p-Nitromandelic Acid (Pnm) as a Highly Acid-Stable Safety-Catch Linker for Solid Phase Synthesis of Peptide and Depsipeptide Acids

Albert Isidro-Llobet, Mercedes Alvarez, Klaus Burger, Jan Spengler, Fernando Albericio, albericio@pcb.ub.es, jspengler@pcb.ub.es

Supporting Information

General

Commercial compounds

Commercial grade reagents and solvents were used without further purification. AM-resin (aminomethylated polystyrene, 100-200 mesh, $\mathrm{f}=1.1 \mathrm{mmol} / \mathrm{g}$), PyBOP for in situ neutralization and HOBt were purchased from NovaBiochem, lactic acid, leucic acid and diisopropylcarbodiimide (DIC) from Aldrich, Boc-amino acids and Fmoc-Leu-OH from Iris Biotech and DIEA from Merck.

Apparatus

Analytical HPLC was carried out with a Waters instrument on a C8-column. Linear gradients (given in the table) of $\mathrm{CH}_{3} \mathrm{CN}(0.036 \% \mathrm{TFA})$ into $\mathrm{H}_{2} \mathrm{O}(0.045 \% \mathrm{TFA})$ were run at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$. UV detection was performed at 220 nm . The mass signals in the HPLC-MS spectra were obtained with an electrospray detector (Waters micromass ZQ). NMR spectra were acquired with a Mercury-400 spectrometer (${ }^{1} \mathrm{H}$ at $400.125 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100.625 MHz with TMS as internal reference) (High-field NMR Unit, Barcelona Science Park).

The following abbreviations are used to indicate multiplicity: s, singlet; d, doublet, dd, double doublet; t , triplet; dt, double triplet; m, multiplet, br s, broad signal. Microwave experiments were performed with a CEM Discover apparatus. Temperature was measured with a noncontact infrared sensor.

2,2-Bis(trifluoromethyl)-1,3-dioxolan-5-(4-nitrophenyl)-4-one (HFA-Pnm)

p-Nitromandelic acid was synthesized from p-nitrobenzaldehyde ($32.5 \mathrm{mmol}, 4.9 \mathrm{~g}$) and potassium cyanide. The crude nitrile was transformed in the methyl ester as described earlier. ${ }^{1}$ The crude methyl ester (3.8 g) was then saponified by refluxing with glacial HOAc / conc. HCl mixture ($5: 1$), until no starting material was detected by TLC. Note: saponification with LiOH gave no desired product. After evaporation, a mixture of products was obtained, which was dissolved in DMSO and directly subjected to reaction with HFA. The extracted product $(1.7 \mathrm{~g})$ was purified by flash chromatography (hexane / ethyl acetate $4: 1, \mathrm{R}_{\mathrm{f}}=0.6$) 2,2-bis(trifluoromethyl)-1,3-dioxolan-5-(4-nitrophenyl)-4-one [HFA(Pnm), $0.54 \mathrm{~g}, 5 \%$ overall yield from p-nitrobenzaldehyde]. It spectroscopical data are in agreement with those already described for such compounds. ${ }^{2}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.75(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.67$ $\mathrm{Hz}, 2 \mathrm{H}), 8.34(\mathrm{~d}, \mathrm{~J}=8.91 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=74.9$, $97.8(\mathrm{~m}), 118.8(\mathrm{q}, J=$ $285 \mathrm{~Hz}), 119.5(\mathrm{q}, ~ J=288 \mathrm{~Hz}), 124.3,126.9,137.0,148.9,165.1 .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ $=-81.0(\mathrm{q}, J=7.75 \mathrm{~Hz}),-80.45(\mathrm{q}, J=7.75 \mathrm{~Hz}) . \mathrm{IR}(\mathrm{film}): v=1855,1531,1352,1238,1134$ cm^{-1}.
${ }^{1}$ H NMR:

${ }^{13} \mathrm{C}$ NMR:

${ }^{19}$ F NMR:

```
UNITAT DE RMN OALT CAMP
SERVEIS CIENTHIFIC-TEAMP
--
```



```
NOM: JAN SPENGLER N-T automatic
*)
Pulse Sequence: 52pul
Solvent: cdcl3
Mample r8, user fap
Mercury-400BB "bast"
Relax. delay 1.500 sec
    Mulse 30.0 degrees
    W/\mp@code{tin}11261:3 Hz
```



```
lol
```


IR (film):

Preparation of H-Pnm-AM-resin and depsipeptide synthesis

4 eq of HFA-Pnm were dissolved in THF and added to aminomethylated polystyrene (which turned blue) and the mixture was left to shake until the ninhydrin-test was negative. The filtrate and washing solutions with the excess of HFA-Pnm were then evaporated and stored for future reuse. The depsipeptides were then synthesized by standard protocols. Attachment of the first amino acid: symmetric anhydride generated with DIC, cat. amounts of DMAP. Third position after an ester bond: in-situ neutralization using the PyBOP-reagent. ${ }^{3}$ Lactic and leucic acid were coupled without $\alpha-\mathrm{OH}$ protection schemes with DIC/HOBt.

For side-chain deprotection:
The resins were treated with $150 \mu \mathrm{~L}$ of thioanisol at $0^{\circ} \mathrm{C}$ followed by addition of 1 mL of TFA and 10 min of stirring. $100 \mu \mathrm{~L}$ of Trifluoromethanesulfonic acid (TFMSA) were then added and the resins were stirred 2 h at rt. Finally, the following washings were carried out: TFA ($3 \times 1 \mathrm{~min}$), DCM ($5 \times 1 \mathrm{~min}$), isopropanol ($5 \times 1 \mathrm{~min}$) and DMF ($5 \times 1 \mathrm{~min}$).

For final cleavage, the resins were treated with:
i) $6 \mathrm{M} \mathrm{SnCl}_{2}, 1.6 \mathrm{mM} \mathrm{HCl} /$ dioxane in $\mathrm{DMF}, 1 \mathrm{~h}$ at rt .

Washings: $5 \times 1 \mathrm{~min}$. with DMF and 5×30 seconds with dioxane.
ii) $5 \% \mathrm{TFA}$ in dioxane 1 h at $50^{\circ} \mathrm{C}$ (Microwave heating).

Ac-Lys(2ClZ)-Phe-Leu-Lac-Val-OH (5b) :

HRMS (ESI-MS, ES^{+}): $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{ClN}_{5} \mathrm{O}_{10}\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$calcd.: 789.34721, found: 789.36602.

The depsipeptide 5b (Ac-Lys(2ClZ)-Phe-Leu-Lac-Val-OH) (25 mg) was purified by semipreparative HPLC

${ }^{1} \mathrm{H}$ NMR of $\mathbf{5 b}$ (400 MHz , DMSO):
$8.21(\mathrm{~d}, J=7.79 \mathrm{~Hz}, \mathrm{NH}$ from Leu), $8.06(\mathrm{~d}, J=8.62 \mathrm{~Hz}, \mathrm{NH}$ from Val), $7.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}$ from Phe and Lys), 7.45 (dd, $J=9.2 \mathrm{~Hz}, J^{\prime}=5.6 \mathrm{~Hz}, 2 \mathrm{CH}$ ar.), 7.35 (m, 2 CH ar.), 7.28 (t, $J=$ $5.5 \mathrm{~Hz}, \varepsilon \mathrm{NH}$ from Lys), 7.2 (m, 4 CH ar.), 7.16 (m, CH ar.), 5.06 (s, CH_{2} from 2-Cl-Z), 5.03 (q, $J=6.8 \mathrm{~Hz}, \mathrm{CH}$ from lactic acid), 4.50 ($\mathrm{m}, \alpha \mathrm{CH}$ from Phe), 4.28 ($\mathrm{m}, \alpha \mathrm{CH}$ from Leu), 4.10 ($\mathrm{m}, \alpha \mathrm{CH}$ from Val and Lys), 3.02 (dd, $J=14.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ from Phe), 2.91 (m , $\varepsilon \mathrm{CH}_{2}$ from Lys), 2.76 (dd, $J=14.0 \mathrm{~Hz}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ from Phe), $2.05\left(\mathrm{~m}, ~ \beta \mathrm{CH}_{2}\right.$ from Val), 1.79 (s, acetyl CH_{3}), $1.66\left(\mathrm{~m}, ~ \beta \mathrm{CH}\right.$ Leu), $1.56\left(\mathrm{~m}, \mathrm{CH}_{2}\right.$ from Leu), $1.45\left(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}_{2}\right.$ from Lys), $1.36\left(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}_{2}\right.$ from Lys), $1.31\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ from lactic acid), $1.31(\mathrm{~m}$, $\delta \mathrm{CH}_{2}$ from Lys), $1.12\left(\mathrm{~m}, \gamma \mathrm{CH}_{2}\right.$ from Lys), $0.87\left(\mathrm{~m}, 9 \mathrm{H}, 2 \mathrm{CH}_{3}\right.$ from Val, CH_{3} from Leu), 0.81 (d, $J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}$ from Leu).

[^0]173.39, 172.27, 172.25, 171.94, 170.59, 170.05, 156.42, 138.44, 135.30, 130.35, 129.93, $129.83,128.66,127.98,126.89,70.49,63.21,57.59,54.03,53.39,50.66,37.81,32.22,30.62$, 29.85, 24.69, 23.62, 23.20, 23.15, 21.84, 19.72, 18.58, 18.13.

Ac-Glu(OBzl)-Phe-Leu-Lac-Val-OH (5a): HRMS (ESI-MS, ES^{+}): $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{~N} 4 \mathrm{O} 10\left(\mathrm{M}+\mathrm{H}^{+}\right)$ calcd.: 711.35997, found: 711.35844.

 621.31302, found: 621.31208.
< ACYuIsituol

Ac-Lys-Phe-Leu-Lac-Val-OH (6b): HRMS (ESI-MS, ES^{+}): $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{~N} 5 \mathrm{O} 8\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd.: 621.34941, found: 621.36843.

Ac-Thr(Bzl)-Phe-Leu-Lac-Val-OH (5c): HRMS (ESI-MS, ES^{+}): $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N} 4 \mathrm{O} 9\left(\mathrm{M}_{9}+\mathrm{H}^{+}\right)$ calcd.: 683.36506, found: 683.36511 .

Ac-Thr-Phe-Leu-Lac-Val-OH (6c): HRMS (ESI-MS, ES^{+}): $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O} 9\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd.: 593.31811, found: 593.31692.

Ac-Tyr(Bzl)-Phe-Leu-Lac-Val-OH (5d): HRMS (ESI-MS, ES ${ }^{+}$): $\mathrm{C}_{41} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O} 9\left(\mathrm{M}+\mathrm{H}^{+}\right)$ calcd.: 745.38071, found: 745.38043.

Ac-Tyr-Phe-Leu-Lac-Val-OH (6d): HRMS (ESI-MS, ES^{+}): $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N} 4 \mathrm{O} 9\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd.: 655.33376, found: 655.33270.

Ac-Cys(pMeBzl)-Phe-Leu-Lac-Val-OH (5e): HRMS (ESI-MS, ES^{+}): $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N} 4 \mathrm{O}_{8} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ calcd.: 699.34221, found: 699.34108.

Ac-Cys-Phe-Leu-Lac-Val-OH (6e): HRMS (ESI-MS, ES^{+}): $\mathrm{C}_{2} 8 \mathrm{H}_{42} \mathrm{~N} 4 \mathrm{O} 8 \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd.: 595.27961, found: 595.27728.

Ac-Arg(Tos)-Phe-Leu-Lac-Val-OH 5f : HRMS (ESI-MS, ES ${ }^{+}$): $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{~N} 7 \mathrm{O} 10 \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ calcd.: 802.38039, found: 802.38051 .

Ac-Arg-Phe-Leu-Lac-Val-OH 6f : HRMS (ESI-MS, ES^{+}): $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O} 8\left(\mathrm{M}+\mathrm{H}^{+}\right)$calcd.: 648.37154, found: 648.37143.

Ac-Asn(Xan)-Phe-Leu-Lac-Val-OH 5g : HRMS (ESI-MS, ES ${ }^{+}$): $\mathrm{C}_{2}{ }_{9} \mathrm{H}_{43} \mathrm{~N} 5 \mathrm{O} 9\left(\mathrm{M}^{+} \mathrm{H}^{+}\right)$ calcd.: 606.31335 , found: 606.31338 .

Quantification of resin functionalization

The Fmoc-group was cleaved with 20% piperidine in DMF ($3 \times 5 \mathrm{~min}$). The solutions were diluted with DMF and UV-absorbance at 290 nm was measured.

[^1]
[^0]: ${ }^{13}$ C-NMR of $\mathbf{5 b}$ (100 MHz):

[^1]: ${ }^{1}$ Fosdick, L. S.; Wessinger, G. D. J. Am. Chem. Soc. 1938, 60, 1465-1466.
 ${ }^{2}$ Pumpor, K.; Windeisen, E.; Burger K. J. Heterocyclic Chem. 2003, 40, 435-442.
 ${ }^{3}$ Gairi, M.; Lloyd-Williams, P.; Albericio, F.; Giralt, E. Tetrahedron Lett. 1990, 31, 7363-7366.

