Supporting Information

2-α-Hydroxyalkyl- and 2,7-Di(α-hydroxyalkyl)-1,8-bis(dimethylamino)naphthalenes: Stabilization of Non-Conventional *In/Out*–Conformers of "Proton Sponges" via N^{...}H–O Intramolecular Hydrogen Bonding. A Remarkable Kind of Tandem Nitrogen Inversion

Alexander F. Pozharskii,^a, * Alexander V. Degtyarev,^a Oksana V. Ryabtsova,^a Valery A. Ozeryanskii,^a Mikhail E. Kletskii,^a Zoya A. Starikova,^b Lucjan Sobczyk^c and Alexander Filarowski^c

^a Department of Organic Chemistry, Southern Federal University, Zorge 7, 344090 Rostov-on-Don, Russian Federation. E-mail (corresponding author): apozharskii@rsu.ru
^b A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russian Federation
^c Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland

Table of contents

General considerations	S2
Molecular structure of compound 4e (Figure S1)	S3
Molecular structure of diol 5e (Figure S2)	S3
General view on intra- and intermolecular H-bonding in 5e (Figure S3)	S4
Temperature dependence of <i>N</i> -methyls in the ¹ H NMR spectra of 4b and 4c (Figure S4)	S5
Calculated geometry and total energy for alcohol 4f (Figure S5)	S6
Calculated geometry and total energies for <i>cis</i> - and <i>trans</i> -forms of diol 5c (Figure S6)	S7
Total energies and atomic coordinated for 4f and 5c (Tables S1–S3)	8– S 11

General. The ¹H NMR spectra were recorded at the indicated field strengths; the internal reference was SiMe₄ ($\delta = 0.00$ ppm). The melting points were not corrected. Chromatography was performed and the purity of the compounds was monitored by TLC on Al₂O₃ (Brockmann III) using CHCl₃ and MeCN as the eluents. Commercial BuⁿLi (1.6M solution in *n*-hexane), DMF, and (EtO)₂CO were used. Solvents for preparation of organometallic compounds and those used in subsequent reactions were dried over sodium and benzophenone and were freshly distilled prior to any operation.

Figure S1. Molecular structure of compound 4e.

Figure S2. Molecular structure of diol 5e.

Figure S3. View along *b*-axis on crystal packing of diol **5e** showing the inter- and intramolecular H-bonding.

Figure S4. Temperature dependence of *N*-methyl signals in the ¹H NMR spectra of **4b** and **4c** (250 MHz, CDCl₃, $c = 6.45 \cdot 10^{-2}$ M for **4b** and $5.2 \cdot 10^{-2}$ M for **4c**).

Figure S5. Calculated geometry (bond lengths and distances in Å, angles in degrees) and total energy for alcohol **4f** (compare with Table 4 and Figure 9, right).

Figure S6. Calculated geometry (bond lengths and distances in Å, angles in degrees) and total energies for *cis*- (above) and *trans*-forms (below) of diol **5c**.

Center	Atomic	Atomic	Coord	inates (Angs	croms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.987118	-0.959775	2.477139
2	6	0	-0.476243	-2.007427	0.820237
3	6	0	3.487323	-2.805963	0.276960
4	6	0	1.844990	-2.289653	-1.406719
5	7	0	0.103087	-0.760838	1.328539
6	7	0	2.450845	-1.866979	-0.136192
7	6	0	1.784173	0.528039	-0.069339
8	6	0	2.149612	1.845319	-0.519068
9	6	0	2.814842	-0.484666	-0.163290
10	6	0	4.128755	-0.109153	-0.391033
11	6	0	4.489066	1.230377	-0.652179
12	6	0	3.506782	2.177396	-0.778832
13	6	0	0.441767	0.332255	0.441738
14	6	0	-0.533827	1.325481	0.252635
15	6	0	-0.165815	2.537846	-0.383912
16	6	0	1.139113	2.816962	-0.696563
17	6	0	-1.987220	1.177749	0.786552
18	1	0	1.291609	0.009952	2.877612
19	1	0	1.880395	-1.549440	2.239672
20	1	0	0.427533	-1.488586	3.258589
21	1	0	0.287481	-2.777846	0.668118
22	1	0	-0.993344	-1.822985	-0.120641
23	1	0	-1.215578	-2.385049	1.537424
24	1	0	4.281817	-2.955377	-0.475565
25	1	0	3.951705	-2.466452	1.206090
26	1	0	3.024460	-3.781259	0.459744
27	1	0	1.425332	-3.294687	-1.298493
28	1	0	2.583339	-2.307659	-2.226734
29	1	0	1.039094	-1.609710	-1.686080
30	1	0	4.898707	-0.870430	-0.442200
31	1	0	5.531222	1.482298	-0.824920
32	1	0	3.744190	3.196907	-1.069294
33	1	0	-0.914787	3.301386	-0.549254
34	1	0	1.414629	3.794652	-1.082640
35	8	0	-1.963668	0.737744	2.139369
36	1	0	-1.270454	0.038238	2.133065
37	6	0	-2.754599	2.512790	0.842755
38	1	0	-2.966104	2.919457	-0.149183
39	1	0	-3.709496	2.319991	1.337089
40	1	0	-2.202894	3.248519	1.434403
41	6	0	-2.809634	0.212760	-0.098608
42	6	0	-2.680915	0.193189	-1.494052
43	6	0	-3.763693	-0.620361	0.497613
44	6	0	-3.479256	-0.646981	-2.272530
45	1	0	-1.947097	0.832094	-1.977212
46	6	0	-4.562157	-1.460953	-0.279244
47	Ţ	0	-3.859887	-0.602975	1.577717
48	6	0	-4.422318	-1.4/9/31	-1.667771
49	1	U	-3.361759	-0.651488	-3.352840
50	1	0	-5.294088	-2.103993	0.202259
51	T	U	-5.041386	-2.135/91	-2.273029

Table S1. Atomic Coordinates for Structure 4f

Total energy = -1038.72634 a.u.

Center	Atomic	Atomic	Coord	inates (Angst	croms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.766112	-2.133800	2.475616
2	6	0	1.338722	0.228086	2.750112
3	6	0	-2.363037	-0.377237	2.512939
4	6	0	-1.303535	1.431500	1.278876
5	7	0	1.289146	-0.923554	1.875114
6	7	0	-1.449205	-0.014304	1.444088
7	6	0	-0.011722	-0.955484	-0.300769
8	6	0	0.106945	-1.321140	-1.685388
9	6	0	-1.348968	-0.768250	0.234551
10	6	0	-2.458177	-1.204511	-0.502210
11	6	0	-2.266953	-1.765216	-1.790281
12	6	0	-1.038484	-1.753985	-2.394734
13	6	0	1.224869	-0.813129	0.452989
14	6	0	2.441857	-0.766346	-0.231340
15	6	0	2.493820	-0.932621	-1.637127
16	6	0	1.366483	-1.268217	-2.334511
17	6	0	3.775158	-0.694855	0.502860
18	1	0	0.935303	-2.980733	1.806242
19	1	0	-0.307176	-2.090759	2.715975
20	1	0	1.307302	-2.333701	3.410507
21	1	0	0.371158	0.453510	3.222496
22	1	0	1.644370	1.112422	2.186692
23	1	0	2.071059	0.067443	3.556200
24	- 1	0	-3 360869	0 084670	2 434532
25	1	0	-2.478949	-1.462318	2.559406
26	1	0	-1,937678	-0.052249	3,471925
27	1	0	-1.043258	1.888244	2.240271
28	1	0	-2 222069	1 914034	0 910791
29	1	0	-0 497516	1 645356	0 573727
30	1	0	-3 131248	-2 152772	-2 315762
31	1	0	-0 922473	-2 092872	-3 420698
32	1	0	3 455282	-0 881612	-2 136705
32	1	0	1 416515	-1 504039	-3 394121
34	÷	0	4 642898	0 473779	0 036661
35	6	0	5 698157	0 277604	-0 862311
36	6	0	4 399388	1 769921	0.511038
37	6	0	6 485411	1 351858	-1 283138
38	1	0	5 900128	-0 725470	-1 223903
39	£	0	5 182661	2 843506	0 091746
40	1	0	3 592320	1 939381	1 219063
41	÷	0	6 230143	2 638227	-0 809728
42	1	0	7 300474	1 180438	-1 980905
42	1	0	/ 979921	3 840615	0 472590
45	1	0	6 8/33/3	3 173679	_1 13/7/0
45	т 6	0	-3 916/86	_1 019025	-0 055688
45	1	0	-1 011939	-1 282879	0 997012
40	8	0	4.011378	-1.252573	0.281470
49	1	0	5 245567	-1 9/2786	0.201470
10	⊥ 1	0	3 5657507	-0 570065	1 560600
49 50	т С	0	_/ /E7106	0,306003	-0 2406E7
50	6	0	-1 000760	1 2/1605	-0.24005/
51	6	0	-4.002/00 _5 517710	T.74T000	- T. 70T / AT
54 E 2	C C	0	-7.200000	0.030400 2 103617	-1 461500
55	0	0	-4.009202	2.43304/ 0 000170	-1.4010300
54	т с	0	-3.1/30/1 -6 100330	U. JZJI/U 2 00165/	-1.033629
55	6	U	-0.100330	∠.001004	0.3/4304

Table S2. Atomic Coordinates for Diol 5c (cis-form)

56	1	0	-5.889816	0.175419	1.352441
57	6	0	-5.636494	2.918018	-0.643526
58	1	0	-4.222786	3.138413	-2.255313
59	1	0	-6.915768	2.404059	1.015679
60	1	0	-6.087890	3.894004	-0.796158
61	8	0	-4.798812	-1.944615	-0.712801
62	1	0	-5.128725	-1.511680	-1.511429
Total ene	rgy = -1344.97	686 a.u.			

Table S3. Atom	ic Coordinates	for Diol 5c	(trans-form)
----------------	----------------	--------------------	--------------

Center	Atomic	Atomic	Coordinates (Angstroms)		troms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.523103	-1.777710	1.003503
2	6	0	-1.798492	-2.073960	-1.410837
3	6	0	1.792344	-2.265482	1.038369
4	6	0	1.492396	-1.593355	-1.290777
5	7	0	-1.490552	-1.182876	-0.315697
6	7	0	1.311193	-1.262200	0.114048
7	6	0	-0.019870	0.815465	0.018661
8	6	0	0.003969	2.253435	0.075853
9	6	0	1.178004	0.108533	0.455435
10	6	0	2.195582	0.811395	1.116371
11	6	0	2.067602	2.204621	1.336340
12	6	0	1.040545	2.915347	0.777208
13	6	0	-1.239749	0.195699	-0.480464
14	6	0	-2.239041	0.995485	-1.056493
15	6	0	-2.066617	2.393331	-1.167616
16	6	0	-1.004228	3.013295	-0.564095
17	6	0	-3.598965	0.413332	-1.460317
18	1	0	-1.049375	-1.115299	1.729863
19	1	0	-0.986164	-2.734491	1.015844
20	1	0	-2.555317	-1.965043	1.338434
21	1	0	-1.159105	-2.968655	-1.369013
22	1	0	-1.606277	-1.581755	-2.366393
23	1	0	-2.843781	-2.425104	-1.402287
24	1	0	2.877432	-2.455202	0.986700
25	1	0	1.530797	-1.989991	2.062712
26	1	0	1.298073	-3.221800	0.819454
27	1	0	1.106503	-2.600076	-1.489972
28	1	0	2.549143	-1.567848	-1.601192
29	1	0	0.939976	-0.889589	-1.916029
30	1	0	2.838306	2.708729	1.906587
31	1	0	1.001725	3.997628	0.867988
32	1	0	-2.828671	2.970315	-1.678313
33	1	0	-0.920455	4.096720	-0.563032
34	6	0	3.535980	0.175132	1.514987
35	1	0	3.358832	-0.734279	2.090122
36	1	0	-3.460015	-0.397124	-2.178564
37	6	0	4.431904	-0.177638	0.329874
38	6	0	4.414532	0.561213	-0.860280
39	6	0	5.383611	-1.197918	0.473180
40	6	0	5.318347	0.277160	-1.886696
41	1	0	3.683189	1.352977	-0.990028
42	6	0	6.283266	-1.486344	-0.551700
43	1	0	5.420317	-1.763342	1.400843
44	6	0	6.252521	-0.748118	-1.737071

45	5 1	0	5.288396	0.856671	-2.805031
46	5 1	0	7.008726	-2.284952	-0.425664
47	1 1	0	6.951452	-0.971974	-2.537696
48	8 8	0	4.278152	1.000918	2.427473
49) 1	0	4.810533	1.608736	1.896463
50) 6	0	-4.415523	-0.129267	-0.288819
51	- 6	0	-5.356645	-1.140524	-0.527624
52	2 6	0	-4.346433	0.434067	0.992137
53	6	0	-6.196530	-1.591587	0.490488
54	1	0	-5.434273	-1.570067	-1.523240
55	5 6	0	-5.189343	-0.012500	2.011573
56	5 1	0	-3.620883	1.216355	1.193304
57	6	0	-6.115378	-1.027203	1.764993
58	3 1	0	-6.914891	-2.381100	0.288530
59) 1	0	-5.119653	0.431810	3.000546
60) 1	0	-6.768488	-1.375799	2.559746
61	. 8	0	-4.403275	1.356637	-2.185494
62	2 1	0	-4.823672	1.933217	-1.532057

Total energy = -1344.97828 a.u.