Supporting Information

Solid state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p

Patrick C.A. van der Wel, Józef R. Lewandowski, Robert G. Griffin

Supporting information:

- A selection of 2D spectra used for assigning the orthorhombic GNNQQNY crystal resonances.
- Assignment data illustrating the assignment of each of the three forms in a GNNQQNY fibril sample.

2D assignment data for orthorhombic GNNQQNY nanocrystals

Figure 1 shows a subset of the 2D data used to assign the GNNQQNY orthorhombic nanocrystal resonances. The measurements were performed at 700 MHz ¹H frequency using isotopically dilute samples consisting of [U-¹³C, ¹⁵N-GNNQ]QNY (left) and GNN[U-¹³C, ¹⁵N-QQNY] (right). ¹³C-¹³C correlations on [U-¹³C, ¹⁵N-GNNQ]QNY were obtained via 1.6 ms RFDR mixing (using 50 kHz ¹³C power) at 15 kHz MAS. Broadband ¹³C-¹³C correlations on GNN[U-¹³C, ¹⁵N-QQNY] were determined using 8ms of homonuclear ¹³C-(¹H)-¹³C TSAR-recoupling with the center frequency at 120.548 ppm and ¹³C and ¹H powers of 42 kHz and 45 kHz respectively (Lewandowski, J. R., De Paëpe, G., Griffin, R. G. *J. Am. Chem. Soc.* **2007**, 129(4): 7-8). ¹³C-¹⁵N correlations were determined using NCO, NCOCX, NCA, and NCACX experiments analogous to those performed on the fibril samples, as described in the manuscript.

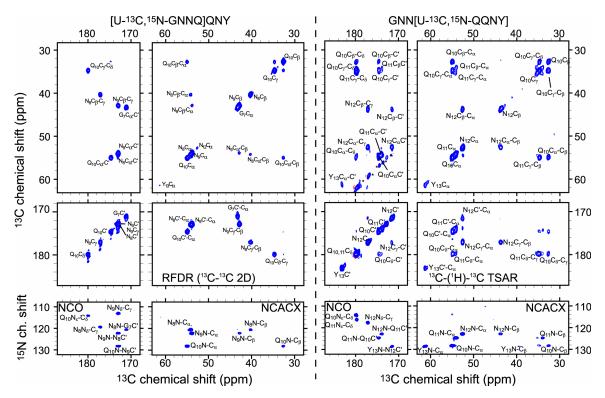


Figure 1: 2D assignment data for orthorhombic nanocrystals of GNNQQNNY. Spinning side bands are indicated with (*).

Fibril assignment data

The figures below show representative segments from our 2D assignment data on 100% labeled [U-¹³C,¹⁵N-GNNQ]QNY fibrils, obtained at 700 MHz. The assignments for each fibril form are indicated and traced out (solid lines indicate backbone correlations, dashed lines are side-chain correlations), with color-coding according to residue number. The top four panels are part of a ¹³C-¹³C correlation using 12 ms DARR/RAD mixing at 15 kHz MAS. The NCOCX and NCACX experiments were performed using 10ms ¹³C-¹³C DARR/RAD mixing, following the DCP N-C transfer, at 15 kHz MAS. Solid lines indicate backbone-backbone correlations, whereas dashed lines involve side chain-side chain, or backbone-side chain correlations. Very similar data were obtained for a number of other samples, which were prepared using isotopically dilute peptide material. Each of the fibril forms displays a self-consistent correlation pattern, while no cross-peaks are seen connecting the different forms to each other (even with longer DARR/RAD mixing times).

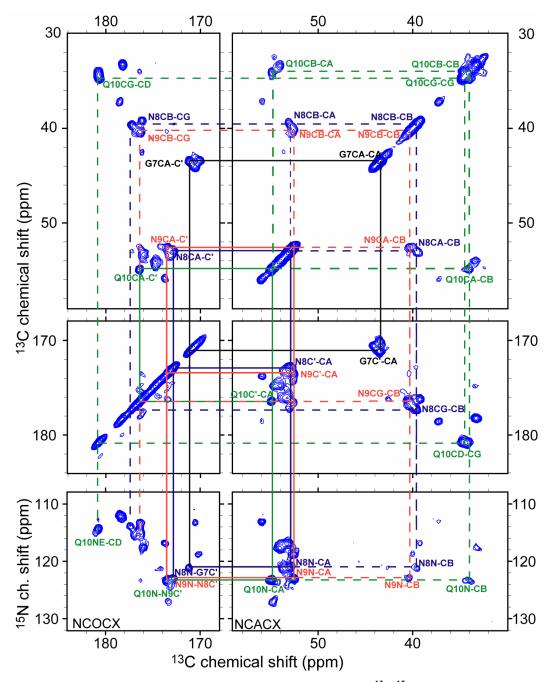


Figure 2: Correlation traces of fibril form 1 in 100%-labeled [U-¹³C,¹⁵N-GNNQ]QNY fibrils.

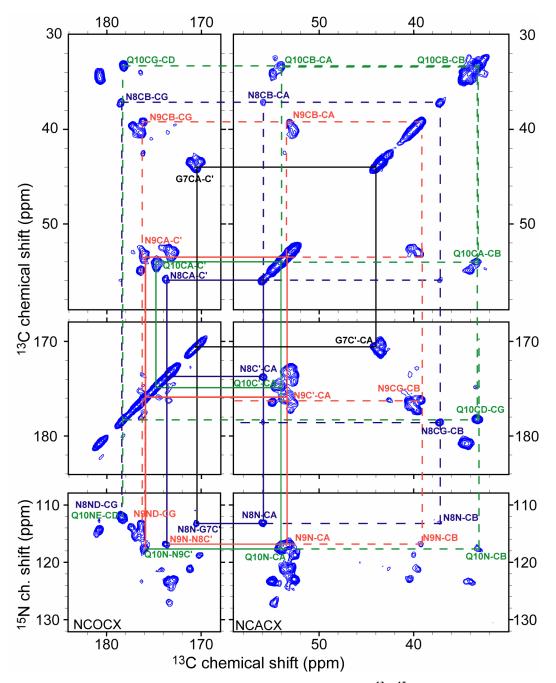


Figure 3: Correlation traces of fibril form 2 in 100%-labeled [U-¹³C,¹⁵N-GNNQ]QNY fibrils.

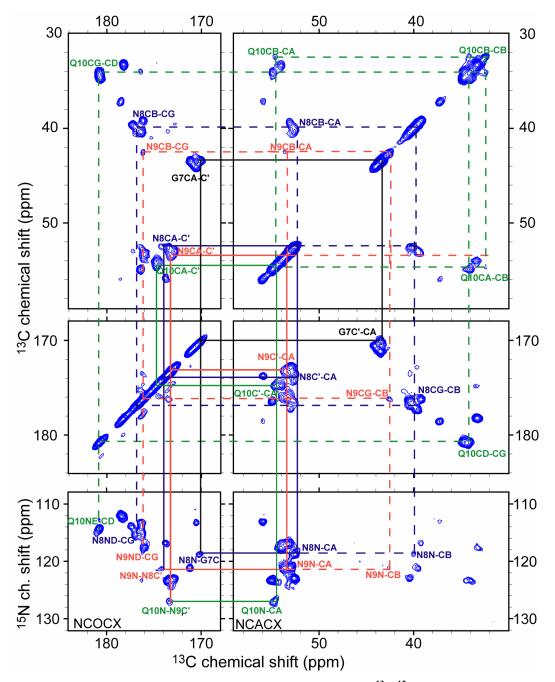


Figure 4: Correlation traces of fibril form 3 in 100%-labeled [U-¹³C,¹⁵N-GNNQ]QNY fibrils.