A Disjoining Pressure Study of Foam Films Stabilized by Mixtures of Non-Ionic and Ionic Surfactants

Natalie Buchavzov ¹, Cosima Stubenrauch ²*

¹ Institut für Physikalische Chemie, Universität zu Köln, Luxemburger Str. 116, D-50939 Köln, Germany

² University College Dublin, School of Chemical and Bioprocess Engineering, Belfield, Dublin 4, Ireland

Supporting Information Available

In this study the cmc values for β - $C_{12}G_2$: $C_{12}TAB$ mixtures were experimentally obtained by measuring the respective σ -c curves. If α is the mole fraction of $C_{12}TAB$ in the solution, then the cmc of the mixture is predicted [1] to be

$$cmc_{mix} = \frac{1}{\frac{\alpha}{cmc(C_{12}TAB)} + \frac{(1-\alpha)}{cmc(C_{12}G_2)}}.$$
 (A1)

Eq.A1 is based on a very simple model, which assumes ideal mixing. Deviations from eq.A1 are only expected if there is a large interaction parameter associate with the system [1], which is not the case for cationic / non-ionic surfactant mixtures in general and for $C_{12}TAB$ (or $C_{12}TACl$) / β - $C_{12}G_2$ in particular [2,3]. The interaction parameter for the mixture of $C_{12}TAB$ and β - $C_{12}G_2$ was found to decrease from -1.54 to -0.43 with increasing amount of β - $C_{12}G_2$ indicating weak surfactant interaction and almost ideal behaviour especially at high β - $C_{12}G_2$ content [3]. In Fig.A1 the experimental cmc values of the surfactant mixtures as well as those calculated with eq.A1 are shown. As is seen, the β - $C_{12}G_2$ + $C_{12}TAB$ mixture can be treated as an ideal mixture which is in agreement with the results obtained by other authors (see Fig.5 in [3]).

Fig.A1: Comparison of experimental cmc values for the β -C₁₂G₂ + C₁₂TAB mixtures with those calculated by assuming ideal mixing of the components.

This information is available free of charge via the Internet at http://pubs.acs.org.

References

- [1] Rubingh, D.N. In *Solution Chemistry of Surfactants*; Mittal, K.L., Ed.; Plenum Press: New York, 1979; Vol.1, pp 337-354.
- [2] Rosen, M.J.; Sulthana, S.B. J. Colloid Interface Sci. 2001, 239, 528.
- [3] Zhang, R.; Zhang, L.; Somasundaran, P.J. Colloid Interface Sci. 2004, 278, 453.