Supplementary Material

Total Synthesis of N^{14}-Desacetoxytubulysin H.

Peter Wipf,* and Zhiyong Wang
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
pwipf@pitt.edu

Experimental procedures and spectral data for all new compounds, including copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

General: All reactions involving moisture sensitive reagents were conducted in oven-dried glassware under a nitrogen or argon atmosphere. Anhydrous solvents were obtained through standard laboratory protocols. Analytical thin-layer chromatography (TLC) was preformed on $\mathrm{SiO}_{2} 60$ F-254 plates available from Merck. Visualization was accomplished by UV irradiation at 254 nm , or by staining with any one of the following reagents: iodine, 5% phosphomolybdic acid hydrate in ethanol, ninhydrin $(0.3 \% \mathrm{w} / \mathrm{v}$ in glacial acetic acid/n-butyl alcohol 3:97), Vaughn's reagent (4.8 g of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \bullet 4 \mathrm{H}_{2} \mathrm{O}$ and 0.2 g of $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}$ in 10 mL of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 90 mL of $\mathrm{H}_{2} \mathrm{O}$), or paraanisaldehyde (7.5 mL of para-anisaldehyde, 25 mL of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, and 7.5 mL of acetic acid in 675 mL of 95% ethanol). Flash column chromatography was performed using $\mathrm{SiO}_{2} 60$ (particle size $0.040-0.055 \mathrm{~mm}, 230-400$ mesh, EM science distributed by Fisher Scientific).

Melting points were obtained on a Meltemp II $^{\mathrm{TM}}$ capillary melting point apparatus fitted with a Fluke 51™ digital thermometer and are not corrected. Specific rotations of chiral compounds were obtained at the designated concentration and temperature on a Perkin Elmer 241 polarimeter using a 1 dm cell. Infrared spectra were collected on a Nicolet Avatar ${ }^{\text {TM }} 360$ FT-IR spectrometer from thin films deposited onto NaCl plates. Proton and carbon NMR spectra were obtained on Bruker Avance ${ }^{\text {TM }} 300$ and 500 MHz NMR spectrometers. Chemical shifts are reported as δ values in parts per million (ppm) as referenced to residual solvent. ${ }^{1} \mathrm{H}$ NMR spectra are tabulated as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{bs}=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), number of protons, and coupling constant(s). Mass spectra were obtained at the University of Pittsburgh Mass Spectrometry facility. A Varian HPLC system
equipped with Gilson 215 Liquid Handler and fraction collector was used for preparative HPLC purification. A Varian Dynamax Microsorb C18 column ($250 \mathrm{~mm} \times$ 10 mm , or $250 \mathrm{~mm} \times 21.4 \mathrm{~mm}, 60 \AA$) was used. LC-MS analysis was performed on an Agilent 1100 instrument, using an analytical C18 column (Waters Xterra MS 100×4.6 $\mathrm{mm}, 3.5 \mu \mathrm{~m}, 0.4 \mathrm{~mL} / \mathrm{min})$.

(R)-Methyl 3-(benzyloxycarbonylamino)-4-methylpentanoate (4). ${ }^{1}$ To a solution of Cbz-Val-OH ($1.0 \mathrm{~g}, 4.1 \mathrm{mmol})$ and triethylamine $(0.60 \mathrm{~mL}, 4.3 \mathrm{mmol})$ in anhydrous THF $(15 \mathrm{~mL})$ cooled to $-20^{\circ} \mathrm{C}$ was added isobutyl chloroformate $(0.66 \mathrm{~mL}, 5.1 \mathrm{mmol})$ dropwise over 5 min , and the resulting white suspension was stirred further for 30 min . A diazomethane solution ($\sim 16.9 \mathrm{mmol}$) in ether $(50 \mathrm{~mL})$, which was prepared from Diazald ($5.1 \mathrm{~g}, 24.0 \mathrm{mmol}$) using an Aldrich MiniDiazald apparatus and dried over potassium hydroxide (pellets) prior to use, was then introduced into the reaction mixture via cannula. The mixture was stirred further overnight, allowing the temperature to gradually rise to room temperature. Acetic acid was then added dropwise until there was no effervescence, and the mixture was diluted in ether (50 mL), washed with saturated sodium bicarbonate $(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes, $\left.1: 3\right)$ to give the diazoketone $(0.96 \mathrm{~g}$, $84 \%)$ as a yellow solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.38-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.41-5.38(\mathrm{~m}$, 2 H), 5.11 (s, 2 H), 4.15-4.14 (m, 1 H), 2.10 (octet, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}$), 1.00 (d, $3 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 193.2, 156.3, 136.2, 128.4,
$128.1,128.0,67.0,62.8,54.6,31.0,19.3,17.2$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3324,2965,2107,1713$, $1632,1525,1366,1232$.

To a solution of the above diazoketone ($0.91 \mathrm{~g}, 3.3 \mathrm{mmol}$) in anhydrous methanol $(15 \mathrm{~mL})$ cooled at $-35^{\circ} \mathrm{C}$ was added a solution of silver benzoate ($80 \mathrm{mg}, 0.35 \mathrm{mmol}$) in freshly distilled (over CaH_{2}) triethylamine $(1 \mathrm{~mL})$. The reaction flask was wrapped with aluminum foil to keep it dark, and the mixture was stirred overnight, during which time it gradually warmed up to room temperature. The solvent was concentrated under vacuum, and the residue was dissolved in ethyl acetate (60 mL), washed with saturated sodium bicarbonate $(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes, $\left.1: 3\right)$ to give $4(0.77 \mathrm{~g}, 83 \%$; or 70% for three steps) as a white solid: $\operatorname{Mp} 44.5-45.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}-22.7\left(c 2.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.88-3.79(\mathrm{~m}, 1$ H), $3.66(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.85($ octet, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.93(\mathrm{~d}, 6 \mathrm{H}, J=6.8$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 172.2,156.0,136.5,128.5,128.0,66.6,53.6,51.7$, 36.8, 31.6, 19.3, 18.5; IR (film, cm^{-1}) 3338, 2961, 1731, 1531, 1239; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4}$ 279.1471, found 279.1478.

(R)-Benzyl 1-(tert-butyldimethylsilyloxy)-4-methylpentan-3-ylcarbamate (5). ${ }^{2}$ To an ice-cooled solution of $4(0.66 \mathrm{~g}, 2.4 \mathrm{mmol})$ in anhydrous THF (10 mL) was added dropwise lithium borohydride (2.0 M solution in THF, $1.8 \mathrm{~mL}, 3.6 \mathrm{mmol}$) over 5 min . A solution of methanol ($0.20 \mathrm{~mL}, 4.8 \mathrm{mmol}$) in anhydrous THF (5 mL) was then added over

10 min , and the mixture was stirred further overnight, allowing the temperature to rise to room temperature. The solvent was concentrated under vacuum, and the residue was dissolved in ethyl acetate (70 mL), washed with hydrochloric acid ($1 \mathrm{~N}, 20 \mathrm{~mL} \times 2$), saturated sodium bicarbonate $(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc} /$ hexanes, $1: 1)$ to give the desired alcohol $(0.42 \mathrm{~g}, 71 \%)$ as a white solid: $\mathrm{Mp} 52.0-53.0^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}+12.1\left(c 4.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.38-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.16,5.10\left(\mathrm{~d}_{\mathrm{AB}}, 2 \mathrm{H}, J=12.1 \mathrm{~Hz}\right), 4.63$ $(\mathrm{d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 3.74-3.56(\mathrm{~m}, 3 \mathrm{H}), 2.95(\mathrm{bs}, 1 \mathrm{H}), 1.90-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.30(\mathrm{~m}$, $1 \mathrm{H}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $157.4,136.3,128.4,128.0,127.9,66.7,58.9,52.9,35.2,32.0,19.1,17.9$; IR (film, cm^{-1}) 3324, 2959, 2875, 1693, 1537, 1251, 1048.

To a solution of the alcohol $(0.34 \mathrm{~g}, 1.4 \mathrm{mmol})$ and imidazole $(0.18 \mathrm{~g}, 2.4 \mathrm{mmol})$ in anhydrous DMF (2 mL) was added a solution of tert-butyldimethylchlorosilane (0.32 $\mathrm{g}, 2.1 \mathrm{mmol}$) in anhydrous THF (2 mL). The mixture was stirred further overnight, diluted in water (10 mL), and extracted with ether ($20 \mathrm{~mL} \times 3$). The combined organic layers were washed with hydrochloric acid ($1 \mathrm{~N}, 20 \mathrm{~mL}$), saturated sodium bicarbonate $(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes, 1:7) to give $5(0.49 \mathrm{~g}, 99 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}+6.6\left(c 5.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.36-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.13,5.07$ $\left(\mathrm{d}_{\mathrm{AB}}, 2 \mathrm{H}, J=12.4 \mathrm{~Hz}\right), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 3.74-3.60(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.72(\mathrm{~m}, 2 \mathrm{H})$, $1.61-1.49(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 156.2,136.8,128.4,127.8,66.3,60.6,54.2,34.5,31.8,25.8$,
18.8, 18.1, 18.0, -5.5; IR (film, cm^{-1}) 3333, 2958, 2858, 1699, 1537, 1255, 1096, 836, 776; MS (APCI) m/z $366\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(R)-Benzyl 1-hydrox-4-methylpentan-3-yl(methyl)carbamate (6). To an ice-cooled solution of $5(0.40 \mathrm{~g}, 1.1 \mathrm{mmol})$ in anhydrous THF $(2 \mathrm{~mL})$ was added a solution of NaHMDS ($0.28 \mathrm{~g}, 1.5 \mathrm{mmol}$) in THF (1 mL). The reaction mixture was stirred for 20 min before iodomethane ($0.1 \mathrm{~mL}, 1.6 \mathrm{mmol}$) was added. The mixture was stirred overnight, while the temperature was allowed to rise to room temperature. The solution was diluted with ethyl acetate $(60 \mathrm{~mL})$, washed with hydrochloric acid $(1 \mathrm{~N}, 10 \mathrm{~mL})$ and brine (10 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated under vacuum, and purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes, $\left.1: 8\right)$ to give the methylated product $(0.40 \mathrm{~g}, 96 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}^{23}+5.2\left(c\right.$ 2.2, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ NMR analysis $\left(\mathrm{CDCl}_{3}\right)$ showed a mixture of rotamers at room temperature; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}, \mathrm{~d}_{6}, 338 \mathrm{~K}, 300 \mathrm{MHz}\right) \delta$ 7.34-7.33 (m, 5 H$), 5.09$, $5.04\left(\mathrm{~d}_{\mathrm{AB}}, 2 \mathrm{H}, J=12.6 \mathrm{~Hz}\right), 3.69(\mathrm{dt}, 1 \mathrm{H}, J=10.0,4.0 \mathrm{~Hz}), 3.51-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~s}$, $3 \mathrm{H}), 1.80-1.62(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.77(\mathrm{~d}, 3 \mathrm{H}, J=6.7$ $\mathrm{Hz}), 0.00(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 338 \mathrm{~K}, 75 \mathrm{MHz}\right) \delta$ 155.6, 137.3, 127.8, 127.2, $126.8,65.6,59.8,58.7,31.9,29.7,28.8,25.4,19.5,19.1,17.4,-5.9$; IR (film, cm^{-1}) 2957, 2857, 1701, 1471, 1252, 1098, 835; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{NO}_{3}$ Si 379.2543, found 379.2536.

To a solution of the above methylated product $(0.40 \mathrm{~g}, 0.28 \mathrm{mmol})$ in THF (2 mL) was added tetrabutylammonium fluoride (1.0 M solution in $\mathrm{THF}, 0.34 \mathrm{~mL}, 0.34 \mathrm{mmol}$).

The reaction mixture was stirred at room temperature for 4 h , diluted with ethyl acetate $(40 \mathrm{~mL})$, washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by chromatography on SiO_{2} (EtOAc/hexanes, 1:1) to give $6(0.27 \mathrm{~g}, 96 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}-13.1\left(c\right.$ 2.8, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; NMR analysis $\left(\mathrm{CDCl}_{3}\right)$ showed a mixture of rotamers at room temperature; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 333 \mathrm{~K}, 300 \mathrm{MHz}\right) \delta 7.35-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{~s}$, $2 \mathrm{H}), 4.10(\mathrm{bs}, 1 \mathrm{H}), 3.68(\mathrm{dt}, 1 \mathrm{H}, J=10.2,3.5 \mathrm{~Hz}), 3.47-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H})$, 1.78-1.55 (m, 3 H$), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 0.77(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 333 \mathrm{~K}, 75 \mathrm{MHz}\right) \delta 155.8,137.1,127.9,127.2,126.8,65.6,58.9,58.2,32.1$, 29.7, 28.6, 19.6, 19.2; IR (film, cm^{-1}) 3466, 2961, 2875, 1694, 1682, 1455, 1338; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}$ 265.1678, found 265.1677.

(R)-3-((tert-Butoxycarbonyl)methyl)amino-4-methylpentanal (7). A mixture of 6 (0.73 $\mathrm{g}, 2.7 \mathrm{mmol})$, di-tert-butyldicarbonate $(0.72 \mathrm{~g}, 3.2 \mathrm{mmol})$, and palladium on activated carbon $(5 \% \mathrm{Pd}, 78 \mathrm{mg})$ in methanol $(15 \mathrm{~mL})$ was stirred under a hydrogen balloon at room temperature overnight. The solvent was concentrated under vacuum, and the residue was purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc} /$ hexanes, $1: 1)$ to give the Bocprotected amino alcohol $(0.58 \mathrm{~g}, 92 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}-22.3\left(c 3.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Major rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.87-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.51(\mathrm{~m}, 1 \mathrm{H})$, $3.42-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$, $1.39-1.25(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 158.0,79.9,58.9,57.4,31.8,30.0,28.4,20.1$. Characteristic signals
of the minor rotamer: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 59.8,32.2,30.6,27.9$; IR (film, cm^{-1}) $3454,2968,1694,1393,1177,1047$; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}_{3}$ 231.1834, found 231.1830 .

To a mixture of Dess-Martin periodinane ($1.19 \mathrm{~g}, 2.8 \mathrm{mmol}$) in anhydrous dichloromethane (6 mL) was added dropwise a solution of the above Boc-protected amino alcohol $(0.57 \mathrm{~g}, 2.4 \mathrm{mmol})$ in dichloromethane $(8 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 2 h . The solvent was removed, and the residue was dissolved in ether (70 mL), washed with a mixture of sodium hydroxide ($1.0 \mathrm{~N}, 10 \mathrm{~mL}$) and sodium thiosulfate $(1.0 \mathrm{M}, 10 \mathrm{~mL})$, saturated sodium bicarbonate $(10 \mathrm{~mL})$, and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated under vacuum, and purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes, $\left.1: 2\right)$ to give $7(0.50 \mathrm{~g}, 89 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}-75.9(c 2.8$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR analysis at room temperature showed a 1.2:1 mixture of rotamers. Major rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.67(\mathrm{bs}, 1 \mathrm{H}), 4.32(\mathrm{dt}, 1 \mathrm{H}, J=10.6,4.3$ $\mathrm{Hz}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.43(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.4 \mathrm{~Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 201.6,156.1,79.6,56.7$, 44.9, 30.4, 29.1, 28.3, 20.0, 19.2. Characteristic signals of the minor rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{dt}, 1 \mathrm{H}, J=10.0,4.9 \mathrm{~Hz}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 200.8,155.6,80.0,57.8,30.8,28.9,28.4,20.1,19.4$; IR (film, cm^{-1}) 2971, 2726, 1726, 1688, 1366, 1153; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{3}$ 229.1678, found 229.1674; calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{3}\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$ 186.1130, found 186.1130.

Ethyl 2-bromothiazole-4-carboxylate. The procedure by Kelly et al. ${ }^{3}$ was slightly modified. To a mixture of thiourea ($6.60 \mathrm{~g}, 86.8 \mathrm{mmol}$) in ethanol (5 mL) was added dropwise a solution of ethyl bromopyruvate ($80-85 \%$ purity, $19.5 \mathrm{~g}, \sim 85.0 \mathrm{mmol}$) in ethanol (5 mL). The reaction mixture was heated slowly to $100^{\circ} \mathrm{C}$ and kept at that temperature for 40 min to give a clear brown solution. Upon cooling to room temperature a yellow precipitate was formed, and dissolved in sulfuric acid $(9 N, 400 \mathrm{~mL})$. The solution was transferred into a 1000 mL three-necked bottle equipped with a mechanical stirrer, an addition funnel, and a gas outlet with an inverted wide-mouth funnel suspended just above a sodium hydroxide solution ($4 \mathrm{~N}, 100 \mathrm{~mL}$). The solution was cooled in an ice bath, and cupric sulfate pentahydrate $(25.0 \mathrm{~g}, 0.10 \mathrm{~mol})$ and sodium bromide (30.8 g , $0.30 \mathrm{~mol})$ were added portionwise. A solution of sodium nitrite $(8.8 \mathrm{~g}, 0.13 \mathrm{~mol})$ in water (50 mL) was then added dropwise over 1 h . CAUTION: Red gas, presumably a mixture of Br_{2} and HBr , was formed once sodium nitrite was introduced. The reaction must be performed in a well-ventilated hood. Stirring was continued for $4 h$, during which time the bath temperature gradually rose to room temperature. The mixture was diluted with water (200 mL) and extracted with ether ($200 \mathrm{~mL} \mathrm{x} \mathrm{4)}$. were concentrated to about 300 mL , washed with saturated sodium bicarbonate (100 mL $x 2)$ and brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated under vacuum, and purified by chromatography on SiO_{2} (EtOAc/hexanes, 1:8) to give the thiazole ester $(10.2 \mathrm{~g}, 51 \%$ for two steps) as a yellow solid: Mp 68.2-69.5 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left..^{3} 68.5-69.2{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.39(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 160.1,147.2,136.8,130.8,61.8,14.2 ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3090,2986$, 1717, 1488, 1478, 1431, 1329, 1224, 1121, 1011, 774; MS (ESI) $m / z 260\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 258.

2-Bromo-4-((tert-butyldimethylsilyloxy)methyl)thiazole (8). ${ }^{2}$ To an ice-cooled solution of ethyl 2-bromothiazole-4-carboxylate ($10.2 \mathrm{~g}, 43.2 \mathrm{mmol}$) in anhydrous THF (50 mL) was added dropwise lithium borohydride (2.0 M solution in THF, $33.0 \mathrm{~mL}, 66.0 \mathrm{mmol}$) over 20 min . A solution of methanol ($2.7 \mathrm{~mL}, 66.7 \mathrm{mmol}$) in anhydrous THF (10 mL) was then added over 30 min , and the mixture was stirred further overnight, allowing the temperature to rise to room temperature. The solvent was concentrated under vacuum, and the residue was dissolved in ethyl acetate $(70 \mathrm{~mL})$, washed with hydrochloric acid (1 N, 30 mL x 2), saturated sodium bicarbonate $(30 \mathrm{~mL})$, and brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by chromatography on SiO_{2} (EtOAc/hexanes, 1:3) to give the corresponding alcohol $(6.3 \mathrm{~g}, 75 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 7.18(\mathrm{t}, 1 \mathrm{H}, J=0.9 \mathrm{~Hz}), 4.74(\mathrm{~d}, 2 \mathrm{H}, J=0.9 \mathrm{~Hz}), 3.02(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 156.7,136.4,118.6,60.4$; IR (film, $\left.\mathrm{cm}^{-1}\right) 3368,2927,1416,1013$.

To a solution of the above alcohol ($6.3 \mathrm{~g}, 32.5 \mathrm{mmol}$) and imidazole ($2.4 \mathrm{~g}, 40.0$ mmol) in anhydrous DMF (30 mL) was added a solution of tertbutyldimethylchlorosilane ($6.0 \mathrm{~g}, 40.0 \mathrm{mmol}$) in anhydrous THF (20 mL) over 30 min . The reaction mixture was stirred overnight, diluted with water $(30 \mathrm{~mL})$, and extracted with ether (50 mL x 4). The combined organic layers were washed with hydrochloric acid
($1 \mathrm{~N}, 30 \mathrm{~mL}$), saturated sodium bicarbonate $(30 \mathrm{~mL})$, and brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by chromatography on SiO_{2} (EtOAc/hexanes, 1:10) to give $\mathbf{8}(8.0 \mathrm{~g}, 60 \%$ for two steps $)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.14$ $(\mathrm{t}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}), 4.82(\mathrm{~d}, 2 \mathrm{H}, J=1.4 \mathrm{~Hz}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.6,135.5,117.2,62.0,25.8,18.3,-5.4$; IR (film, $\left.\mathrm{cm}^{-1}\right) 2954$, 2929, 2857, 1424, 1257, 1138, 1105, 1014, 838, 778.

tert-Butyl (1S,3R)- and (1R,3R)-1-(4-((tert-butyldimethylsilyloxy)methyl)thiazol-2-yl)-1-hydroxy-4-methylpentan-3-yl(methyl)carbamate (9a and 9b). To an ice-cooled solution of $8(0.62 \mathrm{~g}, 2.0 \mathrm{mmol})$ in anhydrous THF (10 mL) was added dropwise secbutylmagnesium chloride ($1.7 \mathrm{M}, 1.2 \mathrm{~mL}, 2.0 \mathrm{mmol}$) in THF. The reaction mixture was stirred for 30 min , treated dropwise over 10 min with a solution of $7(0.23 \mathrm{~g}, 1.0 \mathrm{mmol})$ in anhydrous THF (5 mL), and stirred overnight, while the temperature was allowed to gradually warm up to room temperature. The reaction was then quenched by the addition of saturated ammonium chloride (10 mL), and the mixture was extracted with ethyl acetate (30 mL x 2). The combined organic layers were washed with hydrochloric acid (1 $N, 10 \mathrm{~mL})$, saturated sodium bicarbonate $(10 \mathrm{~mL})$, and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated under vacuum, and purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes, $\left.1: 3\right)$ to give $\mathbf{9 a}(90 \mathrm{mg}, 20 \%)$ and $\mathbf{9 b}(0.18 \mathrm{~g}, 40 \%)$ as colorless oils.
(1S,3R)-Isomer 9a: $\mathrm{R}_{f}=0.32$ (EtOAc/hexanes, 1:3); $[\alpha]_{\mathrm{D}}{ }^{23}-62.1\left(c \quad 1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR analysis at room temperature showed a 2.6:1 mixture of rotamers. Major rotamer:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.04-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.74(\mathrm{~m}, 3 \mathrm{H})$, $3.83(\mathrm{dt}, 1 \mathrm{H}, J=10.5,3.3 \mathrm{~Hz}), 2.41-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 1 \mathrm{H})$, $1.40(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.11(\mathrm{~s}, 6$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 176.5,157.6,156.8,113.1,80.1,70.7,62.3,58.0,35.7$, $30.2,28.5,25.9,20.3,19.7,18.4,-5.3,-5.4$. Characteristic signals of the minor rotamer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.13(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 28.6$; IR (film, $\left.\mathrm{cm}^{-1}\right) 3400,2959,2930,2858,1693,1667,1472$, 1366, 1256, 1152, 1101, 839, 777; MS (ESI) $m / z 481\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 459\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
$(1 R, 3 R)$-Isomer 9b: $\mathrm{R}_{f}=0.53$ (EtOAc/hexanes, 1:3); $[\alpha]_{\mathrm{D}}{ }^{23}-12.0\left(c 2.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. NMR analysis at room temperature showed a $6: 1$ mixture of rotamers. Major rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.11(\mathrm{t}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 4.82(\mathrm{~d}, 2$ $\mathrm{H}, J=1.1 \mathrm{~Hz}), 4.67(\mathrm{dt}, 1 \mathrm{H}, J=10.8,3.1 \mathrm{~Hz}), 3.95(\mathrm{dt}, 1 \mathrm{H}, J=11.2,3.2 \mathrm{~Hz}), 2.72(\mathrm{~s}, 3$ H), $2.03(\mathrm{dt}, 1 \mathrm{H}, J=13.0,2.7 \mathrm{~Hz}), 1.92(\mathrm{dt}, 1 \mathrm{H}, J=12.4,3.5 \mathrm{~Hz}), 1.77-1.67(\mathrm{~m}, 1 \mathrm{H})$, $1.46(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.10(\mathrm{~s}, 6$ H) ${ }^{13}{ }^{3} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 174.9,158.4,156.7,113.1,80.5,69.1,62.3,57.7,37.9$, 29.7, 28.3, 28.1, 25.9, 20.1, 18.3, -5.4. Characteristic signals of the minor rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.75(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 28.4, 20.2; IR (film, cm^{-1}) 3400, 2959, 2930, 2858, 1693, 1662, 1472, 1366, 1256, 1136, 1102, 839, 778; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi} 458.2635$, found 458.2638 .

10

(1R,3R)-3-(tert-Butoxycarbonyl(methyl)amino)-1-(4-(hydroxymethyl)thiazol-2-yl)-

4-methylpentyl acetate (10). To an ice-cooled solution of $\mathbf{9 b}(85 \mathrm{mg}, 0.18 \mathrm{mmol})$ and triethylamine $(0.10 \mathrm{~mL}, 0.72 \mathrm{mmol})$ in dichloromethane $(4 \mathrm{~mL})$ was added acetyl chloride ($0.05 \mathrm{~mL}, 0.70 \mathrm{mmol}$). The reaction mixture was stirred for 3 h and allowed to gradually warm up to room temperature. The solution was diluted with ether (40 mL), washed with saturated sodium bicarbonate ($10 \mathrm{~mL} \mathrm{x} \mathrm{2)} \mathrm{and} \mathrm{brine} \mathrm{(} 10 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give the ester as a yellow oil which was used without further purification. A solution of this oil in THF (1 mL) was treated with tetrabutylammonium fluoride (1.0 M solution in $\mathrm{THF}, 1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}$) at room temperature overnight, diluted with ethyl acetate $(40 \mathrm{~mL})$, washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc} /$ hexanes, 1:1) to give 10 ($45 \mathrm{mg}, 63 \%$ for two steps) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}+15.1$ (c 1.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR analysis at room temperature showed a 2:1 mixture of rotamers. Major rotamer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.14(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{dd}, 1 \mathrm{H}, J=11.6,2.8 \mathrm{~Hz})$, 4.74 (s, 2 H), 4.07 (dt, $1 \mathrm{H}, J=11.1,3.6 \mathrm{~Hz}$), $2.80(\mathrm{bs}, 1 \mathrm{H}), 2.69$ (s, 3 H), 2.33 (ddd, 1 H , $J=14.9,11.5,3.6 \mathrm{~Hz}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{ddd}, 1 \mathrm{H}, J=14.7,12.0,2.8 \mathrm{~Hz}), 1.72-1.64$ $(\mathrm{m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 170.8,170.2,156.3,156.2,114.7,79.3,70.5,69.3,60.9,56.3,34.9$, 30.4, 28.3, 28.0, 20.9, 19.9, 19.5. Characteristic signals of the minor rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.15(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{dd}, 1 \mathrm{H}, J=9.0,3.9 \mathrm{~Hz}), 3.84-3.69(\mathrm{~m}, 1 \mathrm{H})$, 2.97 (bs, 1 H$), 2.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.9,169.5,156.4,115.0$, 79.7, 60.8, 30.7, 28.4, 21.0, 20.2, 19.7; IR (film, cm^{-1}) 3434, 2971, 1755, 1689, 1367, 1223, 1157; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})$ 409.1773, found 409.1780.

2-((1R,3R)-1-Acetoxy-3-(tert-butoxycarbonyl(methyl)amino)-4-methylpentyl)-
thiazole-4-carboxylic acid (11). Dess-Martin periodinane ($48 \mathrm{mg}, 0.11 \mathrm{mmol}$) was added to a solution of $\mathbf{1 0}(30 \mathrm{mg}, 0.08 \mathrm{mmol})$ in anhydrous dichloromethane $(2 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 6 h , diluted with ether (30 mL), washed with a mixture of sodium hydroxide $(1.0 \mathrm{~N}, 5 \mathrm{~mL})$ and sodium thiosulfate (1.0 M , $5 \mathrm{~mL})$, saturated sodium bicarbonate $(10 \mathrm{~mL})$, and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under vacuum to give the crude aldehyde ($29 \mathrm{mg}, 99 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR analysis at room temperature showed a 2.5:1 mixture of rotamers. Major rotamer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{dd}, 1 \mathrm{H}, J=$ $11.6,2.9 \mathrm{~Hz}), 4.14-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.13-$ $2.07(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.6 \mathrm{~Hz})$. Characteristic signals of the minor rotamer: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $10.00(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{dd}, 1 \mathrm{H}, J=9.8,2.9 \mathrm{~Hz})$.

A solution of this crude aldehyde ($29 \mathrm{mg}, 0.08 \mathrm{mmol}$) in tert-butyl alcohol (2 mL) was treated with a solution of 2-methyl-2-butene in THF ($2 \mathrm{M}, 0.3 \mathrm{~mL}, 0.60 \mathrm{mmol}$), followed by the dropwise addition of a mixture of sodium chlorite ($39 \mathrm{mg}, 0.43 \mathrm{mmol}$) and sodium dihydrogenphosphate monohydrate $(0.13 \mathrm{~g}, 0.97 \mathrm{mmol})$ in water $(1.0 \mathrm{~mL})$. The reaction mixture was stirred further at room temperature for 6 h , diluted with hydrochloric acid ($0.1 \mathrm{~N}, 10 \mathrm{~mL}$) and extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated under vacuum, and purified
by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH}, 95: 5: 0.5\right)$ to give $11(28 \mathrm{mg}, 90 \%$ for two steps) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}+5.0\left(c\right.$ 1.1, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR analysis at room temperature showed a 2:1 mixture of rotamers. Major rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 8.22(\mathrm{bs}, 1 \mathrm{H}), 5.89(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.10(\mathrm{t}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 2.70(\mathrm{~s}, 3$ H), 2.32-2.23 (m, 1 H$), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ $6.3 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 171.5,170.1,163.4$, $156.4,146.9,128.2,79.5,69.5,65.8,56.5,34.8,30.5,28.4,20.8,20.6,20.0,19.5,15.2$; Characteristic signals of the minor rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 5.98-5.95 (m, $1 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $175.9,170.6,169.4,156.5,80.0,70.7,30.7,29.7,28.5,20.9,20.3,19.7$; IR (film, cm^{-1}) 3119, 2972, 1744, 1689, 1484, 1391, 1368, 1221, 1158; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{NaS}(\mathrm{M}+\mathrm{Na})$ 423.1566, found 423.1608.

Di-tert-butyl (2R,4S)-5-hydroxy-4-methyl-1-phenylpentan-2-yliminodicarbonate

 (14). To a solution of $\mathbf{1 2}^{4}(1.0 \mathrm{~g}, 1.9 \mathrm{mmol})$ in anhydrous THF $(15 \mathrm{~mL})$ cooled in a dry ice/acetone bath was added butyllithium (1.6 M solution in hexanes, $1.8 \mathrm{~mL}, 2.5 \mathrm{mmol}$) dropwise over 5 min . The reaction mixture was stirred for 30 min before a solution of di-tert-butyl dicarbonate ($0.75 \mathrm{~g}, 3.3 \mathrm{mmol}$) in anhydrous THF (5 mL) was introduced in one portion. The solution was stirred further overnight, and the temperature was allowed to gradually rise to room temperature. The reaction was quenched with saturated ammonium chloride (10 mL), and extracted with ethyl acetate ($30 \mathrm{~mL} x \mathrm{2}$). Thecombined organic layers were washed with hydrochloric acid ($1 \mathrm{~N}, 10 \mathrm{~mL}$) and brine ($10 \mathrm{~mL} \times 2$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under vacuum to give a colorless oil which was used without further purification.

A solution of this oil in THF (2 mL) was treated with tetrabutylammonium fluoride (1.0 M solution in THF, $4.0 \mathrm{~mL}, 4.0 \mathrm{mmol}$) at room temperature overnight. The mixture was then diluted with ethyl acetate $(70 \mathrm{~mL})$, washed with brine $(10 \mathrm{~mL} \times 2)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by chromatography on SiO_{2} (EtOAc/hexanes, 1:1) to give $14(0.44 \mathrm{~g}, 59 \%$ for two steps $)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}-69.2\left(c 1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.28-7.15(\mathrm{~m}, 5 \mathrm{H}), 4.55-4.46(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.44(\mathrm{~m}, 2 \mathrm{H})$, $3.18(\mathrm{dd}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}, 9.7 \mathrm{~Hz}), 2.82(\mathrm{dd}, 1 \mathrm{H}, J=13.4,5.9 \mathrm{~Hz}), 1.88-1.61(\mathrm{~m}, 3 \mathrm{H})$, $1.40(\mathrm{~s}, 18 \mathrm{H}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 153.5,139.0$, $129.4,128.2,126.1,81.9,67.8,57.5,40.2,36.3,32.9,27.9,17.6$; IR (film, $\left.\mathrm{cm}^{-1}\right) 3436$, 2978, 2932, 1738, 1699, 1346, 1145; MS (ESI) $m / z 416$ ([M+Na] ${ }^{+}$); HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 416.2413$, found 416.2435.

(2S,4R)-Allyl 4-(bis(tert-butoxycarbonyl)amino)-2-methyl-5-phenylpentanoate (15). Alcohol $14(0.39 \mathrm{~g}, 1.0 \mathrm{mmol})$ was oxidized by the same two-step sequence as described for $\mathbf{1 0}$ to give the corresponding crude carboxylic acid $(0.68 \mathrm{~g})$ as a colorless oil. A solution of this oil in DMF (3 mL) was mixed with cesium carbonate $(0.91 \mathrm{~g}, 2.8 \mathrm{mmol})$ and allyl bromide $(1.0 \mathrm{~mL}, 11.5 \mathrm{mmol})$, stirred overnight, diluted in water $(15 \mathrm{~mL})$ and extracted with ethyl acetate ($30 \mathrm{~mL} \times 2$). The combined organic layers were washed with
brine ($15 \mathrm{~mL} x$ 2), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated under vacuum, and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc} /$ hexanes, 1:7) to give $15(0.36 \mathrm{~g}, 81 \%$ for three steps $)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{23}-26.7\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 7.27-7.17 (m, $5 \mathrm{H}), 5.94-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.65-4.45(\mathrm{~m}, 3 \mathrm{H}), 3.16(\mathrm{dd}, 1 \mathrm{H}, J=13.4$, $9.6 \mathrm{~Hz}), 2.83(\mathrm{dd}, 1 \mathrm{H}, J=13.5,6.1 \mathrm{~Hz}), 2.54($ sextet, $1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.05-2.00(\mathrm{~m}, 2$ H), $1.40(\mathrm{~s}, 18 \mathrm{H}), 1.20(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 175.7,153.1$, 138.7, 132.5, 129.4, 128.2, 126.2, 117.8, 81.8, 65.0, 57.3, 40.0, 36.8, 36.3, 27.9, 18.3; IR (film, cm^{-1}) 2979, 2935, 1738, 1701, 1456, 1345, 1228, 1145; MS (ESI) $m / z 470$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) ;$HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{NO}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 470.2519$, found 470.2516.

(2S,4R)-Allyl 4-(2-((1R,3R)-1-acetoxy-3-(tert-butoxycarbonyl(methyl)amino)-4-methylpentyl)thiazole-4-carboxamido)-2-methyl-5-phenylpentanoate (16). To a solution of $15(0.20 \mathrm{~g}, 0.45 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ was added trifluoroacetic acid ($1 \mathrm{~mL}, 13 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 2 h , diluted with ethyl acetate (60 mL), washed with saturated sodium bicarbonate (15 mL x 2), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under vacuum to give the crude amine (0.13 g , $100 \%)$ as a colorless oil: MS (ESI) $m / z 248\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

To a solution of $\mathbf{1 1}(82 \mathrm{mg}, 0.21 \mathrm{mmol})$ and triethylamine ($0.06 \mathrm{~mL}, 0.45 \mathrm{mmol}$) in anhydrous THF (4 mL) cooled to $-20^{\circ} \mathrm{C}$ was added dropwise isobutyl chloroformate $(0.05 \mathrm{~mL}, 0.37 \mathrm{mmol})$, and the resulting white suspension was stirred further for 30 min . A solution of the above crude amine ($0.13 \mathrm{~g}, 0.45 \mathrm{mmol}$) in anhydrous THF (2 mL) was
then added via cannula, and the mixture was stirred overnight, allowing the temperature to gradually rise to room temperature. The mixture was then diluted with ethyl acetate $(70 \mathrm{~mL})$, washed with brine $(15 \mathrm{~mL} \times 2)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by chromatography on SiO_{2} (EtOAc/hexanes, 1:2) to give $\mathbf{1 6}(0.10 \mathrm{~g}, 76 \%$ for two steps) as a white solid: $\mathrm{Mp} 105.1-107.0{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}+9.9\left(c \quad 0.81, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR analysis at room temperature showed a $3: 1$ mixture of rotamers. Major rotamer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 5.99-5.89(\mathrm{~m}, 1$ H), $5.84(\mathrm{dd}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz}, 3.0 \mathrm{~Hz}), 5.32(\mathrm{~d}, 1 \mathrm{H}, J=17.4 \mathrm{~Hz}), 5.23(\mathrm{~d}, 1 \mathrm{H}, J=10.2$ $\mathrm{Hz}), 4.59(\mathrm{~d}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}), 4.50-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{dt}, 1 \mathrm{H}, J=11.1,3.9 \mathrm{~Hz}), 3.04-$ $2.89(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.01$ (m, 2 H$), 1.79-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.05(\mathrm{~d}, 3 \mathrm{H}, J=6.7$ $\mathrm{Hz}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 175.7,170.4,170.1,160.3$, $156.2,150.0,137.6,132.3,129.5,128.4,126.5,123.2,117.8,79.4,70.8,69.2,65.1,56.4$, $48.4,41.1,37.7,36.6,35.0,30.4,28.4,20.8,20.0,19.6,17.7$. Characteristic signals of the minor rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.4,150.2,137.7,129.4,123.1,79.7,48.5,41.3,37.8,35.5,30.6$, 28.2, 20.9, 20.3, 19.7, 17.8; IR (film, cm^{-1}) 3391, 3306, 2971, 2933, 1735, 1686, 1540, 1367, 1164; HRMS (EI) calcd for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ 629.3135, found 629.3132 .

Fmoc-Ile-F. ${ }^{5}$ To a solution of Fmoc-Ile-OH ($3.5 \mathrm{~g}, 10.0 \mathrm{mmol}$) and pyridine (0.81 mL , $10.0 \mathrm{mmol})$ in anhydrous dichloromethane (60 mL) was added via cannula a solution of
(diethylamino)sulfur trifluoride ($1.6 \mathrm{~mL}, 12.1 \mathrm{mmol}$) in dichloromethane $(10 \mathrm{~mL})$ over 10 min . The reaction mixture was stirred at room temperature for 30 min , diluted with dichloromethane $(40 \mathrm{~mL})$, washed with ice-cold water $\left(100 \mathrm{~mL} x\right.$ 2), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated, and recrystallized from dichloromethane/hexanes to give the acyl fluoride ($2.8 \mathrm{~g}, 80 \%$) as a white solid: Mp $113.1-114.4^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{5 \mathrm{~b}} 115-116{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{23}$ $+15.9(c 0.51$, EtOAc $)\left(\right.$ lit. $\left.{ }^{5 \mathrm{~b}}[\alpha]_{\mathrm{D}}{ }^{23}+15.6(c 0.51, \mathrm{EtOAc})\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 7.79(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.61(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.43(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.34(\mathrm{dt}, 2$ $\mathrm{H}, J=7.4,1.1 \mathrm{~Hz}), 5.27(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 4.55(\mathrm{dd}, 1 \mathrm{H}, J=8.7,4.5 \mathrm{~Hz}), 4.48(\mathrm{~d}, 2 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 4.25(\mathrm{t}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.21$ $(\mathrm{m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.99(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 162.3(\mathrm{~d}, J=372.1 \mathrm{~Hz}), 155.9,143.6,143.5,141.3,127.8,127.1,124.9,120.0,67.2$, $57.5(\mathrm{~d}, J=57.2 \mathrm{~Hz}), 47.1,37.1,25.0,15.4,11.4 ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta\left(\mathrm{CFCl}_{3}\right.$ as the external standard) 34.8 ; IR (film, cm^{-1}) $3324,2968,1843,1705,1520,1451,1256$, 1082; MS (ESI) $m / z 378\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

(2S,4R)-Allyl 4-(2-((5S,8R,10R)-5-sec-butyl-1-(9H-fluoren-9-yl)-8-isopropyl- 7-methyl-3,6,12-trioxo-2,11-dioxa-4,7-diazatridecan-10-yl)thiazole-4-carboxamido)-2-methyl-5-phenylpentanoate (17). To a solution of $16(53 \mathrm{mg}, 84 \mu \mathrm{~mol})$ in dichloromethane (2 mL) was added trifluoroacetic acid $(0.3 \mathrm{~mL}, 3.9 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 10 h , diluted with ethyl acetate (60 mL), washed with saturated sodium bicarbonate $(15 \mathrm{~mL} \times 2)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated
under vacuum to give the crude amine (56 mg) as a colorless oil: MS (ESI) $\mathrm{m} / \mathrm{z} 552$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 530\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

A solution of this amine $(56 \mathrm{mg}, 84 \mu \mathrm{~mol})$ in anhydrous DMF $(0.5 \mathrm{~mL})$ was treated with diisopropylethylamine $(0.05 \mathrm{~mL}, 0.28 \mathrm{mmol})$ and Fmoc-Ile-F $(0.10 \mathrm{~g}, 0.28 \mathrm{mmol})$, stirred at room temperature for 18 h , diluted with ethyl acetate $(50 \mathrm{~mL})$, washed with saturated sodium bicarbonate $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated under vacuum, and purified by chromatography on $\mathrm{SiO}_{2}(\mathrm{EtOAc} /$ hexanes, $1: 1)$ to give $\mathbf{1 7}$ $(58 \mathrm{mg}, 80 \%)$ as a colorless syrup: $[\alpha]_{\mathrm{D}}{ }^{23}+0.29\left(c 0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.59(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 7.41(\mathrm{t}, 2 \mathrm{H}, J=$ $7.3 \mathrm{~Hz}), 7.34-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 5.94-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{~d}, 1 \mathrm{H}, J$ $=9.3 \mathrm{~Hz}), 5.44(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 5.28(\mathrm{dd}, 1 \mathrm{H}, J=17.2,1.4 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.4 \mathrm{~Hz}), 4.58-4.54(\mathrm{~m}, 3 \mathrm{H}), 4.44-4.32(\mathrm{~m}, 3 \mathrm{H}), 4.14(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.00(\mathrm{~s}, 3 \mathrm{H})$, 2.96-2.86 (m, 2 H), 2.70-2.60 (m, 1 H$), 2.38-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 3$ H), $1.77-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.7 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.83(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 175.7,173.6,170.0,169.9,160.2,156.3,150.0,143.9,143.7,141.3,141.2,137.5$, $132.2,129.6,128.4,127.6,127.0,126.5,125.1,125.0,123.4,119.9,117.9,69.5,67.0$, $65.1,55.8,48.3,47.2,41.0,37.6,37.3,36.6,34.6,29.9,29.6,23.8,20.8,20.1,19.5,17.6$, 16.0, 11.2; IR (film, cm^{-1}) 3291, 2966, 2935, 1717, 1645, 1538, 1495, 1410, 1222; MS (ESI) $m / z 887\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 865\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

\boldsymbol{N}^{14}-Desacetoxytubulysin H trifluoroacetic acid salt (1). To a solution of $\mathbf{1 7}(17 \mathrm{mg}, 20$ $\mu \mathrm{mol})$ in dichloromethane $(0.5 \mathrm{~mL})$ was added tris(2-aminoethyl)amine ($0.05 \mathrm{~mL}, 0.33$ mmol). The reaction mixture was stirred at room temperature for 3 h , diluted with ethyl acetate $(20 \mathrm{~mL})$, washed with saturated sodium bicarbonate $(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under vacuum to give the crude amine $(14 \mathrm{mg})$ as a colorless oil: MS (ESI) $m / z 665\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 643\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

To a mixture of N-methyl-d-pipecolinic acid ($9 \mathrm{mg}, 63 \mu \mathrm{~mol}$) (prepared ${ }^{6}$ from dpipecolinic acid) and N, N^{\prime}-dicyclohexylcarbodiimide ($18 \mathrm{mg}, 86 \mu \mathrm{~mol}$) in anhydrous DMF (0.4 mL) was added pentafluorophenol ($12 \mathrm{mg}, 65 \mu \mathrm{~mol})$. The reaction mixture was stirred at room temperature overnight, filtered through a $0.2 \mu \mathrm{~m}$ Millex micro-filter unit to give a clear solution, and added to the crude amine ($14 \mathrm{mg}, \sim 20 \mu \mathrm{~mol}$). The reaction mixture was stirred at room temperature for 24 h , and purified by chromatography on SiO_{2} (1:1 EtOAc/hexanes to wash out less polar impurities, followed by $2 \% \mathrm{MeOH}$ in EtOAc to elute the product) to give the crude allyl ester of $\mathbf{1}(15 \mathrm{mg})$ as a yellow oil: MS (ESI) $m / z 790\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 768\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

A solution of this allyl ester (15 mg, <20 $\mu \mathrm{mol})$), tetrakis(triphenylphosphine)palladium(0) (3 mg, $2.6 \mu \mathrm{~mol})$ and dimedone ($11 \mathrm{mg}, 78$ $\mu \mathrm{mol})$ in THF $(0.5 \mathrm{~mL})$ under an Ar atmosphere was stirred at room temperature overnight. After evaporation of the volatiles, the residue was purified by chromatography on $\mathrm{SiO}_{2}(1: 1 \mathrm{EtOAc} /$ hexanes to wash out less polar impurities, followed by $10 \% \mathrm{MeOH}$
in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to elute the product) to give a yellow oil. Further purification by semipreparative HPLC (Dynamax Microsorb C-18 column, $250 \mathrm{~mm} \times 10 \mathrm{~mm}$; methanol/0.1\% TFA in water; methanol gradient from 60% to 99% over $30 \mathrm{~min} ; 2 \mathrm{~mL} / \mathrm{min}$) gave $\mathbf{1}$ (7.1 $\mathrm{mg}, 44 \%$ for three steps) as a colorless syrup: $\tau_{\mathrm{R}}=19.8 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{23}-17.4$ (c 0.46, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 8.63(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{bs}$, $1 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{dd}, 1 \mathrm{H}, J=11.0,2.5 \mathrm{~Hz}), 4.74-4.70$ $(\mathrm{m}, 1 \mathrm{H}), 4.42-4.36(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=12.8,3.8 \mathrm{~Hz}), 3.49-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~s}$, $3 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{dd}, 2 \mathrm{H}, J=6.8,3.2 \mathrm{~Hz}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.53(\mathrm{~m}, 1$ H), 2.39 (ddd, $1 \mathrm{H}, J=14.5,11.5,3.2 \mathrm{~Hz}), 2.33-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.15$ (s, 3 H), 2.01 (ddd, $1 \mathrm{H}, J=14.0,10.0,4.0 \mathrm{~Hz}), 1.95-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 2 \mathrm{H})$, 1.67 (ddd, $1 \mathrm{H}, J=14.4,10.1,4.5 \mathrm{~Hz}), 1.61-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, 3$ $\mathrm{H}, J=7.0 \mathrm{~Hz}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.01(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right) \delta 179.9,174.6,171.8,171.6$, $169.2,162.8,150.8,139.5,130.5,129.3,127.4,125.1,71.2,68.0,58.4,56.2,56.0,50.7$, $42.9,42.2,39.1,37.8,37.4,35.6,30.9,30.2,25.2,24.0,22.3,20.8,20.5,20.3,18.5,16.2$, 11.3; IR (film, cm^{-1}) 3258, 2964, 2929, 2877, 1735, 1676, 1546, 1373, 1446, 1373, 1204, 1134; MS (ESI) $m / z 750\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 728\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}$ $\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right) 709.3873$, found 709.3863.

Determination of the Absolute Configurations of 9a and 9b

To determine the absolute configurations of $\mathbf{9 a}$ and $\mathbf{9 b}$, a double derivatization of each epimer with (R) - and (S) - α-phenylacetic acid (MPA) was performed. The ${ }^{1} \mathrm{H}$ NMR spectra of both ester derivatives were recorded, and the $\Delta \delta^{R S}\left(\delta^{R}-\delta^{S}\right)$ for the hydrogens
on both sides of the stereogenic carbon was calculated. The two substituents on the stereogenic carbon were then designated as $\mathrm{L}_{1}\left(\Delta \delta^{R S}>0\right)$ and $\mathrm{L}_{2}\left(\Delta \delta^{R S}<0\right)$ and fitted to the following model to determine the absolute configuration. ${ }^{7}$

(R)-((1S,3R)-3-(tert-Butoxycarbonyl(methyl)amino)-1-(4-((tert-butyldimethylsilyl-

 oxy)methyl)thiazol-2-yl)-4-methylpentyl) 2-methoxy-2-phenylacetate (18). To a solution of $(R)-(-)-\alpha$-phenylacetic acid $(10 \mathrm{mg}, 60 \mu \mathrm{~mol})$ in anhydrous dichloromethane $(0.05 \mathrm{~mL})$ was added thionyl chloride $(0.05 \mathrm{~mL}, 0.68 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 2 h . The solvent and excess thionyl chloride were removed by vacuum, and the residue was redissolved in anhydrous dichloromethane (0.2 mL) and added via syringe to a solution of $\mathbf{9 a}(5 \mathrm{mg}, 11 \mu \mathrm{~mol})$, DMAP ($1 \mathrm{mg}, 9 \mu \mathrm{~mol}$), and pyridine $(46 \mathrm{mg}, 0.58 \mathrm{mmol})$ in dichloromethane. The mixture was stirred at room temperature for 1 h , treated with saturated sodium bicarbonate (5 mL), extracted with ethyl acetate $(30 \mathrm{~mL})$, washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by chromatography on SiO_{2} (EtOAc/hexanes, $1: 10$) to give $\mathbf{1 8}(4.4 \mathrm{mg}, 67 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR analysis at room temperature showed a $1.5: 1$ mixture of rotamers. Major rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.48-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~s}, 1$H), 5.95 (quintet, $1 \mathrm{H}, J=4.6 \mathrm{~Hz}$), $4.85(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{bs}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3$ H), 2.62 (s, 3 H$), 2.47-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.86$ $(\mathrm{d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.75(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.12(\mathrm{~s}, 6 \mathrm{H})$; Characteristic signals of the minor rotamer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.16(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H})$, $3.40(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.72(\mathrm{~d}$, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.12(\mathrm{~s}, 6 \mathrm{H})$; MS (ESI) $m / z 629\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 607\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(S)-((1S,3R)-3-(tert-Butoxycarbonyl(methyl)amino)-1-(4-((tert-butyldimethylsilyl-oxy)methyl)thiazol-2-yl)-4-methylpentyl) 2-methoxy-2-phenylacetate (19). According to the protocol used for $\mathbf{1 8}, \mathbf{9 a}(7 \mathrm{mg}, 15 \mu \mathrm{~mol})$ provided $19(7.4 \mathrm{mg}, 80 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR analysis at room temperature showed a 1.6:1 mixture of rotamers. Major rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.43-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.00-5.98(\mathrm{~m}, 1$ H), $4.80(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, 2 \mathrm{H}, J=1.0 \mathrm{~Hz}), 3.78(\mathrm{bs}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H})$, 2.52-2.43 (m, 1 H$), 2.21-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 0.95-0.93(\mathrm{~m}$, $12 \mathrm{H}), 0.81(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.10(\mathrm{~s}, 6 \mathrm{H})$; Characteristic signals of the minor rotamer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.02(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}, 2 \mathrm{H}, J=0.5$ $\mathrm{Hz}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ; \mathrm{MS}$ (ESI) $\left.m / z 629(\mathrm{M}+\mathrm{Na}]^{+}\right), 607\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(R)-((1R,3R)-3-(tert-Butoxycarbonyl(methyl)amino)-1-(4-((tert-butyldimethylsilyl-oxy)methyl)thiazol-2-yl)-4-methylpentyl) 2-methoxy-2-phenylacetate (20). According to the protocol used for $\mathbf{1 8}, \mathbf{9 b}(5 \mathrm{mg}, 11 \mu \mathrm{~mol})$ was converted into colorless, oily $\mathbf{2 0}$ (4.1 $\mathrm{mg}, 62 \%) .{ }^{1} \mathrm{H}$ NMR analysis at room temperature showed a 2.6:1 mixture of rotamers. Major rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.45-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{t}, 1 \mathrm{H}, J=1.2$ $\mathrm{Hz}), 5.88(\mathrm{dd}, 1 \mathrm{H}, J=11.2,2.8 \mathrm{~Hz}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.48$ $(\mathrm{s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.47$ $(\mathrm{s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.07(\mathrm{~s}, 6 \mathrm{H})$; Characteristic signals of the minor rotamer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.98(\mathrm{~s}, 1 \mathrm{H})$, $6.00(\mathrm{t}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9$ H), $0.84(\mathrm{~d}, 6 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.09(\mathrm{~s}, 6 \mathrm{H})$; MS (ESI) $m / z 629\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 607\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(S)-((1R,3R)-3-(tert-Butoxycarbonyl(methyl)amino)-1-(4-((tert-butyldimethylsilyl-

 oxy)methyl)thiazol-2-yl)-4-methylpentyl) 2-methoxy-2-phenylacetate (21). According to the protocol used for $\mathbf{1 8}, \mathbf{9 b}(5.4 \mathrm{mg}, 12 \mu \mathrm{~mol})$ was converted into colorless, oily $\mathbf{2 1}$ ($5.4 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR analysis at room temperature showed a $1.1: 1$ mixture ofrotamers. Major rotamer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.51-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~s}, 1$ H), $5.92(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~d}, 2 \mathrm{H}, J=1.0 \mathrm{~Hz}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.71-$ $2.62(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}$, $9 \mathrm{H}), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.79(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.12(\mathrm{~s}, 6 \mathrm{H})$; Characteristic signals of the minor rotamer: $7.13(\mathrm{~s}, 1 \mathrm{H}), 5.96-5.95(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}, 2 \mathrm{H}$, $J=1.0 \mathrm{~Hz}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.74(\mathrm{~d}, 3 \mathrm{H}, J=6.0$ $\mathrm{Hz}), 0.11(\mathrm{~s}, 6 \mathrm{H})$; MS (ESI) $m / z 629\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

${ }^{\mathrm{l}} \mathrm{H}$	b	d	e	f	g	a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}
$\delta^{R}(\mathbf{1 8})$	3.62 $(-)$	0.86 (0.80)	0.75 (0.72)	2.62 (2.52)	1.27 (1.41)	7.21 (7.16)	4.85 (4.84)	0.12 (0.12)	0.96 (0.95)
$\delta^{S}(\mathbf{1 9})$	3.78 $(-)$	0.94	0.81	2.73	1.44	7.06	4.78	0.10	0.94
(0.93)	(0.80)	(2.57)	(1.34)	(7.02)	(4.77)	(0.09)	$(-)$		
$\Delta \delta^{R S}$	-0.16	-0.08	-0.06	-0.11	-0.17	0.15	0.07	0.02	
$\left(\delta^{R}-\delta^{S}\right)$	$(-)$	(-0.13)	(-0.08)	(-0.05)	(0.07)	(0.14)	(0.07)	(0.03)	$(-)$

Table 1. Proton chemical shifts differences between 18 and 19. The values in parentheses are characteristic signals of the minor rotamers.

${ }^{1} \mathrm{H}$	d	e	f	g	a,	b	c	
$\delta^{R}(\mathbf{2 0})$	0.96	0.88	2.70	1.47	6.93	4.74	0.07	0.92
$(-)$	(0.84)	(2.65)	(1.43)	(6.98)	$(-)$	(0.09)	(0.92)	
$\delta^{S}(\mathbf{2 1})$	0.87	0.79	2.51	1.42	7.09	4.82	0.12	0.95
	(0.81)	(0.74)	$(-)$	(1.37)	(7.13)	(4.83)	(0.11)	$(-)$
$\Delta \delta^{R S}$	0.09	0.09	0.19	0.05	-0.16	-0.08	-0.05	-0.03
$(-)$	(0.10)	$(-)$	(0.06)	(-0.15)	$(-)$	(-0.02)	$(-)$	

Table 2. Proton chemical shifts differences between 20 and 21. The values in parentheses are characteristic signals of the minor rotamers.

References

1. Guibourdenche, C.; Seebach, D.; Natt, E. Helv. Chim. Acta 1997, 80, 1.
2. Soai, K.; Ookawa, A. J. Org. Chem. 1986, 51, 4000.
3. Kelly, T. R.; Lang, F. J. Org. Chem. 1996, 61, 4263.
4. Wipf, P.; Takada, T.; Rishel, M. J. Org. Lett. 2004, 6, 4057.
5. (a) Kaduk, C.; Wenschuh, H.; Beyermann, M.; Forner, K.; Carpino, L. A.; Bienert, M. Lett. Peptide Sci. 1996, 2, 285. (b) Carpino, L. A.; Sedat-Aalaee, D.; Chao, H. G.; DeSelms, R. H. J. Am. Chem. Soc. 1990, 112, 9651.
6. Peltier, H. M.; McMahon, J. P.; Patterson, A. W.; Ellman, J. A. J. Am. Chem. Soc. 2006, 128, 16018.
7. Seco, J. M.; Quinoa, E.; Riguera, R. Tetrahedron Asymm. 2001, 2915.

i

ppm

,

(NMR 301)

 -135.481

(
(IOE $\forall W N)$ J己G己IAZM

(OOE HWN) J6GZIAZM

(

ppm

[^0]
(qIOE UWN) VGEOIIAZM

(qIOE UWN) $\forall 6 E O I I \wedge Z M$

(IOE $\forall W N) ~ \forall 6 E O I I A Z M ~$

(oos पWN 'aOEaD) गع9tIIXZM

（OOS 甘WN）VZとZIIスZM

[^0]: WZYIII35A (NMR 301b)

