Supporting Information

Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicron Phosphors

Wei-Ning Wang¹, W. Widiyastuti¹, Takashi Ogi¹, I. Wuled Lenggoro², and Kikuo Okuyama^{1*}

1. Department of Chemical Engineering, Graduate School of Engineering,

Hiroshima University, Higashi Hiroshima, 739-8527, Japan

 Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan

Figure S1. X-ray diffraction (XRD) patterns (left) and field emission scanning electron microscopy (FE-SEM) images (right) of annealed Y_2O_3 :Eu $^{3+}$ particles from precursors with various concentrations at $1000~^{\circ}$ C

Figure S2. Transmission electron microscopy (TEM) images of two Y_2O_3 :Eu³⁺ samples, Y-9 (a) and Y-11 (b), with the particle sizes of 265 nm, and 852 nm; crystallite sizes of about 13.3 nm and 14.8 nm, respectively; the inserts in both images are the selected area electron diffraction (SAED) patterns

Figure S3. Schematic diagram of two crystallographic sites of Y^{3+} in Y_2O_3 :Eu $^{3+}$: One is the S_6 site with inversion symmetry, and the other is the C_2 site (a); Energy level diagram of the $4f^6$ configuration of the Eu $^{3+}$ ion in the cubic Y_2O_3 lattice (b)

Figure S4. Photoluminescence emission and excitation (insert) spectra of Y₂O₃:Eu³⁺ powders with different particle sizes at a constant crystallite size