Supporting Information Cover Sheet

Biosorption of Nonpolar Hydrophobic Organic Compounds to Escherichia Coli

Facilitated by Metal and Proton Surface Binding

Lin Xiao, Xiaolei Qu, and Dongqiang Zhu*

State Key Laboratory of Pollution Control and Resource Reuse, and School of the

Environment, Nanjing University, Jiangsu 210093, P.R. China

Submitted to Environmental Science & Technology

Prepared on February 1, 2007

Number of pages: 4 Number of figures:3

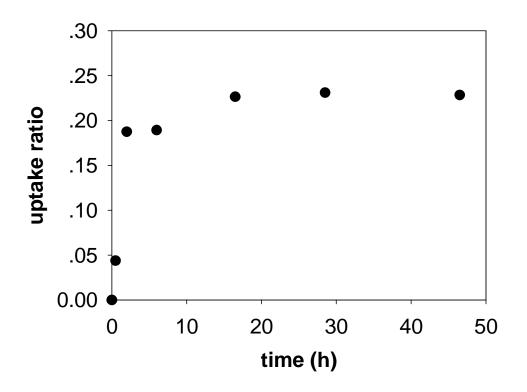


Figure S1. Sorption kinetics of PHEN to *E. coli* in 0.02 M NaNO₃, plotted as uptake ratio vs. time.

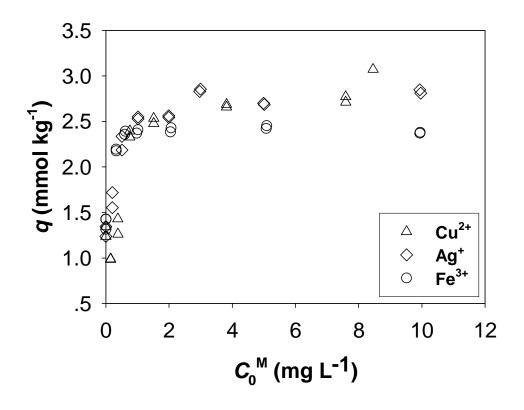


Figure S2. Sorbed concentration (q) vs. initial concentration of transition metal ion (C_0^{M}) at sorption equilibrium for PHEN to *E. coli* in 0.02 M NaNO₃. The equilibrium pH is 5.83 ± 0.06 for Cu²⁺, 6.16 ± 0.05 for Ag⁺, and 5.99 ± 0.01 for Fe³⁺-containing samples (n = 12-14).

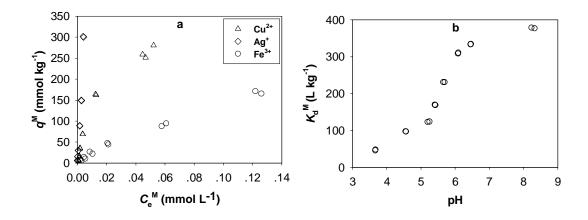


Figure S3. Sorption of heavy metals to *E. coli* in 0.02 M NaNO₃. (a) Sorbed concentration $(q^{\rm M})$ vs. aqueous phase concentration $(C_{\rm e}^{\rm M})$ at sorption equilibrium. The equilibrium pH is 5.83±0.06 for Cu²⁺, 6.16±0.05 for Ag⁺, and 5.99±0.01 for Fe³⁺-containing samples (n = 12-14). (b) Distribution coefficient $(K_{\rm d}^{\rm M})$ vs. pH for Cu²⁺.