Supporting Information for

Preferential DNA Cleavage under Anaerobic Conditions by a DNA Binding Ruthenium Dimer

Thamara K. Janaratne and Frederick M. MacDonnell*

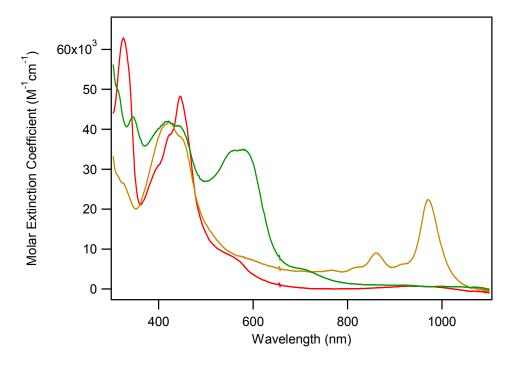
Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington TX 76019.

Table of Contents:

pUC18 DNA Cleavage Assay	S2
Synthesis of $[(phen)_2Ru(tatpp^-)Ru(phen)_2][Cl]_3([\mathbf{P}]Cl_3)$	S2
$Synthesis \ of \ [(phen)_2 Ru(H_2 tatpp) Ru(phen)_2] [Cl]_4 \ ([\textbf{H}_2 \textbf{P}] Cl_4)$	S2
Visible Absorption Spectra of [P][PF ₆] ₄ , [P][PF ₆] ₃ and [H ₂ P][PF ₆] ₄ in MeCN	S3

Plasmid DNA Cleavage Assay

Cleavage reactions were carried out in a total volume of 20 μ L in 0.5 mL Eppendorf tubes in a 7 mM Na₃PO₄ buffer medium (pH 7) containing 2 μ L of supercoiled pUC18 DNA (1 μ g/1 μ L). Samples were prepared by first dissolving the DNA in 13 μ L buffer and then adding the GSH in 3 μ L and finally by adding [P]Cl₄ in 2 μ L. Final concentrations are indicated in the figure legends. In case of Figure 2, the same concentration of P⁴⁺(0.0128 mM) and Fe-Blm (0.0128 mM) were used with respect to the [DNA]. After incubation (times given in the figure captions), the DNA was precipitated by adding 2 μ L sodium acetate (pH 5.2) and 80 μ L ethanol followed by cooling overnight at -20 °C. The precipitated DNA was then dried for about 30 minutes and resuspended in 40 μ L of a storage buffer (e.g., 40 mM Tris-Cl, 1 mM EDTA at pH 8.0), 65 μ L deionized water and 12 μ L of a loading buffer (e.g., 30% glycerol in water with 0.1% w/v bromophenol blue). Samples were loaded on 1% agarose gel containing ethidium bromide (0.2 μ L/1 mL) and electrophoresed at 80 V for 90 minutes using TAE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8).


Anaerobic experiments were conducted in a glove box under a nitrogen atmosphere. All reagents and solutions, including pUC18 DNA, were subject to five freeze-pump-thaw cycles under N_2 prior to introduction to the glove box. Incubations were stopped by precipitating the DNA using 2 μ L of degassed sodium acetate at pH 5.2 and 80 μ L degassed ethanol under N_2 after which the samples were removed from the glove box and treated as the aerobic samples for further work-up. Control experiments established that no aerobic cleavage reactions are observed after the ethanol precipitation step.

Synthesis of [(phen)₂Ru(tatpp⁻)Ru(phen)₂][Cl]₃([P]Cl₃)

Complex $[\mathbf{P}](\mathrm{PF}_6)_4^{-1}$ (200 mg, 0.1 mmol) was dissolved in 100 mL of degassed acetonitrile under nitrogen inside the glove box. 19 mg (0.1 mmol) of cobaltocene (Alfa) dissolved in 3 mL of degassed acetonitrile was added and the solution stirred for 30 minutes. Slow addition of \sim 200mL of diethylether precipitated the product. The solid was filtered, washed with ether and dried under nitrogen. Yield 110 mg (60 %). The complex, $[\mathbf{P}](\mathrm{PF}_6)_3$, was converted to the chloride salt by dissolving in a minimum amount of acetone and then slow addition of a saturated solution of tetrabutylammonium chloride in acetone. The chloride salt cleanly precipitates and is filtered, washed with acetone and dried. The complex $[\mathbf{P}](\mathrm{PF}_6)_3$ was characterized by preparing a dilute solution (26 μ M) in degassed acetonitrile in an airtight 1 cm glass cuvette. The absorption spectrum was identical to that reported previously. (See Supporting figure S1)

Synthesis of [(phen)₂Ru(H₂tatpp)Ru(phen)₂][Cl]₄([H₂P]Cl₄)

Complex [**P**][PF₆]₄¹ (100 mg, 0.05 mmol) was dissolved in 5 mL of degassed MeCN inside the glove box. Ascorbic acid (0.5 mmol) was dissolved in a minimum amount of water and added to the MeCN solution and the resulting mixture stirred for 1 h at RT. Addition of a aqueous solution of NH₄PF₆ (10 mg/mL) caused the product to precipitate. The solution was filtered and the solid washed with water (~2 mL - 4 times) and then ether and dried in vacuo. Yield 80 mg (80%). ¹H NMR (δ , 500 MHz, MeCN-d₆). The sample required that a small amount of ascorbic acid be included in the NMR solution or the spectrum noticeably broadened presumably due to the formation of paramagnetic **P**³⁺: 9.39 (d, J = 7.0 Hz, 2H), 8.58-8.63 (m, J = 9.0 Hz, 5.9 Hz, 8H), 8.45 (d, J = 8.7 Hz, 2H), 8.26 (d, J = 4.1 Hz, 8H), 8.17 (d, J = 5.1 Hz, 2H), 8.06 (d, J = 4.6, Hz, 2H), 8.02 (d, J = 5.0 Hz, 2H), 7.99 (d, J = 4.1 Hz, 4H), 7.85 (d, J = 5.1 Hz, 2H), 7.69-7.60 (m, 10H), 7.56 (dd, J = 8.7Hz, 5.5Hz, 2H), 6.94 (s, 2H). The identity of the complex was further established by obtaining the absorption spectrum of [**H**₂**P**](PF₆)₄ (26 μ M) in degassed acetonitrile. The spectra shown in Figure S1 is the same as previously reported for [**H**₂**P**](PF₆)₄ generated in situ. ² The complex was converted to chloride salt with tetrabutylammonium chloride in acetone as described for [**P**]Cl₃.

Figure S1: Absorption Spectra of complex P^{4+} , P^{3+} and H_2P^{4+} in MeCN (PF₆ salts). Concentration for all species is 26 μ M.

REFERENCES

- 1) Kim, M.-J.; Konduri, R.; Ye, H.; MacDonnell, F. M.; Puntoriero, F.; Serroni, S.; Campagna, S.; Holder, T.; Kinsel, G.; Rajeshwar, R. *Inorg. Chem.* **2002**, *41*, 2471-2476.
- 2) Konduri, R.; de Tacconi, N. R.; Rajeshwar, K.; MacDonnell, F. M. *J. Am. Chem. Soc.* **2004**, *126*, 11621-11629.