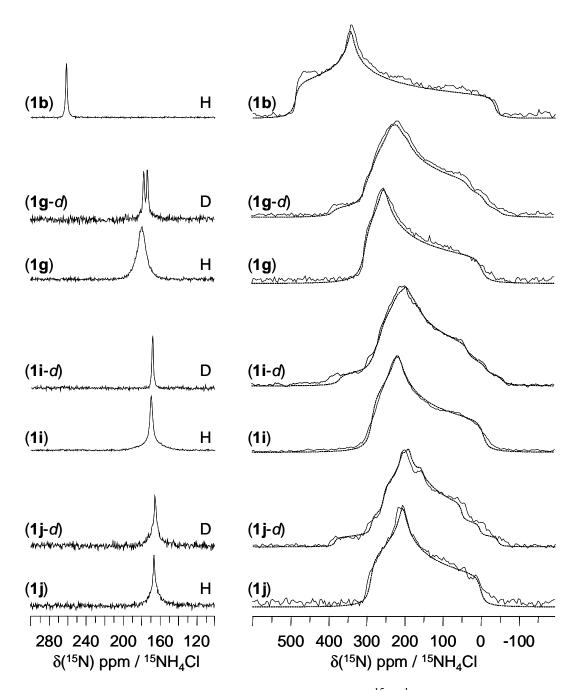
Supporting Information for


Coupling of Functional Hydrogen Bonds in Pyridoxal-5'-phosphate-

Enzyme Model Systems Observed by Solid State NMR

Shasad Sharif, [‡] David Schagen, [‡] Michael D. Toney, [†] and Hans-Heinrich Limbach [‡]*

[‡] Institut für Chemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany [†] Department of Chemistry, University of California-Davis, 95616 Davis, United States

Table of Contents						
Figure S1.	Superposed experimental and calculated 30.41 MHz ¹⁵ N{ ¹ H} CP NMR					
	static spectra solid powder samples of the aldenamine Schiff base and its					
	1 : 1 acid base complexes of, 1b, 1g, 1i, 1j and deuterated 1g-d, 1i-d, 1j-					
	d. Also presented is the theory of Dipolar 15 N Solid State NMR.					
Figure S2.	¹⁵ N{ ¹ H} CP MAS (30.41 MHz, 6 kHz) spectra of the aldimine Schiff					
	base (2a), and its 1 : 1 acid-base complex 2a-4-nitrobenzoic acid (2c).					
Figure S3.	¹⁵ N{ ¹ H} CP MAS (30.41 MHz, 6 kHz) spectra of ¹⁵ N labeled pyridoxal-					
	5'-phosphate (PLP), and its derivative pyridoxal (PL) in natural					
	abundance. Also presented are the crystallographic structures.					
Figure S4.	¹⁵ N{ ¹ H} CP MAS (30.41 MHz, 6 kHz) spectra of ¹⁵ N labeled pyridoxine					
	(PN), pyridoxine hydrochloride (PN·HCl). Also presented are the					
	crystallographic structures.					
Figure S5.	¹⁵ N{ ¹ H} CP MAS (30.41 MHz, 6 kHz) spectra of ¹⁵ N labeled in imino					
	position pyridoxamine (PM) and pyridoxamine dihydrochloride					
	(PN·2HCl) in natural abundance. Also presented are the crystallographic					
	structures.					
Figure S6.	Plot of the estimated intramolecular $r_{\rm NH}$ distances against the intrinsic					
	¹⁵ N chemical shift of the imino nitrogen.					
Figure S7.	Secondary isotopic effect ${}^{1}\Delta N1(D)$ vs. intrinsic ${}^{15}N$ chemical shift.					
Figure S8.	pK_a values vs. proton transfer coordinate q_1^H correlation.					
	In addition are also listed the estimated geometrical parameters	1				

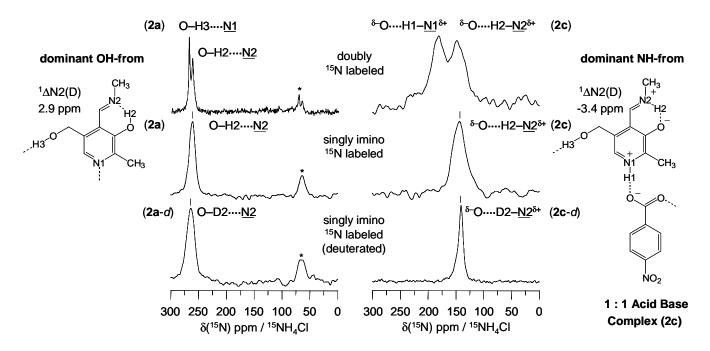
Figure S1. Superposed experimental and calculated 30.41 MHz ${}^{15}N{}^{1}H$ CP NMR static spectra solid powder samples of the aldenamine Schiff base and its 1 : 1 acid-base complexes of, **1b**, **1g**, **1i**, **1j** and deuterated **1g**-*d*, **1i**-*d*, **1j**-*d*, at room temperature. Additionally the MAS spectra of the mentioned samples are shown.

Determination of N...H/N...D - Distances by Dipolar ¹⁵N Solid State NMR

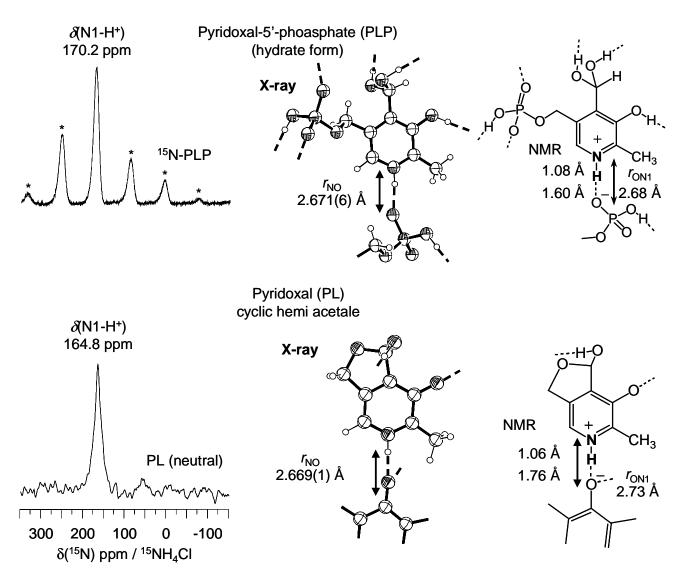
The NMR theory of heteronuclear dipolar coupling^{1,2,3} between ¹⁵N nuclei and a deuteron has been described previously.^{4,5} The N...L - Distances, with L = H, D, are calculated from the dipolar frequency of $v_d^{NL} = D^{NL} (1-3cos^2 \theta_d^{NL})$ is the dipolar coupling constant D^{NL} given by

$$v_{\rm d}^{\rm NL} = D^{\rm NL} \left(1 - 3\cos^2 \theta_{\rm d}^{\rm NL}\right), \ D^{\rm NL} = \frac{\gamma^{\rm N} \gamma^{\rm L} h \mu_0}{16\pi^3 r_c^3 (\rm NL)}.$$
 (1)

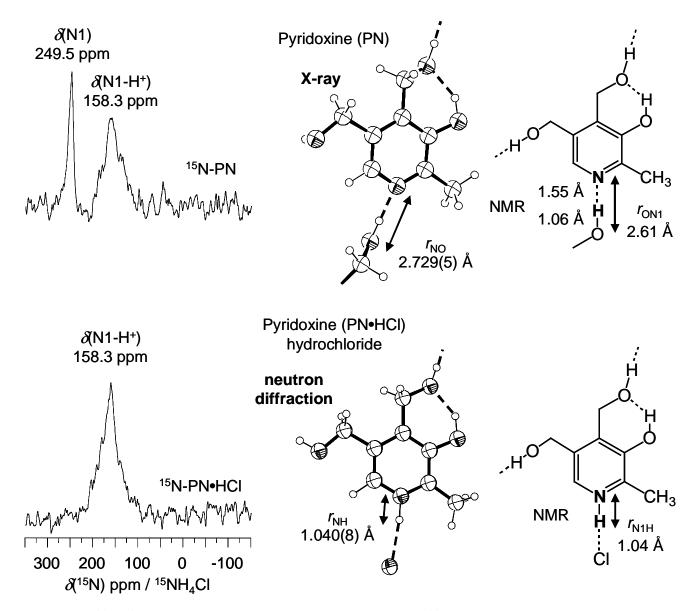
 $\gamma^{\rm N}$ and $\gamma^{\rm L}$ are the gyromagnetic ratios of the two nuclei, *h* Planck's constant, μ_0 the magnetic permeability. $r_{\rm c}(\rm NL)$ represents the average reversal cubic internuclear distance N...L in expression in Å $D^{\rm NH} = 12158 \ r_{\rm c}^{-3}(\rm NH)$ [Hz], and $D^{\rm ND} = 1868 \ r_{\rm c}^{-3}(\rm ND)$ [Hz]. (2)


 θ_d^{NL} is the angle between the magnetic field and the vector NL. This angle can more conveniently be described by the Euler angles in the coordinate system of the CSA tensor - ϕ^B and θ^B for the magnetic field and α_d^{NL} and β_d^{NL} for the vector NL, respectively. It can be shown that

- Mehring M. In NMR BasicPrinciples and Progress 11, High Resolution NMR in Solids, Springer: Berlin-Heidelberg-New York, 1978.
- (2) Seth, N. K.; Alderman, D. W.; Grant, D. M. Mol. Phys. 1990, 71, 217-238.
- (3) Zilm, K. W.; Grant, D. M. J. Am. Chem. Soc. 1981, 103, 2913-2922.
- (4) Lorente, P.; Shenderovich, I. G.; Golubev, N. S.; Denisov, G. S.; Buntkowsky, G.; Limbach, H.-H. *Magn. Reson. Chem.* 2001, *39*, 18-29.
- (5) Hoelger, C.-G.; Limbach, H.-H. J. Phys. Chem. 1994, 98, 11803-11810.


$$\cos\theta_{\rm d}^{\rm NL} = \sin\beta_{\rm d}^{\rm NL}\sin\theta^{\rm B}\cos(\phi^{\rm B} - \alpha_{\rm d}^{\rm NL}) + \cos\beta_{\rm d}^{\rm NL}\cos\theta^{\rm B}.$$
(3)

The ¹⁵N NMR spectrum of a polycrystalline powder is obtained from eqs. (1) - (3) by calculating v^{N} for all possible orientations by variation of ϕ^{B} and θ^{B} using increments of 1-2°. For statistical reasons the signal intensity has to be weighted by a factor of $\sin \theta^{B}$.


Experimentally, only relative chemical shifts $\delta_{ii} = \delta_{ref} - \delta_{ii}$, ii = *XX*, *YY*, *ZZ* which are measured with respect to some standard reference, can be obtained. For the determination of the ¹⁵N...D distances first the elements of the ¹⁵N CSA tensor are determined by simulating the experimental solid state ¹⁵N NMR spectrum of the protonated system, *i. e.* L = H, under proton decoupling. The values obtained are then corrected for H/D isotope effects on the elements of the ¹⁵N CSA tensor. The new values have been used for a simulation of the proton decoupled ¹⁵N NMR spectrum of the species deuterated in the hydrogen bond, by adapting the remaining parameters α_d^{ND} , β_d^{ND} and D^{ND} . The determination of the ¹⁵N...H distances more difficult.⁴ Hence, we could obtain the distances N...H by extrapolation from the observed strong dependence of the N...D distances on the isotropic chemical shifts.

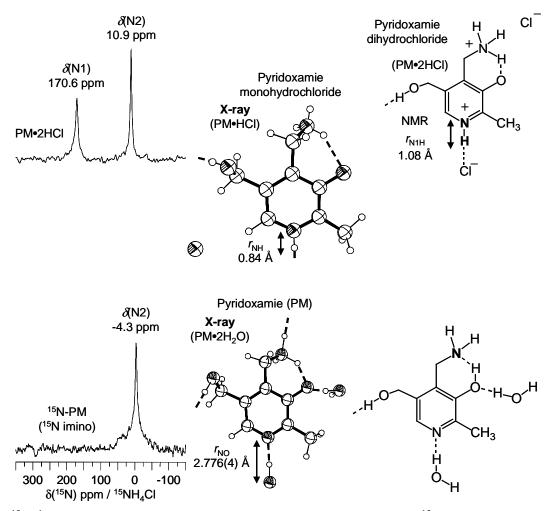

Figure S2. ¹⁵N{¹H} CP MAS (30.41 MHz, 6 kHz) spectra of the aldimine Schiff base (**2a**), and its 1 : 1 acid-base complex **2a**-4-nitrobenzoic acid (**2c**). From the top of the figure are shown the ¹⁵N labeled doubly, selectively imino, and the selectively imino of the deuterated compounds **2a**-*d* and **2c**-*d*. *: spinning sideband.

Figure S3. ¹⁵N{¹H} CP MAS (30.41 MHz, 6 kHz) spectra of ¹⁵N labeled pyridoxal-5'-phosphate (PLP), and its derivative pyridoxal (PL) in natural abundance. For the presented crystallographic structures and values see text. The spectra of ¹⁵N labeled (PLP) is obtained at 60.8 MHz with a spinning speed of 5 kHz. *: spinning sidebands.

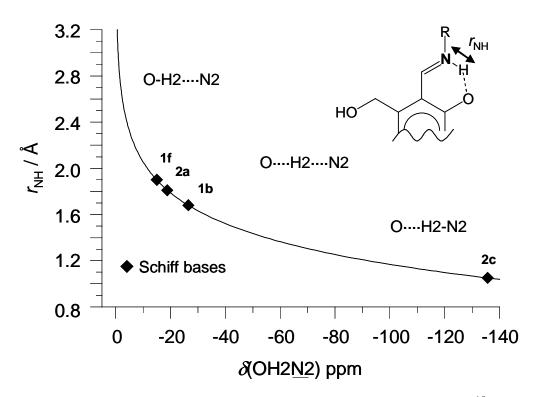


Figure S4. ¹⁵N {¹H} CP MAS (30.41 MHz, 6 kHz) spectra of ¹⁵N labeled pyridoxine (PN), pyridoxine hydrochloride (PN·HCl). For the presented crystallographic structures and values see text.

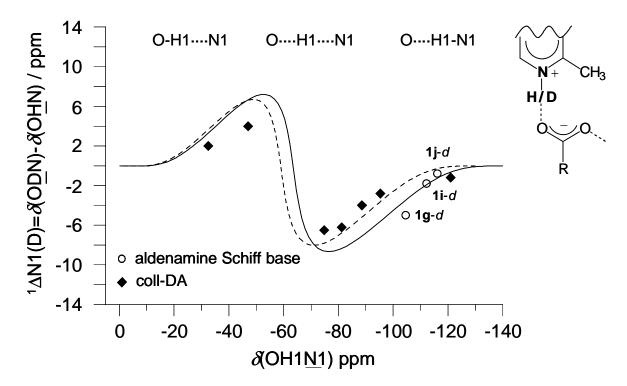


Figure S5. ¹⁵N{¹H} CP MAS (30.41 MHz, 6 kHz) spectra of in imino position ¹⁵N labeled pyridoxamine (PM) and pyridoxamine dihydrochloride (PN·2HCl) in natural abundance. For the presented crystallographic structures and values see text. We note that crystal structure is the pyridoxamine hydrochloride (PN·HCl).

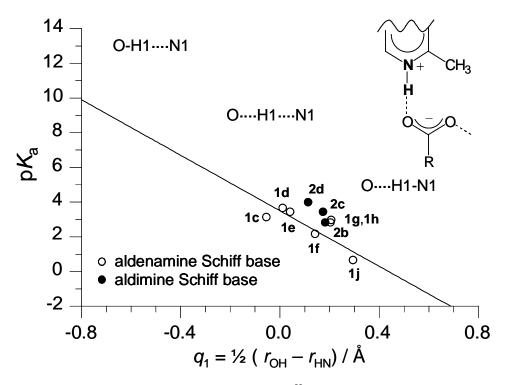

Comment. The mono-hydrochloride of pyridoxamine (PM·HCl) was studied by *x*-ray crystallography, for which a value of $r_{\rm HN} = 0.84$ Å was reported, but the accuracy of the crystallographic finding is questionable. Also pyridoxamine dihydrate (PM·2 H₂O) was studied by *x*-ray diffraction, and a heavy atom distance of $r_{\rm ON} = 2.776(4)$ Å between the hydroxyl group of the adjacent water molecule and the pyridine ring was reported. For PM·2HCl we obtained by NMR a value of $r_{\rm HN} = 1.08$ Å for the pyridine-HCl hydrogen bond, indicating a zwitterionic structure. We observed for the amino nitrogen a ¹⁵N chemical shift of 10.9 ppm, which we assign to the amino group in the protonated form, hydrogen bonded to chloride Cl⁻. For neutral dihydrate of PM 2H₂O, where the ammonium group is hydrogen bonded to water, a high field shift to -4.3 ppm was observed.

Figure S6. Plot of the estimated intramolecular $r_{\rm NH}$ distances against the intrinsic ¹⁵N chemical shift of the imino nitrogen in the Schiff bases **1b** and **2a** as well as their acid-base adducts **1f** and **2c**. For the calculation of the solid line see the main text.

Figure S7. Secondary isotopic effect ${}^{1}\Delta N1(D)$ *vs.* intrinsic ${}^{15}N$ chemical shift of the intermolecular OH1N1 hydrogen bond. The open circles represented the aldimine Schiff base-adducts **1g**-*d*, **1i**-*d*, and **1j**-*d*, the solid curve correspond to this data. The filled diamonds represented the collidine-DA complexes which were obtained from literature, the dash curve correspond to this data. For further details see the main text.

Figure S8. pK_a values *vs.* proton transfer coordinate q_1^{H} correlation of the acid components in the organic solids of the aldenamine Schiff base-adducts **1b** to **1j** (open circles) and aldimine Schiff base-adducts **2b** to **2e** (filled circles). The pK_a values is a function of q_1^{H} with the relation $pK_a = A - B q_1^{H}$ by using the parameters A = 3.5 and B = 8.

	pK _a	δ(OH1 <u>N1</u>) ^a	r _{NH} ^b	r _{OH} ^b	q_1^{Hc}	$q_2^{\mathrm{H}\mathrm{d}}$
		/ ppm	/ Å	/ Å	/ Å	/Å
1c	3.14	-60.2	1.32	1.21	-0.05	2.53
1d	3.66	-71.6	1.25	1.27	0.01	2.52
1e	3.44	-77.0	1.22	1.30	0.04	2.52
1f	2.17	-95.1	1.14	1.43	0.14	2.57
1g	2.82	-104.6	1.10	1.51	0.20	2.62
1ĥ	2.97	-104.9	1.10	1.52	0.21	2.62
1i	-7	-112.2	1.08	1.60	0.26	2.68
1j	0.66	-116.2	1.06	1.65	0.29	2.72
2b	3.99	-90.1	1.16	1.39	0.11	2.55
2c	3.44	-100.2	1.12	1.47	0.17	2.59
2d	2.82	-101.4	1.12	1.48	0.18	2.60
2e	-6.65	-118.7	1.06	1.69	0.32	2.75

Table S1. NMR crystallographic values.^{a,b,c,d}

^a Values of the pyridine nitrogen are with respect to solid **1a**, resonating at 282.5 ppm. ^b NMR crystallographic values are extrapolated from the experimental isotropic ¹⁵N chemical shifts. ^b $q_1^{H} = \frac{1}{2} (r_{ON} - r_{NH})$. ^c $q_2 = r_{HN} + r_{OH}$.