p-Nitromandelic Acid (Pnm) as a Highly Acid-Stable Safety-Catch Linker for Solid Phase Synthesis of Peptide and Depsipeptide Acids

Albert Isidro-Llobet, Mercedes Alvarez, Klaus Burger, Jan Spengler, Fernando Albericio,

albericio@pcb.ub.es, jspengler@pcb.ub.es

Supporting Information

General

Commercial compounds

Commercial grade reagents and solvents were used without further purification. AM-resin (aminomethylated polystyrene, 100-200 mesh, f = 1.1 mmol/g), PyBOP for in situ neutralization and HOBt were purchased from NovaBiochem, lactic acid, leucic acid and diisopropylcarbodiimide (DIC) from Aldrich, Boc-amino acids and Fmoc-Leu-OH from Iris Biotech and DIEA from Merck.

Apparatus

Analytical HPLC was carried out with a Waters instrument on a C8-column. Linear gradients (given in the table) of CH₃CN (0.036% TFA) into H₂O (0.045% TFA) were run at a flow rate of 1.0 mL/min. UV detection was performed at 220 nm. The mass signals in the HPLC-MS spectra were obtained with an electrospray detector (Waters micromass ZQ). NMR spectra were acquired with a Mercury-400 spectrometer (¹H at 400.125 MHz, ¹³C at 100.625 MHz with TMS as internal reference) (High-field NMR Unit, Barcelona Science Park). The following abbreviations are used to indicate multiplicity: s, singlet; d, doublet, dd, double doublet; t, triplet; dt, double triplet; m, multiplet, br s, broad signal. Microwave experiments were performed with a CEM Discover apparatus. Temperature was measured with a non-contact infrared sensor.

2,2-Bis(trifluoromethyl)-1,3-dioxolan-5-(4-nitrophenyl)-4-one (HFA-Pnm)

p-Nitromandelic acid was synthesized from *p*-nitrobenzaldehyde (32.5 mmol, 4.9 g) and potassium cyanide. The crude nitrile was transformed in the methyl ester as described earlier.¹ The crude methyl ester (3.8 g) was then saponified by refluxing with glacial HOAc / conc. HCl mixture (5 : 1), until no starting material was detected by TLC. Note: saponification with LiOH gave no desired product. After evaporation, a mixture of products was obtained, which was dissolved in DMSO and directly subjected to reaction with HFA. The extracted product (1.7 g) was purified by flash chromatography (hexane / ethyl acetate 4 : 1, $R_f = 0.6$) 2,2-bis(trifluoromethyl)-1,3-dioxolan-5-(4-nitrophenyl)-4-one [HFA(Pnm), 0.54 g, 5% overall yield from *p*-nitrobenzaldehyde]. It spectroscopical data are in agreement with those already described for such compounds.² ¹H NMR (CDCl₃): δ (ppm) = 5.75 (s, 1H), 7.69 (d, *J* = 8.67 Hz, 2H), 8.34 (d, *J* = 8.91 Hz, 2H). ¹³C NMR (CDCl₃): δ (ppm) = 74.9, 97.8 (m), 118.8 (q, *J* = 285 Hz), 119.5 (q, *J* = 288 Hz), 124.3, 126.9, 137.0, 148.9, 165.1. ¹⁹F NMR (CDCl₃): δ (ppm) = -81.0 (q, *J* = 7.75 Hz), -80.45 (q, *J* = 7.75 Hz). IR (film): v = 1855, 1531, 1352, 1238, 1134 cm⁻¹.

¹H NMR:

¹³C NMR:

¹⁹F NMR:

Preparation of H-Pnm-AM-resin and depsipeptide synthesis

4 eq of HFA-Pnm were dissolved in THF and added to aminomethylated polystyrene (which turned blue) and the mixture was left to shake until the ninhydrin-test was negative. The filtrate and washing solutions with the excess of HFA-Pnm were then evaporated and stored for future reuse. The depsipeptides were then synthesized by standard protocols. Attachment of the first amino acid: symmetric anhydride generated with DIC, cat. amounts of DMAP. Third position after an ester bond: in-situ neutralization using the PyBOP-reagent.³ Lactic and leucic acid were coupled without α -OH protection schemes with DIC/HOBt.

For side-chain deprotection:

The resins were treated with 150 μ L of thioanisol at 0 °C followed by addition of 1 mL of TFA and 10 min of stirring. 100 μ L of Trifluoromethanesulfonic acid (TFMSA) were then added and the resins were stirred 2 h at rt. Finally, the following washings were carried out: TFA (3 x 1 min), DCM (5 x 1 min), isopropanol (5 x 1 min) and DMF (5 x 1 min).

For final cleavage, the resins were treated with: i) 6 M SnCl₂, 1.6 mM HCl/dioxane in DMF, 1 h at rt. Washings: $5 \ge 1$ min. with DMF and $5 \ge 30$ seconds with dioxane.

ii) 5% TFA in dioxane 1h at 50 °C (Microwave heating).

Ac-Lys(2ClZ)-Phe-Leu-Lac-Val-OH (5b) :

HRMS (ESI-MS, ES⁺): C₃₉H₅₃ClN₅O₁₀ (M+H⁺) calcd.: 789.34721, found: 789.36602.

The depsipeptide **5b** (Ac-Lys(2ClZ)-Phe-Leu-Lac-Val-OH) (25 mg) was purified by semipreparative HPLC

¹H NMR of **5b** (400 MHz, DMSO):

8.21 (d, J= 7.79 Hz, NH from Leu), 8.06 (d, J= 8.62 Hz, NH from Val), 7.88 (m, 2H, NH from Phe and Lys), 7.45 (dd, J= 9.2 Hz, J'= 5.6 Hz, 2 CH ar.), 7.35 (m, 2 CH ar.), 7.28 (t, J= 5.5 Hz, ϵ NH from Lys), 7.2 (m, 4 CH ar.), 7.16 (m, CH ar.), 5.06 (s, CH₂ from 2-Cl-Z), 5.03 (q, J= 6.8 Hz, CH from lactic acid), 4.50 (m, α CH from Phe), 4.28 (m, α CH from Leu), 4.10 (m, α CH from Val and Lys), 3.02 (dd, J= 14.0 Hz, J= 4.0 Hz, 1H, CH₂ from Phe), 2.91 (m, ϵ CH₂ from Lys), 2.76 (dd, J= 14.0 Hz, J= 9.8 Hz, 1H, CH₂ from Phe), 2.05 (m, β CH₂ from Val), 1.79 (s, acetyl CH₃), 1.66 (m, β CH Leu), 1.56 (m, CH₂ from Leu), 1.45 (m, 1H, β CH₂ from Lys), 1.36 (m, 1H, β CH₂ from Lys), 1.31 (d, J= 6.8 Hz, CH₃ from lactic acid), 1.31 (m, δ CH₂ from Lys), 1.12 (m, γ CH₂ from Lys), 0.87 (m, 9H, 2CH₃ from Val, CH₃ from Leu), 0.81 (d, J= 6.3 Hz, CH₃ from Leu).

¹³C-NMR of **5b** (100 MHz):

173.39, 172.27, 172.25, 171.94, 170.59, 170.05, 156.42, 138.44, 135.30, 130.35, 129.93, 129.83, 128.66, 127.98, 126.89, 70.49, 63.21, 57.59, 54.03, 53.39, 50.66, 37.81, 32.22, 30.62, 29.85, 24.69, 23.62, 23.20, 23.15, 21.84, 19.72, 18.58, 18.13.

Ac-Glu(OBzl)-Phe-Leu-Lac-Val-OH (5a): HRMS (ESI-MS, ES⁺): C₃₇H₅₀N₄O₁₀ (M+H⁺) calcd.: 711.35997, found: 711.35844.

Ac-Glu-Phe-Leu-Lac-Val-OH (6a): HRMS (ESI-MS, ES⁺): C₃₀H₄₄N₄O₁₀ (M+H⁺) calcd.:

621.31302, found: 621.31208.

Ac-Lys-Phe-Leu-Lac-Val-OH (6b): HRMS (ESI-MS, ES⁺): C₃₁H₄₉N5O₈ (M+H⁺) calcd.: 621.34941, found: 621.36843.

Ac-Thr(Bzl)-Phe-Leu-Lac-Val-OH (5c): HRMS (ESI-MS, ES⁺): C₃₆H₅₀N₄O₉ (M+H⁺) calcd.: 683.36506, found: 683.36511.

Ac-Thr-Phe-Leu-Lac-Val-OH (6c): HRMS (ESI-MS, ES⁺): C₂₉H₄₄N₄O₉ (M+H⁺) calcd.:

593.31811, found: 593.31692.

Ac-Tyr(Bzl)-Phe-Leu-Lac-Val-OH (5d): HRMS (ESI-MS, ES⁺): C₄₁H₅₂N₄O₉ (M+H⁺) calcd.: 745.38071, found: 745.38043.

 $\textbf{Ac-Tyr-Phe-Leu-Lac-Val-OH (6d): HRMS (ESI-MS, ES^+): C_{34}H_{46}N_4O_9 (M+H^+) calcd.:}$

655.33376, found: 655.33270.

Ac-Cys(pMeBzl)-Phe-Leu-Lac-Val-OH (5e): HRMS (ESI-MS, ES⁺): C₃₆H₅₀N₄ O₈S (M+H⁺) calcd.: 699.34221, found: 699.34108.

Ac-Cys-Phe-Leu-Lac-Val-OH (6e): HRMS (ESI-MS, ES⁺): C₂₈H₄₂N₄O₈S (M+H⁺) calcd.: 595.27961, found: 595.27728.

Ac-Arg(Tos)-Phe-Leu-Lac-Val-OH 5f : HRMS (ESI-MS, ES⁺): C₃₈H₅₅N₇O₁₀S (M+H⁺) calcd.: 802.38039, found: 802.38051.

 $\textbf{Ac-Arg-Phe-Leu-Lac-Val-OH 6f}: HRMS (ESI-MS, ES^{+}): C_{31}H_{49}N_7O_8 (M+H^{+}) calcd.:$

648.37154, found: 648.37143.

Ac-Asn(Xan)-Phe-Leu-Lac-Val-OH 5g : HRMS (ESI-MS, ES⁺): C₂₉H₄₃N₅O₉ (M+H⁺)

calcd.: 606.31335, found: 606.31338.

Quantification of resin functionalization

The Fmoc-group was cleaved with 20% piperidine in DMF (3 x 5 min). The solutions were diluted with DMF and UV-absorbance at 290 nm was measured.

¹ Fosdick, L. S.; Wessinger, G. D. *J. Am. Chem. Soc.* **1938**, *60*, 1465-1466. ² Pumpor, K.; Windeisen, E.; Burger K. *J. Heterocyclic Chem.* **2003**, 40, 435-442.

³ Gairi, M.; Lloyd-Williams, P.; Albericio, F.; Giralt, E. Tetrahedron Lett. 1990, 31, 7363-7366.