Supporting Information

Nigricanosides A and B, Antimitotic Glycolipids Isolated from the Green Alga Avrainvillea Nigrans Collected in Dominica

David. E. Williams[†], Christopher M. Sturgeon[¶], Michel Roberge[¶]*, and Raymond J. Andersen[†]*

Departments of Chemistry and Earth & Ocean Sciences, University of British Columbia, Vancouver, B. C., CANADA, V6T 1Z1; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B. C., CANADA, V6T 1Z3

Table of contents

Pages SI-2				
to SI-3:	Experimental section			
	General Experimental Procedures			
	Algal material			
	Extraction of Avrainvillea nigricans and Isolation of Nigricanoside A and B			
	Dimethyl Esters (3 and 4)			
	Preparation of Hydronigricanoside Dimethyl Ester			
Pages SI-4	1 12			
to SI-5:	Table 1. ¹ H and ¹³ C NMR Data for Nigricanoside A & B Dimethyl Esters (3 & 4) recorded in 540 μ L of 25:2 C ₆ D ₆ /DMSO-d ₆ .			
Page SI-6:	¹ H NMR Spectrum of Nigricanoside A Dimethyl Ester (3) recorded at 600 MHz in $25:2 \text{ C}_6\text{D}_6/\text{DMSO-}d_6$.			
Page SI-7:	¹³ C NMR Spectrum of Nigricanoside A Dimethyl Ester (3) recorded at 150 MHz in 25:2 $C_6D_6/DMSO-d_6$.			
Page SI-8:	gradCOSY60 NMR Spectrum of Nigricanoside A Dimethyl Ester (3) recorded at 600 MHz in 25:2 C_6D_6 /DMSO- d_6 .			
Page SI-9:	gradHSQC NMR Spectrum of Nigricanoside A Dimethyl Ester (3) recorded at 600 MHz in 25:2 C_6D_6 /DMSO- d_6 .			
Page SI-10:	gradHMBC NMR Spectrum of Nigricanoside A Dimethyl Ester (3) recorded at 600 MHz in 25:2 C_6D_6 /DMSO- d_6 .			
Page SI-11:	ROESY NMR Spectrum of Nigricanoside A Dimethyl Ester (3) recorded at 600 MHz in 25:2 C_6D_6 /DMSO- d_6 .			
Page SI-12:	¹ H NMR Spectrum of Nigricanoside B Dimethyl Ester (4) recorded at 600 MHz in $25:2 C_6 D_6 / DMSO - d_6$.			
Page SI-13:	¹³ C NMR Spectrum of Nigricanoside B Dimethyl Ester (4) recorded at 150 MHz in $25:2 C_6 D_6 / DMSO - d_6$.			
Page SI-14:	gradCOSY60 NMR Spectrum of Nigricanoside B Dimethyl Ester (4) recorded at 600 MHz in 25:2 C_6D_6 /DMSO- d_6 .			
Page SI-15:	gradHSQC NMR Spectrum of Nigricanoside B Dimethyl Ester (4) recorded at 600 MHz in 25:2 C_6D_6 /DMSO- d_6 .			
Page SI-16:	gradHMBC NMR Spectrum of Nigricanoside B Dimethyl Ester (4) recorded at 600 MHz in $25:2 C_6 D_6$ /DMSO- d_6 .			
Page SI-17:	ROESY NMR Spectrum of Nigricanoside B Dimethyl Ester (4) recorded at 600 MHz in 25:2 $C_6D_6/DMSO-d_6$.			

Experimental Section

General Experimental Procedures. Optical rotations were measured using a Jasco P-1010 Polarimeter with sodium light (589 nm). The ¹H and ¹³C NMR spectra were recorded on a Bruker AV-600 spectrometer with a 5 mm CPTCI cryoprobe. ¹H chemical shifts are referenced to the residual C_6D_6 signal (δ 7.15 ppm) and ¹³C chemical shifts are referenced to the C_6D_6 solvent peak (δ 128.0 ppm). Low and high resolution ESI-QIT-MS were recorded on a Bruker-Hewlett Packard 1100 Esquire–LC system mass spectrometer. Merck Type 5554 silica gel plates and Whatman MKC18F plates were used for analytical thin layer chromatography. Reversed-phase HPLC purifications were performed on a Waters 600E System Controller liquid chromatography attached to a Waters 996 Photodiode Array Detector. All solvents used for HPLC were Fisher HPLC grade.

Algal Material. Specimens of the green algae *Avrainvillea nigricans* Ducaisne were collected by hand using SCUBA in Prince Rupert Bay, Portsmouth, Commonwealth of Dominica at a depth of 25 m. The algal specimens were immediately frozen and transported frozen to Vancouver, Canada. A voucher specimen (ref. no. 04-307) is deposited at the Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, Canada.

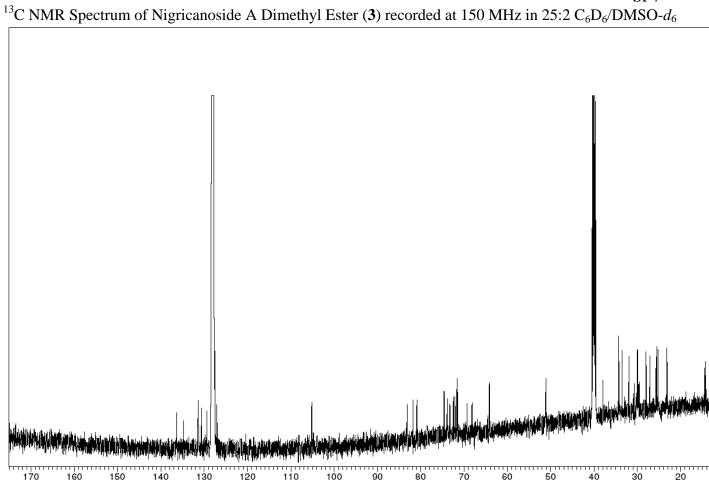
Extraction of Avrainvillea nigricans and Isolation of Nigricanoside A and B Dimethyl Esters (3 and 4). The thawed Avrainvillea nigricans (wet weight: 27.8 kg, dried extracted weight: 3.859 kg) was cut into small pieces, immersed in and subsequently extracted repeatedly with MeOH (3 x 30 L) at room temperature. The combined MeOH extracts were concentrated *in vacuo* and the resultant green oil was then partitioned between EtOAc (4 x 2000 mL) and H_2O (5.0 L). The combined EtOAc extract was evaporated to dryness and then extracted between hexanes (4 x 800 mL) and 4:1 MeOH/H₂O (2500 mL). The ratio of the methanolic extract was adjusted to 2:1 MeOH/H₂O (for a total of 3000 mL) and extracted with CH₂Cl₂ (4 x 1000 mL). The CH₂Cl₂ extracts were combined and evaporated to dryness to give 17.1 g of a potently active antimitotic amorphous green solid. To facilitate the ease of isolation the CH₂Cl₂ extract was methylated at this stage. Hence, the active material was treated with diazomethane that was generated *in-situ* by the addition of 30 mL of 2.0 M trimethylsilyldiazomethane in hexanes to 30 mL of anhydrous MeOH in 80 mL of C₆H₆. The reaction mixture was left stirring for 16 hours at room temperature. After evaporation of the reagents the sample was fractionated with Si gel flash chromatography employing a step gradient from 95:5 hexanes/EtOAc to MeOH. The fraction (750.7 mg) eluting with 1:3 MeOH/EtOAc elicited biological activity and was further fractionated on Sephadex LH-20 using 4:1 MeOH/CH₂Cl₂ as eluent. An early eluting potently active antimitotic fraction (206.0 mg) was obtained that was fractionated using reversed-phase Si gel flash chromatography employing a step gradient from 1:1 MeOH/H₂O to MeOH with a final CH₂Cl₂ wash. A 49.1 mg fraction, eluting with 3:2-4:1 MeOH/H₂O, elicited activity. Pure nigricanoside A dimethyl ester (4) (0.8 mg) and nigricanoside B dimethyl ester (4) (0.4 mg) were obtained from this mixture via C₁₈ reversed-phase HPLC using a CSC-Inertsil 150A/ODS2, 5 µm 25 x 0.94 cm column, with 9:11 MeCN/H₂O as eluent.

Nigricanoside A Dimethyl Ester (**3**): Isolated as a clear oil; $[\alpha]^{25}_{D}$ -42 (c 0.24, CH₂Cl₂); ¹H NMR, see Table 1; ¹³C NMR, see Table 1; positive ion HRESIMS [M+Na]⁺ *m/z* 923.5323 (calcd for C₄₇H₈₀O₁₆Na, 923.5344).

Nigricanoside B Dimethyl Ester (**4**): Isolated as a clear oil; $[\alpha]^{25}_{D}$ -34 (c 0.20, CH₂Cl₂); ¹H NMR, see Table 1; ¹³C NMR, see Table 1; positive ion HRESIMS [M+Na]⁺ *m/z* 921.5186 (calcd for C₄₇H₇₈O₁₆Na, 921.5188).


Hydronigricanoside Dimethyl Ester: Isolated as a clear oil; positive ion HRESIMS $[M+Na]^+ m/z$ 933.6126 (calcd for C₄₇H₉₀O₁₆Na, 933.6127).

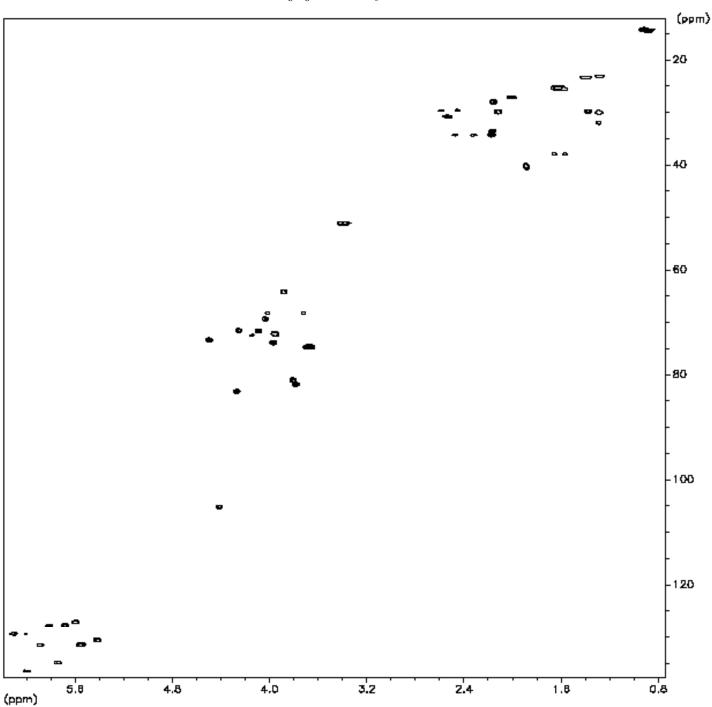
	recorded in 540 µ	L OF 25:2		
	1 ^a		2 ^a	
Atom #	$^{1}\mathrm{H}\left(\delta\right)$	¹³ C (δ)	$^{1}\mathrm{H}\left(\delta\right)$	¹³ C (δ)
1		173.5		173.4
2	2.17	34.16	2.17 t <i>J</i> =7.4 Hz	34.16
	2.17		2.17 t <i>J</i> =7.4 Hz	
3	1.62	25.36	1.62	25.37
	1.62		1.62	
4	1.45 m	25.56	1.44 m	25.56
	1.53 m		1.54	
5	1.56 m	37.84	1.57	37.81
	1.65		1.65	
6	4.25	71.46	4.26	71.49
7	6.00 dd <i>J</i> =15.5,5.5 Hz	136.29	6.01 dd <i>J</i> =15.7,5.2 Hz	136.29
8	6.11 dd <i>J</i> =15.5,6.4 Hz	129.34	6.12 dd <i>J</i> =15.7,6.6 Hz	129.34
9	4.50 m	73.17	4.51	73.15
10	3.78 m	81.74	3.80	81.70
11	2.45 m	29.45	2.46 m	29.44
	2.58 m		2.59 m	
12	5.68 m	127.52	5.69 m	127.55
13	5.55 m	131.32 ¹	5.56	131.55
14	2.12 ddd <i>J</i> =7.4,7.4,7.4 Hz	29.87	2.12 ddd <i>J</i> =7.4,7.4,7.4 Hz	29.88
	2.12 ddd <i>J</i> =7.4,7.4,7.4 Hz		2.12 ddd <i>J</i> =7.4,7.4,7.4 Hz	
15	1.40 qdd <i>J</i> =7.4,7.4,7.4 Hz	23.16	1.40 qdd <i>J</i> =7.4,7.4,7.4 Hz	23.18
	1.40 qdd <i>J</i> =7.4,7.4,7.4 Hz		1.40 qdd <i>J</i> =7.4,7.4,7.4 Hz	
16	0.92 t <i>J</i> =7.4 Hz	14.11	0.93 t <i>J</i> =7.4 Hz	14.12
1-0 <u>Me</u>	3.41 s	51.10	3.41 s	51.10
6-0 <u>H</u>	4.55 d <i>J</i> =4.5 Hz		4.49 d <i>J</i> =4.1 Hz	
9-0 <u>H</u>	5.06 d <i>J</i> =4.6 Hz		5.04 t <i>J</i> =4.8 Hz	
1'		173.6		173.5
2'	2.16	33.38	2.16 t <i>J</i> =6.5 Hz	33.38
	2.16		2.16 t <i>J</i> =6.5 Hz	
3'	1.62	25.05	1.62	25.05
	1.62		1.62	
4'	2.01 ddd <i>J</i> =7.4,7.4,7.4 Hz	26.98	2.00 ddd <i>J</i> =7.4,7.4,7.4 Hz	26.99
5'	5.41 m	130.52	5.41	130.58
6'	5.59 m	126.99	5.59 m	126.97
7'	2.32 m	34.16	2.32 m	34.16
	2.48		2.47	
8'	3.80	80.84	3.81	80.83
9'	5.74 dd <i>J</i> =15.7,7.6 Hz	134.70	5.74 dd <i>J</i> =15.7,7.6 Hz	134.78
10'	5.88 dd <i>J</i> =15.7,7.5 Hz	131.34 ¹	5.88 dd <i>J</i> =15.7,7.4 Hz	131.35

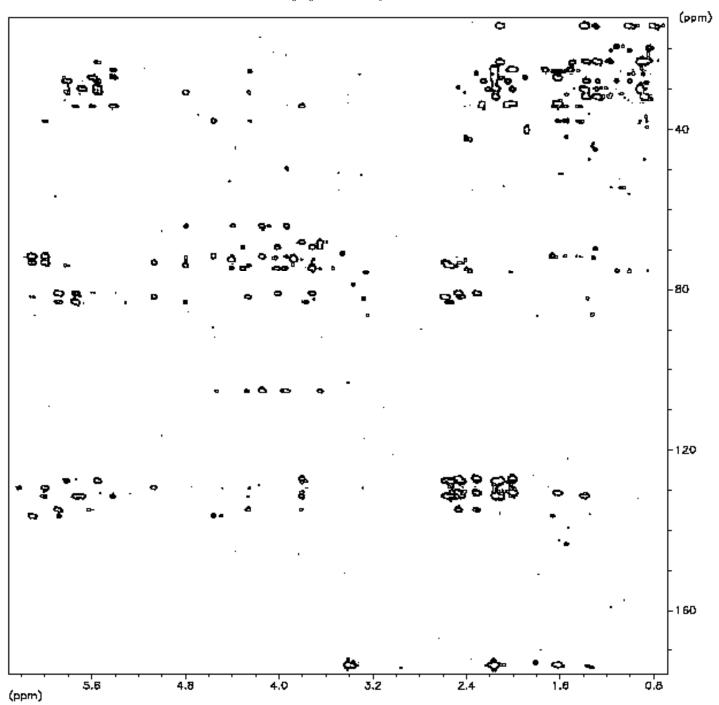

Table 1. ¹H and ¹³C NMR Data for Nigricanoside A & B Dimethyl Esters (**3** & **4**) recorded in 540 μL of 25:2 C₆D₆/DMSO-d₆

11'	4.26	83.08	4.27	83.02
11				73.76
	3.96	73.84	3.97	
13'	2.53	30.66	2.53 m	30.63
1.4.2	2.53	107.55	2.58 m	100.04
14'	5.81 m	127.55	5.82 m	128.04
15'	5.55 m	131.27	5.55	129.52
16'	2.15	27.85	2.95 t <i>J</i> =7.0 Hz	26.22
	2.15		2.95 t <i>J</i> =7.0 Hz	
17'	1.29	29.77	5.46 m	127.90
	1.38			
18'	1.29	31.84	5.43	132.00
	1.29			
19'	1.29	22.95	2.07 qd <i>J</i> =7.3,7.3 Hz	20.93
	1.29		2.07 qd <i>J</i> =7.3,7.3 Hz	
20'	0.88 bt <i>J</i> =7.0 Hz	14.31	0.94 t <i>J</i> =7.3 Hz	14.29
1'-O <u>Me</u>	3.37 s	51.0	3.37 s	51.00
12'-О <u>Н</u>	4.79 d <i>J</i> =5.7 Hz		4.80 d <i>J</i> =5.8 Hz	
1"	4.41 d <i>J</i> =7.7 Hz	105.11	4.41 d <i>J</i> =7.7 Hz	105.10
2"	3.95	71.98	3.97	72.04
3"	3.69 m	74.50^2	3.69 m	74.51
4"	4.03 m	69.22	4.04 m	69.25
5"	3.65 bt <i>J</i> =6.1 Hz	74.51 ²	3.65 bt <i>J</i> =6.0 Hz	74.51
6"	3.72 dd <i>J</i> =9.6,6.1 Hz	68.06	3.73 dd <i>J</i> =9.3,6.0 Hz	68.03
	4.01 dd <i>J</i> =9.6,6.1 Hz		4.02 dd <i>J</i> =9.3,6.0 Hz	
2"-OH	5.26 bs		5.24 bs	
	4.68 bs		4.63 bs	
	4.30 d <i>J</i> =3.8 Hz		4.27	
1""	3.94 dd <i>J</i> =10.4,4.0Hz	72.40	3.94 dd <i>J</i> =10.6,3.8 Hz	72.41
	4.14 dd <i>J</i> =10.4,5.6 Hz	-	4.15 dd <i>J</i> =10.6,5.6 Hz	
2""	4.09 m	71.58	4.09 m	71.58
3""	3.88 m	64.07	3.88 m	64.09
	3.88 m		3.88 m	
2 ["] -O <u>H</u>	4.79 d <i>J</i> =5.7 Hz		4.77 d <i>J</i> =5.5 Hz	
3 ["] -OH	4.39 m		4.33 t <i>J</i> =5.9 Hz	
<u> </u>				

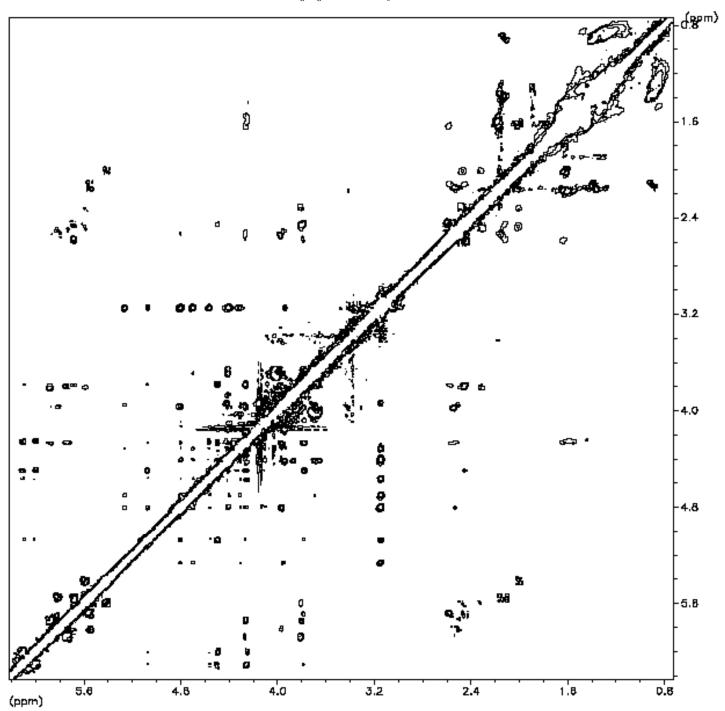
^{1,2}Assignments within a column are interchangeable

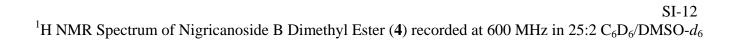


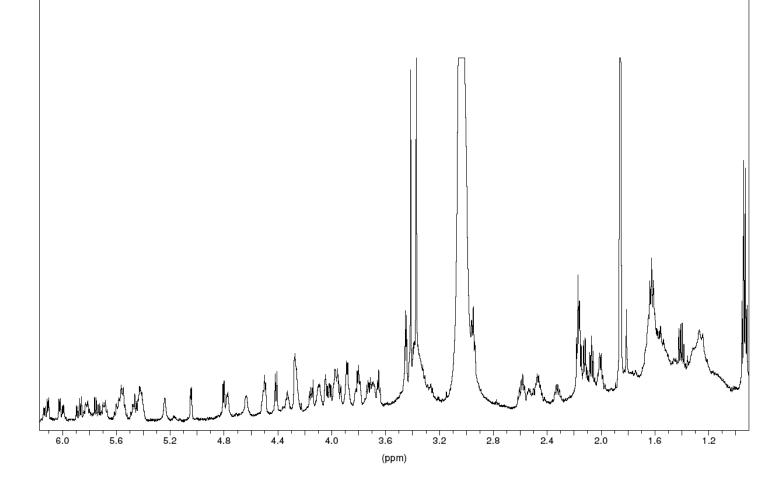

¹H NMR Spectrum of Nigricanoside A Dimethyl Ester (**3**) recorded at 600 MHz in 25:2 C₆D₆/DMSO-d₆

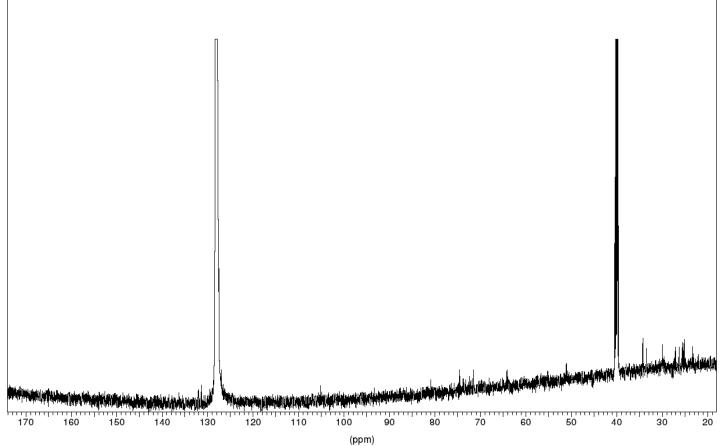


gradCOSY60 NMR Spectrum of Nigricanoside A Dimethyl Ester (3) recorded at 600 MHz in 25:2 $C_6D_6/DMSO-d_6$

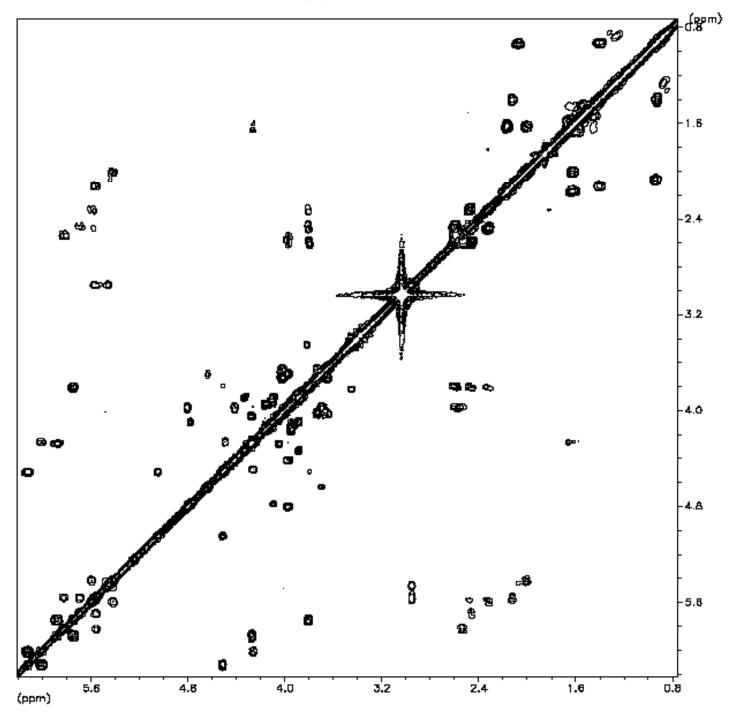


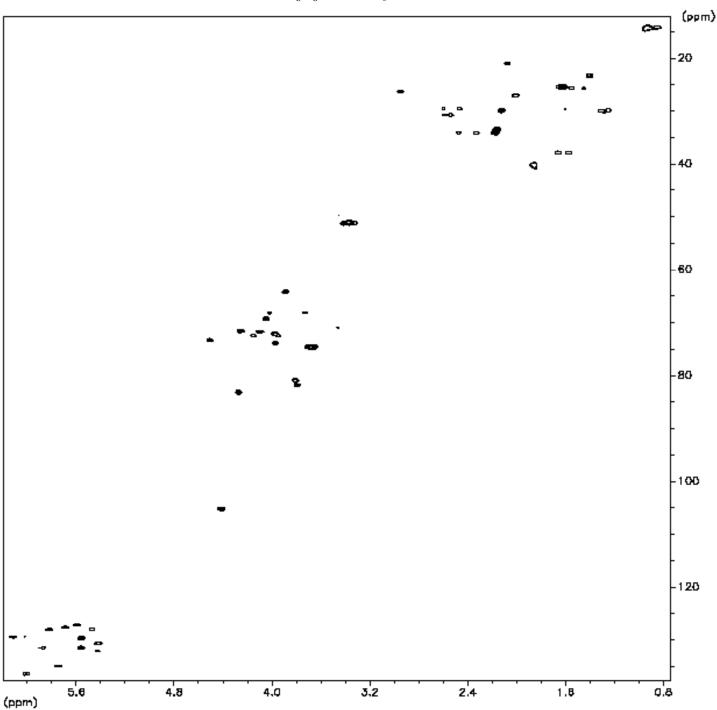

gradHSQC NMR Spectrum of Nigricanoside A Dimethyl Ester (3) recorded at 600 MHz in 25:2 $C_6D_6/DMSO-d_6$

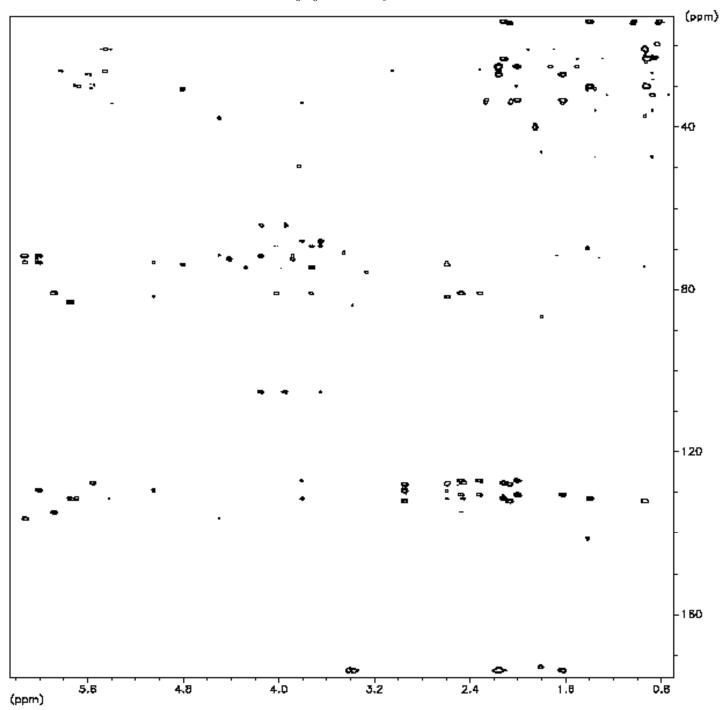



gradHMBC NMR Spectrum of Nigricanoside A Dimethyl Ester (3) recorded at 600 MHz in 25:2 $C_6D_6/DMSO-d_6$

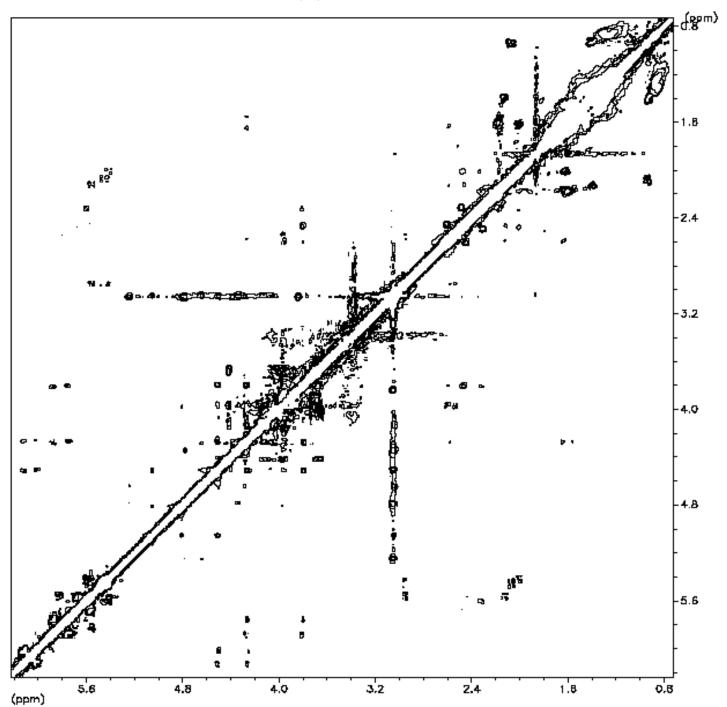
ROESY NMR Spectrum of Nigricanoside A Dimethyl Ester (3) recorded at 600 MHz in 25:2 $C_6D_6/DMSO-d_6$







gradCOSY60 NMR Spectrum of Nigricanoside B Dimethyl Ester (4) recorded at 600 MHz in 25:2 $C_6D_6/DMSO-d_6$



gradHSQC NMR Spectrum of Nigricanoside B Dimethyl Ester (4) recorded at 600 MHz in 25:2 $C_6D_6/DMSO-d_6$

gradHMBC NMR Spectrum of Nigricanoside B Dimethyl Ester (4) recorded at 600 MHz in 25:2 $C_6D_6/DMSO-d_6$

ROESY NMR Spectrum of Nigricanoside B Dimethyl Ester (4) recorded at 600 MHz in 25:2 $C_6D_6/DMSO-d_6$