:1) to afford $36(5.2 \mathrm{mg}, 84 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.50(\mathrm{Hex}: \mathrm{EA} / 2: 1) .[\alpha]_{\mathrm{D}}{ }^{25}=+21(c=$ $0.49, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-6.83(9 \mathrm{H}), 4.67$ and $4.27(\mathrm{ABq}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.98-3.86(2H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{ddd}, J=12.0,4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=13.2,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.58(\mathrm{dq}, J=7.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=13.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=2.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-$ $1.21(10 \mathrm{H}), 1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.3$, $174.8,159.1,138.1,130.3,129.9,129.8,128.8,126.9,114.1,61.1,60.7,55.5,46.9,46.6,46.0,41.4$, 38.0, 37.6, 28.8, 25.7, 23.0, 22.6, 16.3, 14.2. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NO}_{4}\right)$ 464.2800, found, 464.2807.

(2S)-2-[(3S, 4S)-3-Benzyl-2-(4-methoxybenzyl)-1-oxo-2-azaspiro[4.5]decadien-4-yl]propyl (2S)-

3, 3, 3-trifluoro-2-methoxy-2-phenylpropanoate (37). Following the procedure forthe preparation of 25, a solution of ester $\mathbf{3 6}(3.0 \mathrm{mg}, 6.4 \mu \mathrm{~mol})$ in freshly distilled ether $(0.2 \mathrm{~mL})$ was treated with LiBH_{4} ($1.28 \mathrm{mg}, 58.3 \mu \mathrm{~mol})$ at rt for 2 h . The crude product, $(2 S)$-2-[(3S, 4S)-3-benzyl-2-(4-methoxybenzyl)-1-oxo-2-azaspiro[4.5]decadien-4-yl]propanol, was used in the following reaction without any further purification. $\mathrm{R}_{\mathrm{f}}=0.20(\mathrm{Hex}: \mathrm{EA} / 1: 1) \cdot[\alpha]_{\mathrm{D}}{ }^{25}=-12\left(c=0.20, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.31-6.87(9 \mathrm{H}), 4.96$ and $3.94(\mathrm{ABq}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.18(3 \mathrm{H}), 2.56(\mathrm{dd}, J=$ $12.8,10.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 1.84-0.74(12 \mathrm{H}), 0.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. To a solution of the crude product $(2.0 \mathrm{mg}, 4.7 \mu \mathrm{~mol})$ in freshly distilled benzene $(0.15 \mathrm{~mL})$, was added
diisopropylethylamine ($11.2 \mu \mathrm{~L}, 66.4 \mu \mathrm{~mol})$ and Mosher's chloride ($10.8 \mu \mathrm{~L}, 57.0 \mu \mathrm{~mol})$. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ and stirred for 24 h at this temperature. The cooled reaction mixture was quenched with $1 \mathrm{NHCl}(0.6 \mathrm{~mL})$ and extracted with ether (1 mL x 3). The combined organic layer was washed with brine $(1 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The crude product 37 (2.8 mg , de $>86 \%, 70 \%$ yield over two steps) was subjected to ${ }^{1} \mathrm{H}$ NMR without any further purification for determination of de. $\mathrm{R}_{\mathrm{f}}=0.70(\mathrm{Hex}: \mathrm{EA} / 3: 2) .[\alpha]_{\mathrm{D}}{ }^{25}=-3\left(c=0.23, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz, CDCl_{3}) Major isomer: $\delta 7.37-6.83(9 \mathrm{H}), 4.99$ and $3.97(\mathrm{ABq}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{q}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.23-3.13(3 \mathrm{H}), 2.54(\mathrm{dd}, J=12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.00(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 1.90-1.20(11 \mathrm{H}), 0.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Major isomer: $\delta-72.0,93 \%$; Minor isomer : $\delta-72.1,7 \% .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Major isomer: δ 178.7, $166.2,159.5,137.8,132.4,130.5,129.8,128.9,128.6,128.4,127.5,127.1,114.5,77.4,68.4,57.9$, $55.4,46.8,44.4,40.2,37.4,31.8,28.6,25.6,23.2,22.6,15.9$. HRMS (FAB) calcd for MH^{+} $\left(\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~F}_{3} \mathrm{NO}_{5}\right)$ 638.3093, found, 638.3056.

Preparation of tricyclic lactam 39 through a Diels-Alder reaction. Following the procedure for the preparation of compounds $\mathbf{2 2 a}$ and $\mathbf{2 2 b}$, the mixture of Z-substrates $\mathbf{3 5 a}$ and $\mathbf{3 5 b}$ ($11.5 \mathrm{mg}, 19.2$ $\mu \mathrm{mol})$ was treated with saturated ethanolic $\mathrm{CuCl}_{2}(0.35 \mathrm{~mL})$ for 24 h to give compound $39(7.0 \mathrm{mg}$, $81 \%)$ as a colorless oil which was purified by preparative TLC (Hex:EA/3:1). $\mathrm{R}_{\mathrm{f}}=0.35$ (Hex:EA/2:1). $[\alpha]_{\mathrm{D}}{ }^{25}=+25\left(c=0.65, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.27-6.65(9 \mathrm{H}), 4.99$ and $3.86(\mathrm{ABq}, J$ $=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.16-3.99(2 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.75$ $(2 \mathrm{H}), 1.8-1.2(5 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.0,175.5$, $158.8,138.5,137.9,130.4,129.6,129.1,129.0,128.7,126.6,113.8,60.8,59.3,55.5,55.4,51.2,48.3$, 43.7, 40.4, 39.3, 28.9, 27.7, 18.4, 14.3. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NO}_{4}\right) 460.2488$, found, 460.2489 .
(2S, 3Z)-tert-Butyl 5-hydroxy-2-(N-4-methoxybenzyl)-4-methyl-1-phenylpent-3-en-2-yl
carbamate (44). To a solution of $14(133 \mathrm{mg}, 0.294 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, was added
dropwise DIBAl-H solution (1.5 M in toluene, $0.78 \mathrm{~mL}, 1.174 \mathrm{mmol}$). Stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 1 h , and then the reaction was quenched slowly with $\mathrm{MeOH}(1.5 \mathrm{~mL})$ at this temperature, followed by addition of water (2.0 mL). After the reaction mixture was allowed to reach rt , it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL} x 3)$ and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated in vacuo, and the residue was purified by flash chromatography (Hex:EA/2:1) to provide 44 ($110 \mathrm{mg}, 92 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.15$ (Hex:EA/4:1). $[\alpha]_{\mathrm{D}}{ }^{25}=-3\left(c=0.87, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.27-6.82 (9H), $5.34(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-4.8-(\mathrm{br}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.90-3.70(\mathrm{~m}$, $1 \mathrm{H}), 3.70-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=13.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=13.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.6,155.8,138.5,131.8,129.4,128.5$, $128.3,126.4,125.6,113.7,113.6,80.3,61.5,55.3,47.5,40.6,40.5,29.5,21.8$. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{4}\right)$ 412.2488, found, 412.2483.
(2S, 3Z)-tert-Butyl 4-formyl-2-(N-4-methoxybenzyl)-1-phenylpent-3-en-2-ylcarbamate (45). To a solution of alcohol $44(95 \mathrm{mg}, 0.231 \mathrm{mmol})$ in benzene $(1.7 \mathrm{~mL})$, was added $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{PPh}_{3}(30 \mathrm{mg}$, 0.069 mmol) and trimethylamine oxide $(52 \mathrm{mg}, 0.693 \mathrm{mmol})$. After stirring for 12 h , the reaction mixture was filtered through Celite, then $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{PPh}_{3}(30 \mathrm{mg}, 0.069 \mathrm{mmol})$ and trimethylamine oxide $(52 \mathrm{mg}, 0.693 \mathrm{mmol})$ was added to the filtrate. The mixture was maintained at rt for a further 12 h . After a second filtration, the solvent was evaporated in vacuo. The residue was purified by flash chromatography (Hex:EA/8:1) to afford aldehyde 45 ($67 \mathrm{mg}, 71 \%$) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.70$ (Hex:EA/4:1). $[\alpha]_{\mathrm{D}}{ }^{25}=+47\left(c=0.62, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 7.26-6.80$ $(9 \mathrm{H}), 6.55(\mathrm{br}, 1 \mathrm{H}), 5.35-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{br}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.20-2.80(2 \mathrm{H}), 1.63(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.46$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR (50 MHz, CDCl_{3}): $\delta 190.6,158.9,144.5,137.4,136.8,130.7,129.3$, $128.8,128.6,128.4,126.8,114.0,80.6,55.4,54.2,40.3,40.2,29.5,16.4$. HRMS (FAB) calcd for MH^{+} $\left(\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{4}\right) 410.2331$, found, 410.2336.
(2S, 3Z)-tert-Butyl 2-(N-4-methoxybenzyl)-4-methyl-1-phenylhexa-3, 5-dien-2-ylcarbamate (46).
To a suspension of methyltriphenylphosphonium bromide ($91 \mathrm{mg}, 0.254 \mathrm{mmol}$) in THF (2.0 mL) at 0
${ }^{\circ} \mathrm{C}$, was slowly added $\mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{M}$ solution in hexanes, $86 \mu \mathrm{~L}, 0.215 \mathrm{mmol}$). After 45 min at this temperature, the mixture was cooled to $-78^{\circ} \mathrm{C}$ and then a solution of aldehyde $\mathbf{4 5}(80 \mathrm{mg}, 0.196 \mathrm{mmol})$ in THF (1.0 mL) was added quickly. Stirring was continued at $-78^{\circ} \mathrm{C}$ for 30 min , then the reaction was allowed to warm to rt and maintained at this temperature for 2 h . Finally, the reaction was quenched with $1 \mathrm{NHCl}(3 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~mL} x\right.$ 3). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and the residue was purified by flash chromatography (Hex:EA/8:1) to provide $46(68 \mathrm{mg}, 85 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.70(\mathrm{Hex}: \mathrm{EA} / 6: 1) .[\alpha]_{\mathrm{D}}{ }^{25}=+7\left(c=0.62, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (200 MHz, CDCl_{3}): $\delta 7.26-6.76(9 \mathrm{H}), 6.6(\mathrm{br}, 1 \mathrm{H}), 5.47(\mathrm{br}, 1 \mathrm{H}), 5.20-5.00(3 \mathrm{H}), 4.25(2 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.05-2.65(2 \mathrm{H}), 1.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.4$, $138.5,135.5,133.4,131.8,129.3,128.8,128.7,128.5,128.3,126.2,115.4 ., 113.6,79.7,55.3,54.8$, 43.8, 40.7, 28.5, 19.7. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{3}\right)$ 408.2538, found, 408.2528.
(2S, 3Z)-2-(N-4-Methoxybenzyl)-4-methyl-1-phenylhexa-3, 5-dien-2-ylamine (47). To a solution of $46(40 \mathrm{mg}, 0.098 \mathrm{mmol})$ in chloroform $(0.4 \mathrm{~mL})$, was added dropwise iodotrimethylsilane $(16.8 \mu \mathrm{~L}$, 0.118 mmol) and then the mixture was heated at $50^{\circ} \mathrm{C}$ for 40 min . After cooling to rt , $\mathrm{MeOH}(75 \mu \mathrm{~L})$ was added and the solvent was evaporated in vacuo. Then $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ and acetic acid $(30 \%, 0.5 \mathrm{~mL})$ were added and stirring was continued for 10 min . The solution was basified by sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to $\mathrm{pH}=9$ and then extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL} \times 3)$. The organic layer was washed with brine (3 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent, the crude product $47(16 \mathrm{mg}, 53 \%)$ was used in the following reaction without further purification. $[\alpha]_{\mathrm{D}}{ }^{25}=+6\left(c=1.40, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.28-6.78(9 \mathrm{H}), 6.57(\mathrm{dd}, J=17.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dq}, J=$ $17.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dq}, J=11.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.71$ and 3.51 $(\mathrm{ABq}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.68(2 \mathrm{H}), 1.86(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.7(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 158.7,138.8,134.6,133.9,133.7,132.7,129.6,129.4,128.6,126.5,114.7,113.9,55.5$, 55.1, 50.9, 42.7, 20.1. HRMS (FAB) calcd for $\mathrm{MH}^{+}\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}\right)$ 308.2014, found, 308.2021.

hxs77_190ct2006-17:37:15
Data
Data saved in:
chem $400: /$ export/home/hxs $77 / v n m r s y s / d a t a$

Archive directory: /export/home/hxs $77 /$ vnimes
Sample directory: hxs 77 _ $190 \mathrm{Ct} 2006-17: 37: 15$
File: PROTON
Pulse Sequence: \$2pul

SHKD25B-C13_200ct2006
Archive directory: /export/home/hxs 77/vnmrsys/data Archive directory: /export/home/hxs
Sample directory: SHKD25B-C13_200ct2006
File:

Pulse Sequence: s2pul

28.644
$\underset{3}{7}$

- Z

180	160	140	120	100	80	60	40	20

Pulse Sequence: gCosy
Solvent: CDCl3
Ambient temperature
ENOVA-400 "chem400"

Relax. delay 1.000 sec
Acg. time 0.160 sec
Width $\quad 6395.9 \mathrm{~Hz}$
2D Width 6395.9 Hz
Single acan
128 increments
Observe H1, 399.7467337 mHz
data processing
Sq. sine bell 0.080 sec
fi data processsing
Sq. sine bell 0.020 sec
FT size 2048×2048
Total time 2 min, 50 sec

12a, COSY

15

product from demetallation of 20a

product from demetallation of 20a

product from demetallation of 20a ${ }^{1}$

Archive directory：lexport／home／hxs77／vnmrsys／data
Sample directory：shk45b－c13＿18Apr2005
File：CARON
Pulse Sequence：s2pul

号跠莀

product from reduction of 24

Archive diredtory: export/home/hxs77/vnarsys/data
Sample directory:
nxs 77 13Jun2005
Pulse sequence: s2pul

Archive directory: /export/howe/hxs $77 /$ innmrsys/data
Sample directory: shkb39b-ci3_30Mar200S
File
Pulse sequence: s2pul

Archive directory: /export/home/hxs77/vnmrsys/data Sample directory: ReducedDA_08Aug2005
File: CARBON
Pulse Sequence: s2pul

23

Pulse sequence: s2pul

31

Pulse Sequence: s2pul

Archive directory: /export/home/hxs77/vnmesys/data Sample directory: hxs77_13Sep2005-16:21:46 File: pROTON

File: PROTON
Pulse Sequence: $\$ 2 \mathrm{pul}$

Pulse sequence: s2pul

Archive directory: \quad export/home/hxs77/vnorsys/data
Sample directory: File: PROTON

Pulse Sequence: s2pul

34, one isomer

29a

39

40b

41b

42

