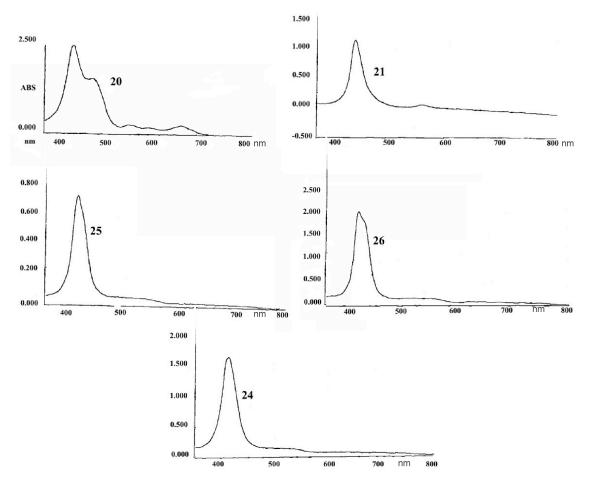
Synthesis, Characterization, and Electrochemical Studies of β , β '-Fused Metallocenoporphyrins

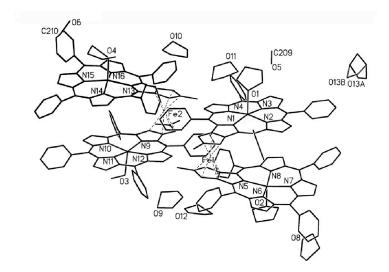
Hong J. H. Wang,[†] Laurent Jaquinod,[†] Marilyn M. Olmstead,[†] M. Graça H. Vicente,^{†,‡}

Karl M. Kadish,[§] Zhongping Ou,[§] and Kevin M. Smith,^{*,†,‡}

Department of Chemistry, University of California, Davis, California 95616,


Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803,

and


Department of Chemistry, University of Houston, Houston, Texas 77204

Contents

Cover Page	S1
Figure S1	S2
Figure S2	S3
Table S1	S4
CIF for compound 26	Separate file

Figure S1. UV/Visible spectra (CHCl₃) of bisporphyrinatoferrocenes (**24-26**) and mono-ruthenocenoporphyrins (**20**, **21**)

Figure S2. X-Ray crystal structure of bisporphyrinatoferrocene **26**: showing molecules in one asymmetric unit.

compound	oxidation				reduction		$\Delta {\rm E}_{1/2}{}^d$	ref
	Por-centered		Mc	-centered	Por-centered		(V)	
(TPP)Ni		1.12 ^{<i>a</i>}			-1.23	-1.78	2.35	6
Ruthenocene				0.60-0.78 ^b				7-9
Ferrocene				0.49				tw
Ni 2		1.13 ^{<i>a</i>}			-1.31	-1.85	2.44	tw
Ni 13	1.19	0.99			-1.36	-1.95	2.35	tw
Ni 20		1.09	0.93 ^c	0.58	-1.32		2.25	tw
Ni 24	1.22 ^{<i>a</i>}	1.22 ^{<i>a</i>}		0.39	-1.24, -1.35		2.46	tw
(TPP)Cu	1.31	1.02			-1.28	-1.73	2.30	6
(III)Cu								U
Cu 25	1.17 ^{<i>a</i>}	1.17 ^{<i>a</i>}		0.40	-1.38^{a}	-1.87 ^a	2.55	tw

Table S1. Half-wave Potentials (V vs SCE) in PhCN Containing 0.1 M TBAP.

^{*a*}Two one-electron overlapping processes. ^{*b*}Irreversible two-electron process. The reported potentials are 0.60 V vs SCE in CH₃CN, 0.1 M TBABF₄ (ref 7), 0.69 V vs Ag/AgClO₄ in CH₃CN, 0.2 M LiClO₄ (ref 8) and 0.78 V vs SCE in CH₃CN, 0.1 M TBABF₄ (ref 9), respectively. ^{*c*}E_{pa} at a scan rate of 0.1 V/s. ^{*d*}HOMO-LUMO gap, the potential difference between the first porphyrin-centered reduction and oxidation. *tw* = this work.