

Figure S1. IR spectra in the regions of 915-895, and 520-490 cm $^{-1}$ for laser-ablated La atoms co-deposited with CD₃F in excess argon at 8 K. (a) La + 0.2% CD₃Cl in Ar co-deposited for 1 h. (b) After broad-band photolysis with a filter ($\lambda > 420$ nm). (c) After broad-band photolysis with a filter ($240 < \lambda < 380$ nm). (d) After annealing to 28 K. (e) After annealing to 32 K. i and m denote the product absorption groups. P indicates absorption by precursor.

Figure S2. IR spectra in the regions of 940-910 cm⁻¹ for laser-ablated La atoms co-deposited with CD₃Cl (a-d) and CD₃Br (e-g) in excess argon at 8 K and their variation. (a) La + 0.2% CD₃Cl in Ar co-deposited for 1 h. (b) After broad-band photolysis with a filter ($\lambda > 420$ nm). (c) After broad-band photolysis with a filter ($240 < \lambda < 380$ nm). (d) After annealing to 28 K. (e) La + 0.2% CD₃Br in Ar co-deposited for 1 h. (f) After broad-band photolysis with a filter ($\lambda > 420$ nm). (g) After broad-band photolysis with a filter ($240 < \lambda < 380$ nm). **m** denotes the product absorption group.

Figure S3. The optimized molecular structures of $(CH_3)_2MF_2$ and CH_3 -MF₂ calculated using B3LYP and the 6-311++G(3df,3pd) basis set. The all electron basis is used for Sc, whereas the SDD pseudopotential and basis are used for Y. The bond lengths and angles are in Å and degree. The electronic states and molecular symmetry are shown below the structure. They might be responsible for the observed $\bf h$ absorptions.

Table S1: Harmonic Frequencies of CH_3 -ScF and CH_3 -YF in the Ground 2A ' Electronic States Calculated with the B3LYP and BPW91 Density Functionals^a

	-								
A		CH ₃	-ScF	CH₃-YF					
Approximate Description	B3LYP		BPW	91	B3L	ΥP	BPW91		
	Freq.	Int.	Freq.	Int.	Freq.	Int.	Freq.	Int.	
A' CH ₃ str.	3079.8	9	3039.8	7	3067.7	12	3027.6	10	
A' CH ₃ str.	2974.8	6	2920.9	4	2963.9	11	2912.9	9	
A' CH ₃ bend	1419.9	0	1369.4	0	1422.2	0	1374.1	0	
A' CH ₃ deform	1139.0	11	1089.9	11	1141.7	15	1097.0	13	
A' Sc-X str.	667.8	171	663.2	148	592.4	110	588.9	100	
A' C-Sc str.	510.3	65	505.8	58	465.9	38	462.3	38	
A' CH ₃ rock	414.8	21	399.9	17	397.6	15	389.6	12	
A' CScX bend	133.2	6	136.7	4	113.8	6	115.7	5	
A" CH ₃ str.	3038.7	7	2992.4	7	3022.9	8	2980.2	7	
A" CH ₃ bend	1430.1	10	1381.8	13	1431.9	10	1385.5	11	
A" CH ₃ rock	379.7	7	351.3	3	358.8	2	340.6	1	
A" CH ₃ distort	4.2	1	10.7	1	2.5	0	15.0	0	

 $[\]overline{^a}$ Frequencies and intensities computed with B3LYP or BPW91/6-311++G(3df, 3pd), and all electron basis is used for Sc. Frequencies and intensities are in cm $^{-1}$ and km/mol. Both CH $_3$ -ScF and CH $_3$ -YF have also a C $_s$ (planar) structure. The symmetry notations are based on the C $_s$ structure.

Table S2: Harmonic Frequencies of CH₂-ScHF and CH₂-YHF in the Doublet Ground Electronic States Calculated with the B3LYP and BPW91 Density Functionals^a

•		CH ₂ -	ScHF	CH ₂ -YHF					
Approximate Description	B3LYP		BPW!	91	B3L	ΥP	BPW!	91	
	Freq.	Int.	Freq.	Int.	Freq.	Int.	Freq.	Int.	
A' CH str.	3109.8	13	3052.5	14	3094.6	19	3040.2	19	
A' CH str.	3033.0	8	2970.6	10	3023.9	18	2965.0	20	
A' Sc-H str.	1551.3	511	1512.8	482	1445.5	494	1421.4	472	
A' CH ₂ scis.	1369.2	2	1323.8	2	1375.1	3	1329.5	2	
A' Sc-X str.	699.3	326	687.2	301	595.9	254	589.0	233	
A' C-Sc str.	572.1	99	559.2	86	587.3	82	561.8	70	
A' CScH bend	492.6	19	484.4	18	455.8	20	447.8	22	
A' CH ₂ rock	375.0	9	361.6	7	356.0	20	352.1	16	
A' CScX bend	145.1	2	144.4	2	143.1	116	162.5	71	
A" CH ₂ wag	609.6	82	575.7	76	507.3	131	499.8	121	
A" CH ₂ twist	209.6	36	199.2	32	196.4	47	190.1	131	
A" ScH OOP bend	99.7	290	73.8	284	83.2	163	98.4	85	

 $[\]overline{^a}$ Frequencies and intensities computed with B3LYP or BPW91/6-311++G(3df, 3pd), and all electron basis is used for Sc. Frequencies and intensities are in cm $^{-1}$ and km/mol. CH2-ScHF has a Cs (planar) structure, but CH2-YHF has a C1 structure. The symmetry notations are based on the Cs structure.

Table S3: Geometrical Parameters and Physical Constants Calculated for CH_3 -MX from reactions of Group 3 metals with Methyl Halide^a

Parameters	CH ₃ -ScF	CH ₃ -ScC	CH ₃ -ScB1	· CH ₃ -YF	CH ₃ -YCl	CH ₃ -YBr	CH ₃ -LaF	CH ₃ -LaC	CH ₃ - LaBr
r(C-H ₁) ^b	1.092	1.092	1.093	1.095	1.093	1.093	1.093	1.093	1.093
r(C-H ₂)	1.097	1.097	1.097	1.097	1.098	1.099	1.100	1.100	1.099
r(C-H ₃)	1.097	1.097	1.097	1.097	1.098	1.099	1.100	1.100	1.099
r(C-M)	2.169	2.166	2.167	2.333	2.321	2.319	2.441	2.417	2.412
r(M–X)	1.839	2.307	2.471	1.992	2.463	2.623	2.082	2.583	2.753
$r(M - H_1)$	2.780	2.789	2.790	2.909	2.951	2.960	3.093	3.064	3.055
∠H ₁ CH ₂	108.0	107.8	107.8	107.2	107.4	107.4	107.5	107.6	107.7
∠H ₂ CH ₃	107.7	107.8	107.8	107.1	107.1	107.0	107.2	107.4	107.6
∠CMX	114.3	120.8	122.3	115.7	115.8	117.4	109.7	110.6	111.2
∠H₁CM	112.8	113.6	113.7	110.9	114.8	115.7	116.9	116.4	116.1
∠H ₂ CM	110.1	109.8	109.9	112.1	109.9	109.5	108.6	108.7	108.8
Φ(H ₁ CMH ₃)	120.7	120.8	120.8	119.8	121.2	121.5	121.9	121.7	121.6
Φ(H ₁ CMX)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mol. Sym.	Cs	Cs	Cs	Cs	Cs	Cs	Cs	Cs	Cs
Q(C) ^c	-0.45	-0.44	-0.47	-0.68	-0.67	-0.68	-0.46	-0.45	-0.47
$Q(H_1)$	0.00	0.01	0.01	0.00	0.00	-0.02	0.05	0.05	0.05
Q(H ₂)	0.01	0.02	0.01	-0.01	-0.01	0.00	0.01	0.00	0.01
Q(H ₃)	0.01	0.02	0.01	-0.01	-0.01	0.00	0.01	0.00	0.01
Q(X)	-0.51	-0.49	-0.40	-0.54	-0.76	-0.67	-0.65	-0.44	-0.37
Q(M)	0.93	0.89	0.83	1.23	1.44	1.37	1.056	0.84	0.76
S(C) ^d	-0.054	-0.041	-0.026	-0.041	-0.037	-0.023	-0.119	-0.136	-0.110
S(H ₁)	0.018	0.018	0.015	0.030	0.031	0.027	-0.015	-0.009	-0.011
S(H ₂)	0.009	0.006	0.006	0.033	0.038	0.033	0.023	0.024	0.015
S(H ₃)	0.009	0.006	0.006	0.033	0.038	0.033	0.023	0.024	0.015
S(X)	-0.026	0.006	0.045	-0.017	0.024	0.048	0.062	-0.100	-0.097
S(M)	1.044	1.005	0.954	0.961	0.907	0.82	1.026	1.196	1.189

μ ^e	2.94	3.64	3.81	2.93	3.45	3.53	3.43	4.29	4.47
State ^f	² A'								
ΔE^{g}	94.1	86.1	79.2	99.5	91.7	90.6	110.0	102.3	101.3

 $[^]a$ Calculations are carried out with B3LYP/6-311++G(3df, 3pd), and SDD core potential and basis set are used for Y and La while all electron basis is used for other atoms including Sc. b Bond lengths and angles are in Å and degrees. c Mulliken atomic charge. d Electron spin density. e Molecular dipole moment in D. f Electronic state. g Binding energies with respect to M + CH₃X in kcal/mol.

Table S4: Geometrical Parameters and Physical Constants Calculated for CH₂-MHX from reactions of Group 3 metals with Methyl Halide^a

Parameters	CH ₂ -ScHF	CH ₂ -ScHCl	CH ₂ -ScHBr	CH ₂ -YHF	CH ₂ -YHCl	CH ₂ -YHBr	CH ₂ -LaHF	CH ₂ - LaHCl	CH ₂ - LaHBr
r(C–H ₁) ^b	1.095	1.094	1.094	1.095	1.095	1.095	1.097	1.097	1.097
r(C-H ₂)	1.092	1.092	1.092	1.093	1.093	1.093	1.095	1.095	1.095
r(C-M)	2.156	2.141	2.138	2.331	2.318	2.316	2.455	2.431	2.428
r(M–H ₃)	1.836	1.820	1.817	2.003	1.989	1.988	2.134	2.111	2.108
r(M–X)	1.846	2.317	2.479	2.011	2.490	2.650	2.105	2.617	2.789
$r(M \cdot H_1)$	2.902	2.883	2.879	3.082	3.066	3.059	3.204	3.172	3.171
∠H₁CH₂	108.9	109.3	109.4	108.0	108.2	108.2	107.7	108.1	108.2
∠CMH ₃	118.9	116.1	115.4	115.5	115.0	115.2	110.1	109.8	110.6
∠CMX	120.0	122.4	122.5	116.9	120.6	122.2	111.3	112.7	114.1
∠H ₃ MX	121.0	121.5	122.0	118.4	121.0	122.6	113.3	114.4	114.6
∠H₁CM	123.1	122.7	122.6	124.1	123.8	123.5	124.3	123.5	123.7
∠H ₂ CM	128.1	128.1	128.0	127.9	128.0	128.3	127.9	128.3	128.1
Φ(H ₁ CMH ₃)	0.0	0.0	0.0	19.3	9.5	0.0	30.4	23.4	21.7
Φ(H ₁ CMX)	180.0	180.0	180.0	165.7	168.9	180.0	157.0	152.1	152.7
Mol. Sym.	Cs	Cs	Cs	C ₁	C ₁	Cs	C ₁	C ₁	C ₁

Q(C) ^c	-0.53	-0.49	-0.49	-0.75	-0.72	-0.73	-0.63	-0.63	-0.61
$Q(H_1)$	0.07	0.06	0.07	0.07	0.06	0.07	0.05	0.05	0.05
$Q(H_2)$	0.06	0.08	0.07	0.05	0.06	0.05	0.04	0.05	0.05
$Q(H_3)$	-0.36	-0.34	-0.34	-0.45	-0.42	-0.43	-0.48	-0.48	-0.47
Q(X)	-0.54	-0.47	-0.35	-0.57	-0.74	-0.68	-0.63	-0.57	-0.49
Q(M)	1.304	1.15	1.05	1.65	1.76	1.72	1.64	1.58	1.46
S(C) ^d	0.944	0.940	0.936	0.955	0.949	0.946	0.961	0.951	0.948
S(H ₁)	-0.027	-0.030	-0.030	-0.026	-0.026	-0.026	-0.024	-0.024	-0.024
S(H ₂)	-0.026	-0.024	-0.024	-0.023	-0.023	-0.023	-0.022	-0.021	-0.021
S(H ₃)	0.001	0.0007	0.0008	0.001	0.002	0.002	0.006	0.004	0.004
S(X)	-0.0009	0.0005	-0.0013	0.001	0.002	0.001	0.001	0.003	0.004
S(M)	0.109	0.112	0.117	0.092	0.095	0.100	0.077	0.087	0.089
μ ^e	1.47	2.00	2.10	2.92	2.50	2.02	4.51	4.82	4.80
State ^f	² A"	² A"	² A"	² A	² A	² A"	² A	² A	² A
ΔE^{g}	70.0	60.9	59.1	73.0	66.3	65.4	82.8	75.9	75.2
3~									

^aCalculations are carried out with B3LYP/6-311++G(3df, 3pd), and SDD core potential and basis set are used for Y and La while all electron basis is used for all other atoms including Sc. CH₂-ScHX and CH₂-LaHX have a planar (C_s) and C_1 structure, respectively, at all level of theory used in this study, whereas CH₂-YHX has a C_1 structure with B3LYP and BPW91, but a planar (C_s) structure with MP2 and CCSD. ^bBond lengths and angles are in Å and degrees. ^cMulliken atomic charge. ^dElectron spin density. ^eMolecular dipole moment in D. ^fElectronic state. ^gBinding energies with respect to M + CH₃X in kcal/mol.