Supporting Information

3 nm-Scale Molecular Switching between Fluorescent Coordination Capsule and Non-Fluorescent Cage

Koji Harano,[†] Shuichi Hiraoka,^{†,‡} and Mitsuhiko Shionoya*,[†]

 [†] Department of Chemistry, Graduate School of Science, The University of Tokyo Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
[‡] Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan

Contents

• Preparation of the $Hg_6 1_4$ (OTf) ₁₂ complex	·····page S2
• ESI-TOF mass spectrum of Hg_61_4 ·(OTf) ₁₂ complex (Figure S1)	·····page S2
• UV absorption changes of 1 at various [Hg ²⁺]/[1] ratios (Figure S2)	·····page S3
• ${}^{1}\text{H}-{}^{1}\text{H}$ COSY spectrum of Hg ₆ 1 ₄ ·(OTf) ₁₂ complex (Figure S3)	·····page S4
• ¹ H DOSY spectra of Hg ₆ 1 ₄ ·(OTf) ₁₂ and Hg ₆ 1 ₈ ·(OTf) ₁₂ complexes (Figure S4)	·····page S5
• ¹⁹ F NMR spectra of Hg_61_4 ·(OTf) ₁₂ and Hg_61_8 ·(OTf) ₁₂ complexes (Figure S5)	·····page S6
• ¹⁹ F DOSY spectrum of $Hg_6 1_4 \cdot (OTf)_{12}$ complex (Figure S6)	page S6
• Solution behavior of TfO ⁻ anions in Hg_61_8 ·(OTf) ₁₂ capsule	·····page S7
• ¹ H and ¹⁹ F DOSY spectra of $Zn_6 1_8$ ·(OTf) ₁₂ complex (Figure S7)	·····page S8
• Experimental details of the interconversion between Hg_61_8 and Hg_61_4	·····page S9
\bullet Comparison of coordination geometries of Hg^{2+} ions with $\mathrm{Hg}_{6}1_{4}$ cage	
(Figures S8 and S9)	·····page S9
• Stabilities of $Hg_6 1_8$ capsule and $Hg_6 1_4$ cage complexes in dilute solutionpage S10	
• Origins of the difference in fluorescence intensity of Hg_61_8 capsule and Hg_61_4 cage complexes (Figure S10)	······page S11

Preparation of the Hg₆1₄·(OTf)₁₂ complex

Synthetic procedure for disk-shaped ligand **1** was previously reported¹. Hg(OTf)₂ (0.9 mg, 1.8 μ mol, 1.5 eq) was added to a solution of **1** (1.0 mg, 1.2 μ mol) in CD₃CN (0.4 mL), and the mixture was kept standing at room temperature for 5 min. Its ¹H NMR spectrum showed the quantitative formation of Hg₆**1**₄·(OTf)₁₂ complex.

¹H NMR (500 MHz, CD₃CN, 293 K) δ 9.00 (s, 12 H), 8.67 (d, J = 5.6 Hz, 12H), 8.43 (d, J = 7.8 Hz, 12H), 7.95 (dd, J = 7.8, 5.6 Hz, 12H), 7.48 (d, J = 7.8 Hz, 12H), 7.38 (d, J = 7.7 Hz, 12H), 7.19 (d, J = 7.8 Hz, 12H), 7.19 (d, J = 7.7 Hz, 12H), 6.94 (d, J = 7.6 Hz, 12H), 6.89 (d, J = 7.3 Hz, 12H), 6.74 (d, J = 7.6 Hz, 24H), 6.73 (d, J = 7.3 Hz, 24H), 2.00 (s, 36H); ¹⁹F NMR (470 MHz, CD₃CN, 293 K) δ 85.3 (s, 36F); ESI-TOF Mass (CD₃CN) m/z = 1095.9 [Hg₆1₄·(OTf)₇]⁵⁺, 1407.4 [Hg₆1₄·(OTf)₈]⁴⁺, 1926.2 [Hg₆1₄·(OTf)₉]³⁺.

Figure S1. ESI-TOF mass spectrum of Hg₆1₄·(OTf)₁₂.

Figure S2. (a) UV absorption changes of **1** at various $[Hg^{2+}]/[1]$ ratios ([1] = 100 μ M, l = 1 mm, 293 K); $[Hg^{2+}]/[1] = 0 \sim 0.75$ (left) and 0.75 ~ 2.0 (right); (b) Plot of absorbance at 240, 264, 284, and 320 nm against the $[Hg^{2+}]/[1]$ ratio.

Figure S3. ¹H-¹H COSY spectrum of Hg₆1₄·(OTf)₁₂ (aromatic region only, 500 MHz, CD₃CN, 293 K)

Figure S4. ¹H DOSY spectra (500 MHz, CD₃CN, 293 K); (a) $Hg_61_4 \cdot (OTf)_{12}$ cage; (b) $Hg_61_8 \cdot (OTf)_{12}$ capsule.

Figure **S5.** ¹⁹F NMR spectra of Hg^{2+} complexes (470 MHz, CD₃CN, 293 K, C₆F₆ as internal standard); (a) $Hg_6\mathbf{1}_8 \cdot (OTf)_{12}$ capsule; (b) $Hg_6\mathbf{1}_4 \cdot (OTf)_{12}$ cage; (c) $Hg(OTf)_2$.

Figure S6. ¹⁹F DOSY spectrum of Hg_61_4 ·(OTf)₁₂ (470 MHz, CD₃CN, 293 K).

Solution behavior of TfO⁻ anions in Hg₆1₈·(OTf)₁₂ capsule

Firstly, an ¹⁹F DOSY measurement of the Hg_61_8 ·(OTf)₁₂ capsule was conducted at 293 K, but the diffusion coefficient of the TfO⁻ anions could not be determined due to the fast of exchange between two signals compared to the DOSY NMR timescale. By lowering temperature (243K or 263 K) to slow down the exchange rate, the TfO⁻ signals became sharpened, nevertheless any signals were not observed in ¹⁹F DOSY spectra.

However, the diffusion coefficients of counter anions in the $Zn_61_8 \cdot (OTf)_{12}$ capsule, which is structurally equivalent to the $Hg_61_8 \cdot (OTf)_{12}$ capsule, could be determined by ¹⁹F DOSY measurement due to the slower exchange between inside and outside TfO⁻ (Figure S7). The diffusion coefficient (*D*) of the TfO⁻ signal at the lower field (δ 85.9 ppm) was determined to be 2.8 $\times 10^{-10} \text{ m}^2 \text{s}^{-1}$, which is comparable to the Zn_61_8 capsule ($D = 4.2 \times 10^{-10} \text{ m}^2 \text{s}^{-1}$). This suggests that the signal at the lower field is assignable to the inner TfO⁻ anions, which are strongly bound to the capsule framework. In contrast, the diffusion coefficient of the signal at the upper field (δ 85.1 ppm) was $1.2 \times 10^{-9} \text{ m}^2 \text{s}^{-1}$, which is a meaningfully larger value than the signal at the lower field. Therefore, this signal is assignable to the outer TfO⁻ anions, indicative of intermolecular anion exchange with neighboring Zn-capsules in solution. In light of the structural similarity between the Hg₆1₈ and Zn₆1₈ capsules, the TfO⁻ anions of the Hg₆1₈ capsule would show similar solution behavior.

Figure **S7.** DOSY spectra of the Zn_61_8 ·(OTf)₁₂ capsule; (a) an ¹H DOSY spectrum (500 MHz, CD₃CN, 293 K); (b) an ¹⁹F DOSY spectrum (470 MHz, CD₃CN, 293 K).

Experimental details of the interconversion between Hg₆1₈ and Hg₆1₄

To a solution of $Hg_6I_8 \cdot (OTf)_{12}$ capsule complex (10 µM) in CH₃CN (3.5 mL) in a quartz cell, a solution (26.7 µL) of $Hg(OTf)_2$ (982 µM) in CH₃CN was added. After stirring the solution at room temperature for 5 min, its fluorescence spectrum was recorded. A solution of [2.2.2]-cryptand (1.29 mM) in CH₃CN (20.3 µL) was added to this solution and stirred for 5 min. And then, its fluorescence spectrum was recorded again. This cycle was repeated ten times. Reversible switching of fluorescence intensity during the interconversion is shown in Figure 3.

Comparison of coordination geometries of Hg²⁺ ions in Hg₆1₄ cage complexes

To clarify that the Hg^{2+} centers in $Hg_6\mathbf{1}_4$ cage are two-coordinate and coordinated by only two pyridine N donors, following NMR experiments were conducted.

(i) ¹⁹F DOSY measurement of Hg₆**1**₄·(OTf)₁₂ showed that the diffusion coefficient of the TfO⁻ anions is 9.1×10^{-10} m²s⁻¹, which is much larger than that of Hg₆**1**₄ cage obtained from the ¹H DOSY measurement ($D = 3.9 \times 10^{-10}$ m²s⁻¹). This result excludes the possibility of the coordination of the counteranions (TfO⁻) to the Hg²⁺ centers in Hg₆**1**₄.

(ii) Hg_61_4 capsule was prepared in non-deuterated CH_3CN and the solvent was removed under reduced pressure, and then Hg_61_4 complex was redissolved in CD_3CN . Its ¹H NMR spectrum showed the absence of the CH_3CN signal (Figure S7), indicating that CH_3CN molecules do not coordinate to the Hg^{2+} centers in Hg_61_4 and therefore could be removed by evaporation.

(iii) Hg₆**1**₄ capsule was prepared in CD₃CN dried over molecular sieves 3A (H₂O content \approx 80 ppm, ca. 1.6 H₂O molecules per Hg²⁺), and its NMR spectrum did not show any change compared to the spectrum of Hg₆**1**₄ in wet CD₃CN (H₂O content \approx 0.16%) (Figure S8). This result indicates that Hg₆**1**₄ cage can be formed even under the condition that there are less than two H₂O molecules per Hg²⁺ ions. It is thus concluded that H₂O molecules do not coordinate to the Hg²⁺ centers.

In light of these experimental results, no ligand other than two pyridyl groups coordinates to the Hg^{2+} ion in the cage complex and the Hg^{2+} centers may adopt a linear two-coordinate geometry.

Figure S8. ¹H NMR spectra of Hg₆1₄·(OTf)₁₂ ([1] = 3.0 mM, 500 MHz, CD₃CN, 293 K); (a) the sample directly prepared in CD₃CN; (b) the sample prepared in CH₃CN and redissolved in CD₃CN after evaporation of CH₃CN. No signal of CH₃CN (δ 1.96) was observed.

Figure S9. ¹H NMR spectra of Hg_61_4 ·(OTf)₁₂ ([1] = 3.0 mM, 500 MHz, CD₃CN, 293 K); H₂O content in CD₃CN: (a) 0.16% (32.7 H₂O per Hg²⁺); (b) 630 ppm (12.7 H₂O per Hg²⁺); (c) 80 ppm (1.6 H₂O per Hg²⁺). The spectra became slightly broadened with decreasing the H₂O content, which is ascribed to slightly excess Hg²⁺ in solution. When the amount of H₂O is decreased, hydration to the excess Hg²⁺ would become less effective, and thereby the Hg₆1₄ cage would interact with the Hg²⁺ ions.

Stabilities of Hg₆1₈ capsule and Hg₆1₄ cage complexes in dilute solution

Dilution experiments were performed for Hg_61_8 capsule and Hg_61_4 cage to survey their stability in CH₃CN solution. Judging from UV absorption change upon dilution, Hg_61_8 capsule were quantitatively formed when the concentration of 1 was higher than 20 μ M, and under this concentration, partial dissociation of the capsule complex was observed. In the case of Hg_61_4 cage, quantitative formation was confirmed when the concentration of 1 was higher than 5 μ M.

To evaluate fluorescence quantum yields of the Hg^{2+} complexes, highly dilute conditions are required to suppress the effect of self-absorption (generally, absorbance of the sample solution is set to be < 0.1). Actually, it is rather difficult to determine the fluorescence quantum yields because of effects of concentration-dependent self-absorption. In addition, the complexes are not stable at very low concentrations where the self-absorption is negligible.

Origins of the difference in fluorescence intensity of Hg₆1₈ capsule and Hg₆1₄ cage complexes

The fluorescence of ligand **1** is originated from 4-(3-pyridyl)phenyl moieties, and complexation with Hg^{2+} ions causes quenching of its emission, likely due to the heavy atom effect of Hg^{2+} ions. The quenching effect by the coordination of Hg^{2+} ions are supposed to be strengthened along with the increase of the $[Hg^{2+}]/[1]$ ratios. Unexpectedly, however, the fluorescence is strongly suppressed in $Hg_6\mathbf{1}_4$ cage so that almost no emission is observed, and this behavior cannot be explained simply by the change of the $[Hg^{2+}]/[1]$ ratios. The strong fluorescence quenching observed only in $Hg_6\mathbf{1}_4$ cage can be considered as the result of the dramatic change in coordination geometry of the Hg^{2+} ions (octahedral six-coordinate to linear two-coordinate), but detailed mechanism is not clear yet.

The difference in the flexibilities of the Hg^{2+} complexes also may account for the fluorescence switching phenomena. Hg_61_8 capsule has a highly rigid structure due to the close contacts of neighboring ligands, which suppresses radiationless deactivation *via* internal molecular motions. Actually, the fluorescence of Zn_61_8 capsule, in which the Zn^{2+} ions have no heavy atom effect, is more intense than that of free ligand 1 or Hg_61_8 capsule (Figure S9). In contrast, Hg_61_4 cage, which has four large openings, is more flexible and the fluorescence quenching by radiationless deactivation may be dominated. These results indicate the change of rigidity of ligand 1 by the interconversion between the capsule- and cage-shaped structures could effectively contribute for the fluorescence switching.

Figure S10. Fluorescence spectra ([1] = 10 μ M, CH₃CN, 293 K, $\lambda_{ex} = 284$ nm) of 1 (red), Hg₆1₈ capsule (blue), Zn₆1₈ capsule (green), and Hg₆1₄ cage (pink). A magnified spectrum of the Hg₆1₄ cage is shown in an inset. Numbers above each spectrum represent their absorption maxima (nm).

Reference

1. Hiraoka, S.; Harano, K.; Shiro, M.; Ozawa, Y.; Yasuda, N.; Toriumi, K.; Shionoya, M. Angew. Chem., Int. Ed. 2006, 45, 6488-6491.