1	Detailed Materials and Methods
2	
3	Animals
4	
5	Marisa cornuarietis used in this study were obtained from stocks bred at Brunel
6	University, UK, which were originally derived from a stock maintained at Prof. Dr.
7	Jörg Oehlmann's lab, Johann Wolfgang Goethe University Frankfurt am Main,
8	Department of Ecology & Evolution, Frankfurt am Main, Germany.
9	
10	PCR amplification and cDNA cloning
11	
12	A degenerate primer RT-PCR approach was employed to identify cDNAs encoding
13	putative steroid receptors derived from M. cornuarietis total tissue extracts. Total
14	RNA was isolated from reproductively mature female snails using the guanidinium
15	thiocyanate-phenol-chloroform extraction described by Chomczynski and Sacchi (1) ,
16	including a further precipitation step with 4 M lithium chloride. Messenger RNA was
17	isolated from total RNA using the Nucleotrap mRNA purification kit (Macherey-
18	Nagel). First strand cDNA synthesis was performed using Superscript III (Invitrogen)
19	according to the manufacturer's instructions. First round PCR was performed using
20	the degenerate primers 5'-CGC A(A, T)C (A, C, G, T)GG (A, C, G, T)TA (C, T)CA
21	(C, T)TA (C, T)G G(A, C, G, T)G T-3' (sense) and 5'-GAA (A, C, G, T)CC (A, C, G,
22	T)GG (A, G, T)AT (C, T)TT (C, T)TT (A, C, G, T)GC CCA-3' (antisense) at
23	annealing temperatures of 50°C for 10 cycles followed by 55°C for 30 cycles. All
24	degenerate PCR was performed using Platinum Taq (Invitrogen). PCR products were
25	resolved on a 1.2% agarose/TBE gel, fragments of the expected size were excised and

purified using the Minelute gel extraction kit (Qiagen), ligated into pDrive vector
(Qiagen) and transformed into EZ competent cells (Qiagen). Blue/white screening
and colony PCR check were used to select positive clones containing fragments of the
expected size. Selected colonies were purified using Qiaprep Miniprep kit (Qiagen)
and sequenced using the Amersham Cycle Sequencing kit with ³²P. Sequencing
revealed that the cloned fragments were putative ER and ERR orthologue transcripts.

8 To obtain further sequence 3' of an original degenerate fragment encoding a putative 9 ER orthologue transcript, a gene specific sense primer was designed (5'-AAC TGC 10 ACT ATA GAC AAA CAC C-3') and used with a degenerate antisense primer (5'-11 A(A, G)C ATC TC(C, G) (A, G)(C, T)(C, G) A(A, G)(C, G) AGG TC-3') in PCR 12 with an annealing temperature of 58°C for 30 cycles. Complete 3' sequence 13 (including stop-codons and 3' untranslated regions) of the putative ER and ERR 14 orthologue transcripts were elucidated by 3' RACE (rapid amplification of cDNA 15 ends). Briefly cDNA was synthesised by Superscript III reverse transcriptase 16 (Invitrogen) using the Invitrogen 3' RACE adapter primer. PCRs were performed 17 using gene-specific primers (ER: 5'-GCA GGA GAG CGC GGC ATT GCT TAC 18 TTC C-3'; ERR 5'- ATG GTG CAG CCC GTG GTA TCG-3') with an Abridged 19 Universal Amplification Primer (Invitrogen) at an annealing temperature of 62°C for 20 30 cycles. Extended 5' sequence information was attained with the SMART RACE 21 cDNA Amplification kit (Clontech) using gene-specific primers (ER 5'-ACA TTT 22 GCG TAG TCG ACA TGC-3'; ERR 5'- TCC AAC CGC ACT CCT TCT CTA AG-23 3'. Cloning was performed as described above and sequencing was conducted using 24 the dideoxy method at MWG Biotech laboratories. Different isoforms of 5' putative

- ER transcript fragments were isolated using this method including 1 with a putative
 start codon located further upstream than the other isoforms.
- 3

5	
4	The full translated region of the shorter ER orthologue coding sequence was verified
5	by PCR using the specific primers 5'-TGC TGA TCA CAC TAA TGG CGG-3'
6	(sense) and 5'-GGT GAT CTT GTA GAG CCT TTC TT-3' (antisense) at an
7	annealing temperature of 55°C for 30 cycles. Full ERR coding sequence was also
8	verified by PCR using specific primers 5'- ACC ACT GGG GAC GCT GTG -3'
9	(sense) and 5'- GGA ATC TGC CTC CAG CAT TTC TA -3' (antisense) at an
10	annealing temperature of 60°C for 30 cycles. Specific PCR was performed using Pwo
11	Supervield polymerase (Roche). Fragments of the expected size were gel-purified as
12	described above, ligated into Zeroblunt vector (Invitrogen) and transformed into
13	TOP10 chemically competent cells (Invitrogen). Kanamycin-resistant colonies were
14	checked for the presence of vector containing a DNA insert of the expected size by
15	colony PCR. Positive clones were sequenced by the dideoxy method at MWG
16	Biotech laboratories.
17	
18	Phylogenetic analyses
19	
20	Initial structural analyses and BLAST (basic local alignment search tool) queries were
21	performed using the NCBI (National Center for Biotechnology Information) server
22	(http://www.ncbi.nlm.nih.gov). Non-M. cornuarietis amino acid sequences included

- 23 in phylogenetic analyses conducted were obtained via Entrez on the NCBI server.
- 24 Multiple alignments were performed using Clustal W (2). Phylogenetic tree
- 25 construction was performed by maximum likelihood using PhyML (3, 4).

Expression plasmids

4	The full coding regions of mcER-like (short protein-coding isoform) and mcERR
5	were directionally cloned into pSG5 expression plasmid (Stratagene) by EcoR
6	I/BamH I restriction digestion and ligation. Briefly, the mcER-like coding region was
7	isolated by PCR using the primers 5'-TAGgaattcATGCCCAGCCAGTCCCTG-3'
8	(sense) and 5'-CGCggatccCTACACATATGGATTCAT-3' (antisense). McERR
9	coding region was isolated by PCR using the primers 5'3' (sense) and 5'3'
10	(antisense). The sense primers included an EcoR I restriction site and the antisense
11	primers included a BamH I restriction site (indicated in lower case). PCR was
12	performed using Pwo Supervield polymerase (Roche). Cycling conditions used
13	included an annealing temperature of 65°C for 30 cycles. Full-length verified clones
14	described above were used as a template for use in PCR.
15	
16	Ligand-binding
17	
18	Binding of [2, 4, 6, $7-{}^{3}$ H] 17 β -estradiol to mcER-like and mcERR was assessed in
19	triplicate by radio-ligand binding assay using the method described by Routledge et al
20	(5). McER-like and mcERR recombinant proteins were synthesised from pSG5-
21	mcER-like and pSG5-mcERR using the TNT T7 Quick-coupled
22	transcription/translation system (Promega). Size and integrity of protein products
23	were checked by parallel protein syntheses incorporating Redivue ³⁵ S methionine
24	(Amersham), which were subsequently analysed by 10% SDS-polyacrylamide gel
25	electrophoresis and autoradiography.

1	Translation products were diluted 20-fold in ligand-binding buffer (20 mM HEPES,
2	1.5 mM EDTA, 0.1% BSA, 0.25 mM DTT, 10% glycerol) and 50 μl aliquots were
3	incubated for 16 h at 4°C in the presence of [2, 4, 6, 7- ³ H] 17 β -estradiol (evaporated
4	to dryness in tubes from ethanol stock) over a range of final concentrations from 0.3
5	to 9.6 nM. Following incubation, free estradiol was removed by addition of 50 μl ice-
6	cold DCC (0.1 g Dextran 70, 1.0 g charcoal (Norit A; Sigma), 4 ml 1 M Tris pH7.4,
7	0.8 ml 0.5 M EDTA, H_20 to 400 ml). This mixture was incubated on ice for 5
8	minutes and then separated by centrifugation at 4,000 x g for 2 mins. 80 μ l of
9	supernatant was removed, added to 4 ml of Liquiscint (National Diagnostics), mixed
10	and analysed in a TRI-CARB 200A liquid scintillation analyser (Packard).
11	Background radioactivity was assessed by analysis of negative controls, which
12	contained product from transcription/translation procedure performed using empty
13	pSG5 vector. Transcription/translation product from reaction containing pSG5-
14	mouse ER α (a gift from Prof. Malcolm Parker) was used as a positive control.
15	Specific protein-specific binding was calculated by subtracting background
16	radioactivity from total measured radioactivity and results were normalised to the
17	maximum [2, 4, 6, $7-{}^{3}$ H] 17 β -estradiol binding observed to the positive control.
18	
19	Quantitative and semi-quantitative PCR
20	

Whole albumen gland (female), capsule gland (female), cephalic tentacle, cerebral ganglia, gonad-digestive complex, and penis sheath complex (male) were dissected from individual snails along with sections of foot and lung tissue. All tissue was snap-frozen in liquid nitrogen immediately following dissection. Total RNA was isolated from individual organs from 5 replicate individuals, using Tri-Reagent

1	(Sigma), according to the manufacturers recommended protocol. All total RNA
2	samples were treated with DNase I (Invitrogen) to remove any traces of genomic
3	DNA. To determine absolute amounts of transcripts, RNA standards were
4	synthesised in vitro from DNA templates representing a 248-base fragment of the
5	mcER-like 3' coding region/3' untranslated region and a 115-base fragment of the
6	mcERR 3' untranslated region. The Riboprobe in-vitro Transcription System
7	(Promega) was utilized and this included a DNase I treatment step. Real-time PCR
8	was carried out using the one-step QuantiTect SYBR Green RT-PCR kit (Qiagen)
9	with an ABI PRISM 7900 Sequence Detection System (Applied Biosystems).
10	Amplification was carried out in 96-well plates, in a total volume of 25 μ l containing
11	QuantiTect SYBR Green RT-PCR mix (12.5 μ l), 0.5 μ M final concentration of each
12	primer, QuantiTect RT Mix (0.25 μ l), and RNA standards (5x10 ⁷ – 5x10 ²) molecules
13	or unknown RNA sample (50 ng). Primer sequences for the mcER-like target gene and
14	the standard were 5'-ACT TGC TCA CCG AGA TGC TT-3' (sense) and 5'-CCC
15	AGC CTT GCA GTC TAA AG-3' (antisense). Amplification conditions for mcER-
16	<i>like</i> real-time PCR were: reverse transcription for 30 min at 50°C, inactivation for 15
17	min at 95°C, followed by PCR amplification: 40 cycles of 15 s at 94°C, 30 s at 55°C
18	and 40 s at 72°C. Primer sequences for the mcERR target gene and standard were 5'-
19	CAT TTT CCC GTC GAC TCT TG-3' (sense) and 5'-CTG CAT ATC CTC CCT
20	TTG GA-3' (antisense). Amplification conditions for mcERR real-time PCR were:
21	reverse transcription for 30 min at 50°C, inactivation for 15 min at 95°C, followed by
22	PCR amplification: 40 cycles of 15 s at 94°C, 30 s at 60°C and 30 s at 72°C. To
23	confirm specificity, PCR products were subjected to melting curve analysis, and
24	subsequent agarose gel electrophoresis and sequence analysis. Each experiment
25	included absolute negative controls (no template), no reverse transcriptase controls

1	and negative tissue controls (RNA isolated from fathead minnow testis). All
2	determinations were carried out in triplicate. A standard curve of the threshold cycle
3	(C_t) value obtained from the serially diluted RNA standards was compiled. C_t values
4	from the samples were plotted on the standard curve, and from this the number of
5	target RNA copies in each sample was calculated.
6	Semi-quantitative RT-PCR was performed using the <i>ER-like</i> specific primers 5'-ACT
7	TGC TCA CCG AGA TGC TT-3' (sense) and 5'-CCC AGC CTT GCA GTC TAA
8	AG-3' (antisense) and the ERR specific primers 5'-TCC GAA GAG TTC ATC ATC
9	AAT CGT-3' (sense) and 5'-AAA GTG GGC TGA AGC GAA ACA A-3'
10	(antisense). Twenty five cycles were performed at an annealing temperature of 60°C.
11	Individual PCR samples contained equal volumes of 1 st strand cDNA synthesized
12	from 500 ng DNase I-treated RNA template using methods described above.
13 14 15 16	References
17	1. Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid
18	guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162,
19	156-159.
20	2. Chenna, R.; Sugawara, H.; Koike, T.; Lopez, R.; Gibson, T.J.; Higgins, D.G.;
21	Thompson, J.D. Multiple sequence alignment with the Clustal series of programs.
22	Nucleic Acids Res. 2003, 31, 3497-3500.
23	3. Guindon, S. and Gascuel, O. A simple, fast, and accurate algorithm to estimate
24	large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696-704.

- 1 4. Guindon, S.; Lethiec, F.; Duroux, P.; Gascuel, O. PHYML Online--a web server for
- fast maximum likelihood-based phylogenetic inference. *Nucleic Acids Res.* 2005, *33*,
 W557-9.
- 4 5. Routledge, E.J.; White, R.; Parker, M.G.; Sumpter, J.P. Differential effects of
- 5 xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and
- 6 ERbeta. J. Biol. Chem. 2000, 275, 35986-35993.