Supporting Information for World Wide Web Edition

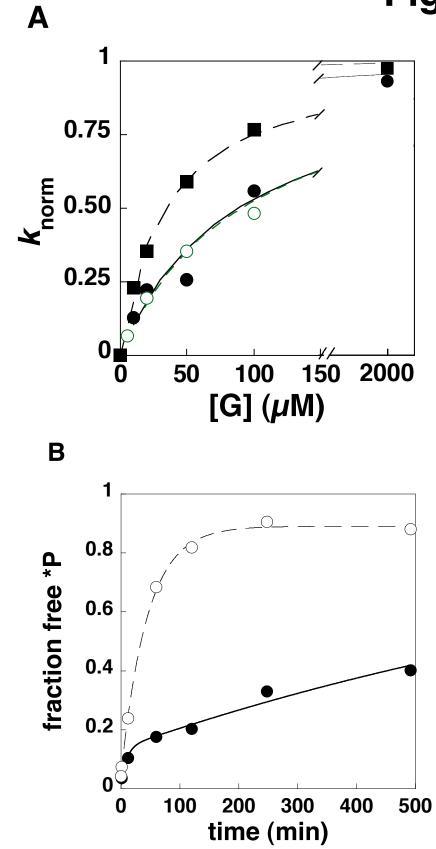

Figure S1. Lack of a 5'-terminal triphosphate group is not responsible for the stronger binding of G to the L-16 *Sca*I ribozyme. (A) The dependence of the reaction of E•S on G concentration for the L-21 *Sca*I (\bullet), L-21 *Sca*I^{OH} (\bigcirc), or L-16 *Sca*I (\bullet) ribozymes. Nonlinear least square fitting to a single binding site model yielded binding constants of 94, 87 and 34 µM, respectively. Data were obtained at pH 7.2 with 10 mM MgCl₂ as described in the Materials and Methods, and rate constants were normalized for comparison. (B) Dissociation of CCUCdT from the L-16 *Sca*I (\bullet) and the L-21 *Sca*I^{OH} (\bigcirc) ribozymes in native gel pulse-chase experiments. Non-linear least square fitting yielded dissociation rate constants of 0.023 min⁻¹ and 0.00088 min⁻¹, respectively. Data were obtained at 10 mM MgCl₂, pH 6.0 as described in the Materials and Methods. Note that the small burst for dissociation from the L-16 *Sca*I ribozyme presumably represents dissociation from a truncated molecule.

Table S1: Dissociation Rate Constants of Different Substrates at 50 and 30 °C

	50 °C		30 °C	
Substrates	$k_{\mathrm{off}}(\mathrm{min}^{-1})$	$k_{ m rel}$	$k_{\rm off}~({\rm min}^{-1})$	$k_{ m rel}$
(C)CCUCdTA	6.0	(1)	1.9 ^a	(1)
(C)CCUCdTAAACC	1.6•10 ⁻³	3.4•10-4	2.5•10 ^{-4 a}	1.5•10-4
(C)CCUCdTAAAAA	0.58	0.1	0.091 ^a	0.05

Dissociation constants of full-length or $-6C^{\Delta}$ substrates (Chart 1) from the E•S complex were determined at pH 6.0 and 50 °C or 30 °C, respectively, as described in the Materials and Methods and Table 1. Values are averages of two or more measurements. ^a Data from Table 1 are included for comparison.

Figure S1

