A New Construction of 2-Alkoxypyrans by an AcylationReductive Cyclization Sequence

Lars V. Heumann, Gary E. Keck*

Department of Chemistry, University of Utah, 315 South 1400 East RM 2020
Salt Lake City, Utah, 84112-0850
keck@chemistry.utah.edu

Table of Contents

General Experimental Procedures, Materials, and Instrumentation SI_2
Compounds and Numbering in Supporting Information SI 5
Experimental Procedures and Analytical Data SI_8
Representative procedure for the Catalytic Asymmetric Allylation SI_9
Representative Procedure for the Finkelstein Reaction SI_12
Preparation of 0.1 M SmI ${ }_{2}$ Stock Solution SI_13
Representative Procedure for the SmI_{2} Promoted Cyclization SI 14
Hydrolysis of a 2-Methoxypyran with Water and PPTs SI_17
References SI 71
NMR Spectra SI 72

General Experimental Procedures, Materials, and Instrumentation: Solvents were purified according to the guidelines in Purification of Common Laboratory Chemicals. ${ }^{1}$ Diisopropylamine, triethylamine, pyridine, Hünig's base, EtOAc and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled from CaH_{2}. The titer of n-butyllithium was determined by the method of Eastham and Watson. ${ }^{2}$ All other reagents were used without further purification. Yields were calculated for material judged homogenous by thin layer chromatography and nuclear magnetic resonance (NMR). Thin layer chromatography was performed on Merck Kieselgel $60 \mathrm{~F}_{254}$ plates eluting with the solvent indicated, visualized by a 254 nm UV lamp, and stained with an ethanolic solution of 12-molybdophosphoric acid or 4anisaldehyde solution. Glassware for reactions was oven dried at $125^{\circ} \mathrm{C}$ and cooled under a dry atmosphere prior to use. Liquid reagents and solvents were introduced by oven dried syringes through septum-sealed flasks under a nitrogen atmosphere. Column flash chromatography was performed with Silicycle Grade $70-230$ mesh, $60-200 \mu \mathrm{~m}$, $60 \AA$ silica gel, slurry packed with $1 \% \mathrm{EtOAc} /$ hexanes in glass columns. Preparative thin layer chromatography was performed on Analtech Inc. Silica Gel GF $20 \mathrm{~cm} \times 20 \mathrm{~cm} \times$ $2000 \mu \mathrm{~m}$ plates or on Merck Kieselgel $60 \mathrm{~F}_{254} 20 \mathrm{~cm} \times 20 \mathrm{~cm} \times 250 \mu \mathrm{~m}$ plates. Nuclear magnetic resonance spectra were acquired on a Varian VXR-500 spectrometer or a Varian Inova- 500 spectrometer 500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$. Prior to use, CDCl_{3} was filtered through a plug of Fisher Scientific $80-200$ mesh Alumina Adsorption stored at $110{ }^{\circ} \mathrm{C}$. Chemical shifts for proton nuclear magnetic resonance $\left({ }^{1} \mathrm{H}\right.$ NMR) spectra are reported in parts per million relative to the signal of tetramethylsilane at 0 ppm , relative to the signal of residual CHCl_{3} at 7.27 ppm , or relative to the signal of residual $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}$ at 7.16 ppm . Chemicals shifts for carbon nuclear magnetic resonance
(${ }^{13} \mathrm{C}$ NMR and DEPT) spectra are reported in parts per million relative to the signal of tetramethylsilane at 0 ppm , relative to the center line of the CDCl_{3} triplet at 77.23 ppm , or relative to the center line of the $\mathrm{C}_{6} \mathrm{D}_{6}$ triplet at 128.62 ppm . Chemical shifts of the unprotonated carbons ('C') for DEPT spectra were obtained by comparison with the ${ }^{13} \mathrm{C}$ NMR spectrum. The abbreviations $\mathrm{s}, \mathrm{bs}, \mathrm{d}$, dd, ddd, dddd, $\mathrm{t}, \mathrm{td}, \mathrm{tt}, \mathrm{q}, \mathrm{dq}, \mathrm{dqd}$, ddq, qdd, qq , and m stand for the resonance multiplicity singlet, broad singlet, doublet, doublet of doublets, doublet of doublet of doublets, doublet of doublet of doublet of doublets, triplet, triplet of doublets, triplet of triplets, quartet, doublet of quartets, doublet of quartet of doublets, doublet of doublet of quartets, quartet of doublet of doublets, quartet of quartets, and multiplet, respectively. IR spectra were obtained from a Mattson FT-IR GL-3020 spectrometer, a Perkin Elmer FT-IR Paragon 1000 PC spectrometer, or a Bruker Tensor 27 FT-IR spectrometer. Melting points were obtained using a Mel-Temp electrochemical melting point apparatus and are uncorrected. Optical rotations were obtained on a Perkin Elmer Model 343 polarimeter (Na D line) using a microcell with 1 dm path length. Specific rotations $\left([\alpha]_{\mathrm{D}}^{20}\right.$, Unit: $\left.{ }^{\circ} \mathrm{cm}^{2} / \mathrm{g}\right)$ are based on the equation $\alpha=$ $(100 \cdot \alpha) /(l \cdot c)$ and are reported as unitless numbers where the concentration c is in $\mathrm{g} / 100$ mL and the path length l is in decimeters. Elemental analyses were performed by Atlantic Microlabs, Inc., Norcross, GA. Mass spectrometry was performed at the mass spectrometry facility of the Department of Chemistry at The University of Utah on a Finnigan MAT 95 double focusing high resolution mass spectrometer or at the mass spectrometry facility of the Department of Chemistry at the University of California, Riverside on an Agilent LCTOF mass spectrometer. Glassware for reactions was oven dried at $125{ }^{\circ} \mathrm{C}$ and cooled under a dry atmosphere prior to use. Liquid reagents and
solvents were introduced by oven dried syringes through septum-sealed flasks under a nitrogen atmosphere. Compounds were named using AutoNom 2000 for the MDL ISIS $^{\mathrm{Tm}} /$ Draw 2.5.

Compounds and Numbering in Supporting Information:

Compounds and Numbering in Supporting Information (cont.):

Compounds and Numbering in Supporting Information (cont.):

Experimental Procedures and Analytical Data:

$\mathrm{Bu}_{3} \mathrm{Sn}-\mathbf{H}$ Preparation of tributyltin hydride S1. ${ }^{3,4}$ A stirring solution of LiAlH_{4} (28.0 g, $737 \mathrm{mmol}, 2.00 \mathrm{eq})$ and $\mathrm{Et}_{2} \mathrm{O}(1000 \mathrm{~mL}, 0.2 \mathrm{M})$ in a 2000 mL three-neck roundbottom flask equipped with an efficient reflux condenser, mechanical stirrer and 500 mL addition funnel was heated at reflux. Using the addition funnel, $\mathrm{Bu}_{3} \mathrm{SnCl}(100 \mathrm{~mL}, 367$ $\mathrm{mmol}, 1.00 \mathrm{eq}$) was slowly added over a period of 45 min . After completion of the addition the mixture was kept at reflux for 1.5 h , cooled to room temperature and filtered through a plug of Celite ${ }^{\circledR}$. The filtrate was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4} \bullet 12 \mathrm{H}_{2} \mathrm{O}$ was slowly added in portions until the evolution of gas subsides. The mixture was filtered through a plug with each a 2 cm layer of MgSO_{4}, Celite ${ }^{\circledR}$ and sand, and the filtrate was concentrated under reduced pressure. The residue was purified by distillation from a 500 mL round-bottom flask with boiling chips using a distillation head with a $3 \times 10 \mathrm{~cm}$ Vigreux-column giving $\mathrm{Bu}_{3} \mathrm{SnH} \mathbf{S 1}(91 \mathrm{~g}, 313 \mathrm{mmol}, 85 \%)$ as a clear colorless liquid: bp $70{ }^{\circ} \mathrm{C} / 0.20$ torr, $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.09-5.05(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 6 \mathrm{H})$, $1.39-1.31(\mathrm{~m}, 6 \mathrm{H}), 0.97-0.89(\mathrm{~m}, 15 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 30.9$ (3), 28.1 (3), 14.5 (3), 9.0 (3).
$\mathrm{Bu}_{3} \mathrm{Sn} \underbrace{}_{\text {Preparation of tributyl-(2-chloromethyl-allyl)-stannane S2. }}{ }^{5}$ To а solution of $(i-\operatorname{Pr})_{2} \mathrm{NH}(11.5 \mathrm{~mL}, 82.1 \mathrm{mmol}, 1.00 \mathrm{eq})$ and THF ($191 \mathrm{~mL}, 0.43 \mathrm{M}$ relative to $(i-\mathrm{Pr})_{2} \mathrm{NH}$ in a 500 mL round-bottom flask at $0^{\circ} \mathrm{C}$ was added n - $\mathrm{BuLi}(2.60 \mathrm{M}$ solution in hexanes, $31.6 \mathrm{~mL}, 82.1 \mathrm{mmol}, 1.00 \mathrm{eq})$. After $30 \mathrm{~min} \mathrm{Bu}_{3} \mathrm{SnH} \mathbf{S} 1(19.9 \mathrm{~mL}, 73.9$ $\mathrm{mmol}, 0.90 \mathrm{eq}$) was slowly added. After 30 min this solution was cooled to $-78^{\circ} \mathrm{C}$ and
then added to a mixture of 3-chloro-2-chloromethyl-1-propene (10.3 g, $82.1 \mathrm{mmol}, 1.00$ eq), TBAI ($97 \mathrm{mg}, 0.26 \mathrm{mmol}, 3.2 \times 10^{-3} \mathrm{eq}$) and hexanes ($342 \mathrm{~mL}, 0.24 \mathrm{M}$ relative to the dichloride) in a 1000 mL round-bottom flask at $-78^{\circ} \mathrm{C}$. After 2.5 h the murky solution was added to a vigorously stirred mixture of pH 7 sodium potassium phosphate buffer ($0.05 \mathrm{M}, 400 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The organic phase was washed with water $(2 \times$ 100 mL), brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by fractional distillation using a 250 mL roundbottom flask with boiling chips using a distillation head with a $2 \times 7 \mathrm{~cm}$ column to give tributyl-(2-chloromethyl-allyl)-stannane S2 (20 g, $53 \mathrm{mmol}, 64 \%)$ as a clear colorless liquid: bp $100{ }^{\circ} \mathrm{C}, 0.25 \mathrm{~mm} \mathrm{Hg} ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.85(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.72(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 2 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.35-1.30(\mathrm{~m}$, $6 \mathrm{H}), 0.95-0.88(\mathrm{~m}, 15 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 145.9,110.1,50.4,29.3$ (3), 27.6 (3), 16.1, 13.9 (3), 9.9 (3).

Representative Procedure for the Catalytic Asymmetric Allylation:

Preparation of (R)-5-chloromethyl-1-phenyl-hex-5-en-3-ol
S3. ${ }^{5}$ To a 50 mL round-bottom flask were added oven dried $4 \AA$ molecular sieves (890 $\mathrm{mg}, 400 \mathrm{mg} / \mathrm{mmol}$ of aldehyde), (S)-BINOL ($140 \mathrm{mg}, 0.489 \mathrm{mmol}, 0.22 \mathrm{eq}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($8.90 \mathrm{~mL}, 0.25 \mathrm{M}$), titanium(IV) isopropoxide (1.00 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 245 \mu \mathrm{~L}, 245$ $\mu \mathrm{mol}, 0.11 \mathrm{eq}$) and trifluoroacetic acid (freshly prepared 0.10 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 78$ $\left.\mu \mathrm{L}, 7.7 \mu \mathrm{~mol}, 3.5 \times 10^{-3} \mathrm{eq}\right)$. The flask was equipped with a reflux condenser, and the red-brown mixture was heated at $40{ }^{\circ} \mathrm{C}$. After 2 h the mixture was cooled to room
temperature and the reflux condenser exchanged for a rubber septum. Hydrocinnamaldehyde ($293 \mu \mathrm{~L}, 2.23 \mathrm{mmol}, 1.00 \mathrm{eq}$) was added, the mixture stirred for 30 min and then cooled to $-78^{\circ} \mathrm{C}$. Tributyl-(2-chloromethyl-allyl)-stannane S2 (959 $\mu \mathrm{L}$, $2.89 \mathrm{mmol}, 1.30 \mathrm{eq})$ was added, the mixture stirred for 30 min and the flask placed in a freezer at $-20^{\circ} \mathrm{C}$. After 72 h the mixture was removed from the freezer, and a saturated aqueous NaHCO_{3} solution (15 mL) was added. The mixture was stirred for 30 min , allowed to settle and then filtered through a plug of Celite ${ }^{\circledR}$. The organic phase was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with water $(2 \times 25 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, and purified by flash chromatography on a $4.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $2.5 \%(600 \mathrm{~mL})$ through $5 \%(1500 \mathrm{~mL}), 7.5 \%(1000 \mathrm{~mL})$ and 10% EtOAc/hexanes (1000 mL). The eluant was collected in 30 mL portions and the product containing fractions (30 to 67) were concentrated and combined to give alcohol S3 (435 $\mathrm{mg}, 1.94 \mathrm{mmol}, 87 \%$) as a clear colorless liquid. The ratio of enantiomers was determined to be er $>99: 1$ (using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, er $=48: 52$) by HPLC analysis using a Daicel Chiralcel OD-H silica column, eluting with a mobile phase of 6\% 2propanol/hexanes and a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$, which gave the retention times for the minor and major enantiomers of 20.1 and 30.1 min , respectively, detecting with a Rainin Dynamax Refractive Index Detector Model RI-1: $\mathrm{R}_{f} 0.36$ (25\% EtOAc/hexanes); $[\alpha]_{D}^{20}$ $+6.1\left(c=1.065, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.33-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H})$, $5.10,(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{bs}, 1 \mathrm{H}), 2.85(\mathrm{~m}$, 1H), 2.73 (m, 1H), 2.49 (dd, $J=14.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=14.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-$ $1.78(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 1 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.4,142.0,128.7(2), 128.6$
(2), 126.1, 117.9, 69.1, 48.4, 41.8, 39.1, 32.3; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 117.9$, 48.4, 41.8, 39.1, 32.3. CH: 128.7 (2), 128.6 (2), 126.1, 69.1. C: 142.4, 142.0; IR (neat) 3562,3406 (broad), 1643, 1602, 1495, 1453, 1258, 1074, 1053, 1030, 912, 748, $699 \mathrm{~cm}^{-1}$;

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClO}: \mathrm{C}, 69.48 ; \mathrm{H}, 7.62$. Found: C, $69.39 ; \mathrm{H}, 7.55$.

Preparation of propionic acid-(R)-3-chloromethyl-1-
phenethyl-but-3-enyl ester S4. To stirring solution of alcohol S3 $87.1 \mathrm{mg}, 0.388$ $\mathrm{mmol}, 1.00 \mathrm{eq})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}, 0.20 \mathrm{M})$ in a 15 mL round-bottom flask at $0{ }^{\circ} \mathrm{C}$ were added pyridine ($110 \mu \mathrm{~L}, 1.36 \mathrm{mmol}, 3.50 \mathrm{eq}$), DMAP ($5.0 \mathrm{mg}, 3.9 \mu \mathrm{~mol}, 0.10 \mathrm{eq}$) and propionyl chloride ($101 \mu \mathrm{~L}, 1.16 \mathrm{mmol}, 3.00 \mathrm{eq})$. After 18 h the solution was added to a mixture of pH 7 sodium potassium phosphate buffer $(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, and purified by flash chromatography on a $4.5 \times 17 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of 3% EtOAc/hexanes (200 mL). The eluant was collected in 10 mL portions and the product containing fractions (2 to 10) were combined and concentrated to give ester S4 ($108 \mathrm{mg}, 0.385 \mathrm{mmol}, 99 \%$) as a clear colorless liquid: $\mathrm{R}_{f} 0.78(25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+7.6\left(c=1.135, \mathrm{CHCl}_{3}\right) ; 500$ $\mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.31-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.16-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~s}$, $1 \mathrm{H}), 4.12(\mathrm{~d}, ~ J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dd}, J$ $=14.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=14.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.86$ $(\mathrm{m}, 2 \mathrm{H}), 1.14(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 174.3,141.5,141.5$,
128.6 (2), 128.5 (2), 126.2, 117.9, 71.3, 48.2, 38.4, 36.1, 32.0, 27.9, 9.4; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 9.4 . \mathrm{CH}_{2}: 117.9,48.2,38.4,36.1,32.0,27.9 . \mathrm{CH}: 128.6$ (2), 128.5 (2), 126.2, 71.3. C: 174.3, 141.5, 141.5; IR (neat) 3027, 2981, 2941, 1732, 1650, 1495, 1454, 1338, 1275, 1185, 1081, 1029, 912, 749, 699, $605 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClO}_{2}$: C, 68.44; H, 7.54. Found: C, 68.72; H, 7.65.

Representative Procedure for the Finkelstein Reaction.

Chromatographic properties for the described allyl iodides were found to be identical to their respective allyl chlorides.

Preparation of propionic acid-(R)-3-iodoethyl-1-phenethyl-
but-3-enyl ester S5. To a stirring solution of the ester S4 (116.9 mg, $0.416 \mathrm{mmol}, 1.00$ eq) and acetone $(4.2 \mathrm{~mL}, 0.10 \mathrm{M})$ in a 25 mL round-bottom flask at room temperature was added $\mathrm{NaI}(1.25 \mathrm{~g}, 8.32 \mathrm{mmol}, 20 \mathrm{eq})$. The mixture was kept at room temperature in the dark for 24 h and then diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The mixture was filtered through a plug of Celite ${ }^{\circledR}$, the filtrate was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and filtered through the same plug of Celite ${ }^{\circledR}$. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient of $2.5 \%(100 \mathrm{~mL})$ through 5% EtOAc/hexanes $(100 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (6 to 12) were combined and concentrated to give iodide S5 ($145 \mathrm{mg}, 0.390 \mathrm{mmol}, 94 \%$) as a clear slightly yellow oil: $\mathrm{R}_{f} 0.68$ ($25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+22.9\left(c=1.015, \mathrm{CHCl}_{3}\right) ; 500$
$\mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.14-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}$, $1 \mathrm{H}), 4.02(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.63(\mathrm{~m}, 3 \mathrm{H}), 2.43(\mathrm{dd}, J=$ $14.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H})$; $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 174.3,142.9,141.5,128.7$ (2), 128.5 (2), 126.2, 117.0, 71.3, 39.4, 36.1, 32.1, 28.0, 10.6, 9.5; $125 \mathrm{MHz} \operatorname{DEPT}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 9.5 . \mathrm{CH}_{2}: 117.1$, 39.5, 36.1, 32.1, 28.0, 10.6. CH: 128.7 (2), 128.5 (2), 126.3, 71.4. C: 174.3, 142.9, 141.5; IR (neat) 3083, 3026, 2978, 2940, 2861, 1732, 1634, 1602, 1495, 1454, 1432, 1273, 1185, 1080, 1028, 909, 748, $699 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{IO}_{2}: \mathrm{C}, 51.63 ; \mathrm{H}, 5.69$. Found: C, 51.67; H, 5.71.

Preparation of $0.1 \mathbf{M ~ S m I}_{2}$ Stock Solution. Flask preparation: To a mixture of samarium chips ($242 \mathrm{mg}, 1.61 \mathrm{mmol}, 1.07 \mathrm{eq}$) and THF (60 mL) in a new $100 \mathrm{~mL}, 14 / 20$ round-bottom flask with a new stir bar and a 14/20 rubber septum at room temperature was added $\mathrm{CH}_{2} \mathrm{I}_{2}(121 \mu \mathrm{~L}, 1.50 \mathrm{mmol}, 1.00 \mathrm{eq})$. The rubber septum was sealed with Parafilm ${ }^{\circledR}$ and an upside-down 19/22 rubber septum. After 24 h the deep purple solution was discarded, and the flask was washed with water and acetone, and then dried.

The pretreated 100 mL round-bottom flask with stir bar and a rubber septum containing samarium chips ($726 \mathrm{mg}, 4.83 \mathrm{mmol}, 1.07 \mathrm{eq}$) was evacuated and then purged with dry nitrogen. This procedure was repeated three times, and then THF (45.0 mL , $0.10 \mathrm{M})$ was added followed by $\mathrm{CH}_{2} \mathrm{I}_{2}(363 \mu \mathrm{~L}, 4.51 \mathrm{mmol}, 1.00 \mathrm{eq})$. The $14 / 20$ rubber septum was sealed with Parafilm ${ }^{\circledR}$, an upside-down $19 / 22$ rubber septum and again Parafilm ${ }^{\circledR}$. After 24 h the deep purple mixture could be used as a $0.10 \mathrm{M} \mathrm{SmI}_{2}$ stock-
solution and stored under nitrogen in the dark at room temperature for up to 3 months without noticeable loss of activity.

Representative Procedure for the SmI_{2} Promoted Cyclization:

Preparation of (6R)-2-ethyl-2-methoxy-4-methylene-6-
phenethyl-tetrahydro-pyran S6. To a stirring solution of the iodide S5 ($80.0 \mathrm{mg}, 0.215$ $\mathrm{mmol}, 1.00 \mathrm{eq})$ and THF ($2.2 \mathrm{~mL}, 0.10 \mathrm{M}$) in a 25 mL round-bottom flask at $0{ }^{\circ} \mathrm{C}$ was added SmI_{2} (0.10 M solution in THF, $6.5 \mathrm{~mL}, 0.65 \mathrm{mmol}, 3.0 \mathrm{eq}$). After 10 min additional $\mathrm{SmI}_{2}(0.10 \mathrm{M}$ solution in THF, $4.3 \mathrm{~mL}, 0.43 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added, and the deep purple color of the reaction mixture persisted; TLC analysis showed consumption of the iodide starting material. The solution was added to a mixture of pH 7 sodium potassium phosphate $(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure at room temperature. The residue was transferred into a 15 mL roundbottom flask and dissolved in a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{MeOH}(7.2 \mathrm{~mL}, 0.03 \mathrm{M})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{CSA}\left(0.05 \mathrm{M}\right.$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 129 \mu \mathrm{~L}, 6.5 \mu \mathrm{~mol}$, $0.03 \mathrm{eq})$ was added. After 1 h the solution was added to a mixture of a saturated aqueous NaHCO_{3} solution $(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure at room temperature. The residue was purified by flash chromatography on a $1.5 \times 20 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of 2.5% EtOAc/hexanes $(250 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the
product containing fractions (3 to 6) were combined and concentrated to give 2 methoxypyran $\mathbf{S 6}(55.0 \mathrm{mg}, 0.211 \mathrm{mmol}, 98 \%)$ as a clear colorless liquid consisting of a 1:1 mixture of anomers: $\mathrm{R}_{f} 0.79$ ($25 \% \mathrm{EtOAc} /$ hexanes); $[\alpha]_{\mathrm{D}}^{20}+12.4$ ($c=1.015, \mathrm{CHCl}_{3}$); $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.18(\mathrm{~m}, 10 \mathrm{H}), 4.85-4.79(\mathrm{~m}, 4 \mathrm{H}), 3.67-3.61(\mathrm{~m}$, $1 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.00-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.62(\mathrm{~m}$, $3 \mathrm{H}), 2.49(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.15-$ $2.08(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.72(\mathrm{~m}, 7 \mathrm{H}), 1.62-1.49(\mathrm{~m}, 3 \mathrm{H}), 0.99(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 142.5$ (2), 142.3 (2), 128.8, 128.6 (3), 128.5 (2), 128.4 (2), 126.1, 126.0, 110.3, 110.2, 101.1, 100.4, 72.3, 70.5, 47.9, 47.8, 42.2, $41.6,40.1,38.7,37.9,37.8,32.1,29.9,29.1,28.9,10.2,7.9 ; 125 \mathrm{MHz}$ DEPT $\left(\mathrm{CDCl}_{3}\right) \delta$ $\mathrm{CH}_{3}: 47.9,47.8,10.2,7.9 . \mathrm{CH}_{2}: 110.3,110.2,42.2,41.6,40.1,39.7,37.9,37.8,32.1$, 29.9, 29.1, 28.9. CH: 128.8, 128.6, 128.6 (2), 128.5 (2), 128.4 (2), 126.1, 126.0, 72.3, 70.5. C: 142.5 (2), 142.3 (2), 101.1, 100.4; IR (neat) 3072, 3026, 2941, 2898, 2826, 1738, $1656,1563,1495,1455,1322,1173,1116,1080,1057,1034,884,750,698,655 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}$: C, 78.42; H, 9.29. Found: C, 78.15; H, 9.34.

Preparation of racemic 2-ethyl-4-methylene-6-phenethyl-

tetrahydro-pyran-2-ol S7. To a 15 mL round bottom flask with racemic chloride $\mathbf{S 4}$ ($100 \mathrm{mg}, 0.356 \mathrm{mmol}, 1.00 \mathrm{eq}$), magnesium turnings ($52.0 \mathrm{mg}, 2.14 \mathrm{mmol}, 6.00 \mathrm{eq}$) and $\mathrm{Et}_{2} \mathrm{O}(3.6 \mathrm{~mL}, 0.10 \mathrm{M})$ at room temperature was added 1,2-dibromoethane ($30.7 \mu \mathrm{~L}$, $0.356 \mathrm{mmol}, 1.00 \mathrm{eq})$. After 15 min additional 1,2-dibromoethane ($16.0 \mu \mathrm{~L}, 0.180 \mathrm{mmol}$,
0.50 eq) was added and the mixture then heated to $35^{\circ} \mathrm{C}$. After 18 h the mixture was cooled to room temperature and diluted with a saturated aqueous solution of NaHCO_{3} (5 $\mathrm{mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 10 \mathrm{~mL})$, brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure at room temperature. The residue was purified by flash chromatography on a $1.5 \times 20 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $1 \%(100 \mathrm{~mL})$ through $5 \%(100 \mathrm{~mL})$ and 7.5% EtOAc/hexanes $(300 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (41 to 46) were combined and concentrated to give hydroxy lactol $\mathbf{S 7}(16.0 \mathrm{mg}, 65.0 \mu \mathrm{~mol}, 18 \%)$ as a clear colorless oil consisting of a $2: 1$ mixture of anomers: $\mathrm{R}_{f} 0.45(25 \% \mathrm{EtOAc} /$ hexanes $) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.17(\mathrm{~m}$, $10 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.89-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.84-4.83(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.76$ (m, 1H), 3.67 - $3.61(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-$ $2.76(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 5 \mathrm{H}), 2.16(\mathrm{dd}, J=14.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}$, $1 \mathrm{H}), 1.91-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.06(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;$ $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.4,142.3,142.3,139.8,128.7$ (4), 128.6 (2), 128.5 (2), $126.0,126.0,118.3,111.5,97.7$ (2), 70.2, 68.3, 50.0, 45.4, 43.2, 40.4, 38.9, 37.8, 35.9, 35.0, 32.3, 31.9, 8.0, 7.6; IR (neat) 3447 (bs), 3063, 3026, 2941, 1713, 1682, 1654, 1603, $1558,1540,1496,1455,1433,1413,1379,1336,1311,1282,1260,1221,1154,1085$, 1040, 993, $947 \mathrm{~cm}^{-1}$; HRMS (APCI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O} \mathrm{m} / \mathrm{z}(\mathrm{M}-\mathrm{OH}):$ 229.1592. Found: 229.1591; HRMS (APCI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{Na}):$ 269.1517. Found: 269.1518.

Hydrolysis of a 2-Methoxypyran with Water and PPTs:

Preparation of racemic 2-ethyl-4-methylene-6-phenethyl-
tetrahydro-pyran-2-ol S7. To a 5 mL vial with racemic 2-methoxypyran S6 (14.8 mg, $56.8 \mu \mathrm{~mol}, 1.00 \mathrm{eq})$ and a $4: 1$ solution of THF and water $(560 \mu \mathrm{~L}, 0.10 \mathrm{M})$ at room temperature was added PPTs $(84.0 \mu \mathrm{~L}, 8.52 \mu \mathrm{~mol}, 0.30 \mathrm{eq})$. After 24 h , a $4: 1$ solution of THF and water $(1.20 \mathrm{~mL})$ was added and the solution stirred for an additional 24 h . The mixture was diluted with a mixture of 25% EtOAc and hexanes $(50 \mathrm{~mL})$ and pH 7 phosphate buffer (0.05 M aqueous solution, 10 mL). The organic phase was washed with water $(2 \times 20 \mathrm{~mL})$, brine $(15 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure at room temperature. The residue was purified by preparative TLC (20 $\mathrm{cm} \times 20 \mathrm{~cm} \times 250 \mu \mathrm{~m}$) using a mobile phase of $25 \% \mathrm{EtOAc} /$ hexanes. A suspension of the product containing silica gel and a solution of 1:4 $\mathrm{MeOH} / \mathrm{EtOAc}(100 \mathrm{~mL})$ was vigorously stirred for 40 min , filtered and concentrated under reduced pressure. Any remaining silica gel was removed by filtration of the residue through a $0.5 \times 1.0 \mathrm{~cm}$ silica gel column eluting with 80% EtOAc/hexanes (10 mL). The eluant was concentrated under reduced pressure to give lactol S7 ($10.2 \mathrm{mg}, 41.4 \mu \mathrm{~mol}, 73 \%$) as a clear colorless oil consisting of a mixture of anomers. The spectroscopic data for lactol S7 were identical to those for the lactol obtained from the cyclization of racemic chloride S4 using Mg turnings.

Preparation of (S)-2-methyl-butyric acid (R)-3-chloromethyl-1-phenethyl-but-3-enyl ester S8. To a stirring solution of alcohol S3 $(100 \mathrm{mg}, 0.445 \mathrm{mmol}, 1.00 \mathrm{eq})$ and ethanol-free $\mathrm{CHCl}_{3}(4.40 \mathrm{~mL}, 0.10 \mathrm{M})$ in a 15 mL round-bottom flask at room temperature were added (S)-(+)-2-methylbutyric acid (58.0 $\mu \mathrm{L}, 0.534 \mathrm{mmol}, 1.20 \mathrm{eq})$, DMAP ($5.5 \mathrm{mg}, 44 \mu \mathrm{~mol}, 0.10 \mathrm{eq}), \mathrm{DMAP} \cdot \mathrm{HCl}(7.1 \mathrm{mg}, 45$ $\mu \mathrm{mol}, 0.10 \mathrm{eq})$ and EDCI ($213 \mathrm{mg}, 1.11 \mathrm{mmol}, 2.50 \mathrm{eq}$). The mixture was heated to 45 ${ }^{\circ} \mathrm{C}$ and after 12 h additional (S)-(+)-2-methylbutyric acid ($\left.58.0 \mu \mathrm{~L}, 0.534 \mathrm{mmol}, 1.20 \mathrm{eq}\right)$ and EDCI ($213 \mathrm{mg}, 1.11 \mathrm{mmol}, 2.50 \mathrm{eq}$) were added. After 18 h the mixture was added to pH 7 sodium potassium phosphate buffer $(0.05 \mathrm{M}, 20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $2.5 \% \mathrm{EtOAc} /$ hexanes $(300 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (3 to 9) were combined and concentrated; remaining volatiles were removed under vacuum $(0.025 \mathrm{~mm} \mathrm{Hg})$ to give ester $\mathbf{S 8}(125 \mathrm{mg}, 0.405$ $\mathrm{mmol}, 91 \%)$ as a clear colorless oil: $\mathrm{R}_{f} 0.78(25 \% \mathrm{EtOAc} /$ hexanes $) ; ~[\alpha]_{\mathrm{D}}^{20}+28.1(c=$ $\left.1.125, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H})$, 5.19 (s, 1H), 5.14 (dddd, $J=8.3,8.3,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (dd, $J=11.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dd}, J=14.4$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=14.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{qdd}, J=6.9,6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-$ $1.87(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{dqd}, J=13.9,7.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{dqd}, J=13.7,7.3,6.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$1.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 3 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 176.6, 141.6, 141.5, 128.7 (2), 128.5 (2), 126.2, 117.9, 70.9, 48.2, 41.6, 38.5, 36.4, 32.0, 27.0, 17.1, 12.0; $125 \mathrm{MHz} \operatorname{DEPT}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 17.1,12.0 . \mathrm{CH}_{2}: 117.9,48.1,38.5$, $36.4,32.0,27.0$. CH: 128.7 (2), 128.5 (2), 126.2, 70.9, 41.6. C: 176.6, 141.6, 141.5; IR (neat) 3085, 3063, 3027, 2966, 2935, 2877, 1729, 1646, 1603, 1496, 1455, 1381, 1297, 1261, 1239, 1153, 1078, 1029, 912, 750, $700 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClO}_{2}: \mathrm{C}, 70.00$; H, 8.16. Found: C, 70.29; H, 8.25.

Preparation of (S)-2-methyl-butyric acid (R)-3-iodomethyl-
1-phenethyl-but-3-enyl ester S9. The crude reaction mixture was obtained by following the general procedure for the Finkelstein reaction using ester S8 ($105 \mathrm{mg}, 0.520 \mathrm{mmol}$, $1.00 \mathrm{eq})$ as starting material and was purified by flash chromatography using a 1.5×18 cm silica gel column eluting with a solvent mixture of $5 \% \mathrm{EtOAc} /$ hexanes (200 mL). The eluant was collected in 10 mL portions and the product containing fractions (3 to 4) were combined and concentrated to give iodide $\mathbf{S 9}(135 \mathrm{mg}, 0.337 \mathrm{mmol}, 99 \%)$ as a clear colorless oil: $\mathrm{R}_{f} 0.78(25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+14.4\left(c=1.150, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{dddd}, J$ $=8.4,8.4,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.73-2.61(\mathrm{~m}, 3 \mathrm{H}), 2.45(\mathrm{dd}, J=14.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dddd}, J=13.8,6.9,6.9$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{dqd}, J=13.9,7.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.44(\mathrm{~m}$,
$1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{dd}, J=7.7,7.3 \mathrm{~Hz}, 3 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 176.5,142.9,141.5,128.7$ (2), 128.5 (2), 126.2, 117.0, 70.9, 41.6, 39.4, 36.3, 32.0, 27.0, 17.1, 12.0, 10.6; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 17.1,12.0 . \mathrm{CH}_{2}: 117.0,39.4$, $36.3,32.0,27.0,10.6 . \mathrm{CH}: 128.7$ (2), 128.5 (2), 126.2, 70.9, 41.6. C: 176.5, 142.9, 141.5; IR (neat) 3084, 3062, 2965, 2933, 2875, 1729, 1496, 1455, 1434, 1381, 1261, 1238, 1183, 1154, 1077, 1028, 909, 748, $699 \mathrm{~cm}^{-1}$; HRMS (CI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{IO}_{2}(\mathrm{M}+\mathrm{H})$: 401.0978. Found: 401.0985.

Preparation of (2R,6R)-2-((S)-sec-butyl)-2-methoxy-4-methylene-6-phenethyl-tetrahydro-pyran S10. The crude reaction mixture was obtained by following the general procedure for the SmI_{2} promoted cyclization using iodide $\mathbf{S 9}(63.0 \mathrm{mg}, 0.157 \mathrm{mmol}, 1.00 \mathrm{eq})$ as starting material and was purified by flash chromatography using a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $2.5 \% \mathrm{EtOAc} /$ hexanes $(200 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (3 to 6) were combined and concentrated to give methyl 2methoxypyran S10 ($45.1 \mathrm{mg}, 0.156 \mathrm{mmol}$, quant.) as a clear colorless oil consisting of a single anomer: $\mathrm{R}_{f} 0.91$ (25\% EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{20}-10.4$ (c = 1.350, CHCl_{3}); 500 MHz ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H})$, $3.44-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{ddd}, J=13.0,13.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{ddd}, J=$ 13.1, 13.1, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J$ $=13.2,13.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{ddd}, J=13.2,13.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dd}, J=12.6,12.6$
$\mathrm{Hz}, 1 \mathrm{H}), 1.91(\mathrm{ddd}, J=12.6,12.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H})$, $1.20-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.95-0.91(\mathrm{~m}, 6 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 142.6,142.3$, 128.6 (2), 128.4 (2), 126.0, 110.4, 100.4, 74.5, 48.0, 42.2, 39.8, 38.0, 36.5, 30.1, 25.3, 14.8, 11.9; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 48.0,14.8,11.9 . \mathrm{CH}_{2}: 110.4,42.2,38.0$, 36.6, 30.1, 25.3. CH: 128.6 (2), 128.5 (2), 126.1, 74.5, 39.8. C: 142.6, 142.3, 100.4; IR (neat) 3064, 3027, 2959, 2932, 2876, 2827, 1732, 1656, 1604, 1496, 1455, 1380, 1349, 1326, 1266, 1233, 1192, 1174, 1147, 1117, 1073, 1051, 1031, 942, 885, 789, 749, 699, $642 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}): 288.2089$. Found: 288.2091; LRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O} \mathrm{m} / \mathrm{z}$ (M-MeO): 257.2. Found: 257.2; LRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O} \mathrm{m} / \mathrm{z}(\mathrm{M}-\mathrm{MeOH}):$ 256.2. Found: 256.1.

Preparation of 3-benzyloxy-propan-1-ol S11. ${ }^{6}$ To a 500 mL round-bottom flask with 1,3-propanediol ($14.5 \mathrm{~mL}, 200 \mathrm{mmol}, 1.00 \mathrm{eq}$) and DMSO ($200 \mathrm{~mL}, 1.00 \mathrm{M}$) at room temperature was slowly added washed and dried $\mathrm{NaH}(2.40 \mathrm{~g}, 100 \mathrm{mmol}, 0.50$ eq). After 30 min , benzyl chloride ($11.5 \mathrm{~mL}, 100 \mathrm{mmol}, 0.50 \mathrm{eq}$) and TBAI (740 mg , $2.00 \mathrm{mmol}, 0.01 \mathrm{eq})$ were added. After an additional 2 h , water $(50 \mathrm{~mL})$ and a mixture of $15 \% \mathrm{EtOAc} /$ hexanes $(30 \mathrm{~mL})$ were added. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(100,200,500 \mathrm{~mL})$ and the combined organic phase washed brine $(80 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was distilled from a 50 mL round-bottom flask through a $1.5 \times 7 \mathrm{~cm}$ column to give benzylether $\mathbf{S 1 1}(9.81 \mathrm{~g}, 59.0 \mathrm{mmol}, 30 \%)$ as a clear colorless liquid: bp $90-100^{\circ} \mathrm{C}$ at 0.25 mm Hg , high-vacuum pump, pressure adjusted with dry nitrogen; $\mathrm{R}_{f} 0.16(25 \%$ EtOAc/hexanes); $500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{t}$,
$J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{tt}, J=6.0,5.6 \mathrm{~Hz}, 2 \mathrm{H}) ; 125$ $\mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 138.2,128.6$ (2), 127.8, 127.8 (2), 73.4, 69.3, 61.7, 32.3;; IR (neat) $3390,3090,3059,3030,2925,2864,1961,1876,1814,1496,1476,1454,1416$, $1365,1313,1259,1243,1205,1095,1075,1027,972,946,920,737,698 \mathrm{~cm}^{-1}$.

Preparation of 3-benzyloxy-propionic acid S12. ${ }^{7}$ The Jones Reagent was prepared by adding $\mathrm{CrO}_{3}(25 \mathrm{~g}, 0.157 \mathrm{mmol})$ to a stirring solution of water $(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ (conc., 25 mL) in a 250 mL graduated cylinder at $0{ }^{\circ} \mathrm{C}$; the volume was adjusted to 125 mL with water (ca. 60 mL) to give Jones' reagent (1.26 M). To a solution of 3-benzyloxy-propan-1-ol S11 (3.00 g, $18.1 \mathrm{mmol}, 1.00 \mathrm{eq})$ and acetone (120 $\mathrm{mL}, 0.15 \mathrm{M})$ in a 500 mL round-bottom flask at $0^{\circ} \mathrm{C}$ was added Jones' reagent $(1.26 \mathrm{M}$ solution, $14.3 \mathrm{~mL}, 18.1 \mathrm{mmol}, 1.00 \mathrm{eq})$. After 1 h the mixture was filtered through a plug of Celite ${ }^{\circledR}$, the filtrate was concentrated under reduced pressure and the residue diluted with EtOAc (200 mL). The mixture was washed with water $(3 \times 100 \mathrm{~mL})$, brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography using a $3.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $5 \%(500 \mathrm{~mL})$ through $10 \%(250 \mathrm{~mL})$ and $15 \% \mathrm{EtOAc} /$ hexanes $(500 \mathrm{~mL})$ and then $0.5 \% \mathrm{AcOH} / \mathrm{EtOAc}(300 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (28 to 46) were combined and concentrated to give acid S12 (2.95 g, $16.4 \mathrm{mmol}, 91 \%)$ as a white solid: $\mathrm{R}_{f} 0.62(20: 10: 1=$ toluene : dioxane : AcOH) $; \mathrm{mp} 30^{\circ} \mathrm{C} ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.17(\mathrm{bs}, 1 \mathrm{H}), 7.30-7.19$ $(\mathrm{m}, 5 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 177.7,138.0,128.7$ (2), 128.0, 127.9 (2), $73.4,65.4,35.1 ; 125 \mathrm{MHz}$

DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 73.4,65.4,35.1 . \mathrm{CH}: 128.7$ (2), 128.0, 127.9 (2). C: 177.7, 138.0; IR (neat) 3087, 3063, 3031, 2920, 2874, 2715, 1714, 1453, 1424, 1364, 1262, 1237, 1199, 1103, 1070, 1028, 740, $698 \mathrm{~cm}^{-1}$.

Preparation of 3-benzyloxy-propionic acid (R)-3-chloromethyl-1-phenethyl-but-3-enyl ester S13. To a stirring solution of alcohol S3 $(100 \mathrm{mg}, 0.445 \mathrm{mmol}, 1.00 \mathrm{eq})$ and ethanol-free $\mathrm{CHCl}_{3}(4.40 \mathrm{~mL}, 0.10 \mathrm{M})$ in a 25 mL round-bottom flask at room temperature were added 3-benzyloxy-propionic acid S12 $(96.0 \mathrm{mg}, 0.534 \mathrm{mmol}, 1.20 \mathrm{eq})$, DMAP $(5.5 \mathrm{mg}, 44 \mu \mathrm{~mol}, 0.10 \mathrm{eq}), \mathrm{DMAP} \cdot \mathrm{HCl}(7.1$ $\mathrm{mg}, 45 \mu \mathrm{~mol}, 0.10 \mathrm{eq})$ and $\operatorname{DCC}(230 \mathrm{mg}, 1.11 \mathrm{mmol}, 2.50 \mathrm{eq})$. The mixture was then diluted with ethanol-free $\mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$. After 24 h the mixture was added to a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic phase was washed with pH 7 sodium potassium phosphate buffer $(0.05 \mathrm{M}, 20 \mathrm{~mL})$, water (20 mL) and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $2.5 \%(100 \mathrm{~mL})$ through $5 \%(200 \mathrm{~mL})$ and 10% EtOAc/hexanes $(100 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (10 to 38) were combined and concentrated to give ester S13 (157 $\mathrm{mg}, 0.406 \mathrm{mmol}, 91 \%)$ as a clear colorless oil: $\mathrm{R}_{f} 0.58(25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+9.8$ $\left(c=1.060, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}$, $3 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.31-5.14(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H})$,
$4.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.75(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.59(\mathrm{~m}$, $4 \mathrm{H}), 2.56(\mathrm{dd}, J=14.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=14.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 2 \mathrm{H})$; $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.5,141.5,141.4,138.2,128.7$ (2), 128.6 (2), 128.5 (2), 127.9 (3), 126.2, 118.0, 73.3, 71.8, 65.9, 48.2, 38.3, 36.1, 35.6, 32.0; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 118.0,73.3,65.9,48.2,38.3,36.1,35.5,31.9 . \mathrm{CH}: 128.6$ (2), 128.6 (2), 128.5 (2), 127.8 (3), 126.2, 71.7. C: 171.5, 141.5, 141.4, 138.2; IR (neat) 3085, 3063, 3028, 2952, 2925, 2864, 1733, 1646, 1603, 1496, 1454, 1365, 1256, 1181, 1104, 1070, 1029, 913, 747, $699 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClO}_{3}: \mathrm{C}, 71.40 ; \mathrm{H}, 7.03$. Found: C, 71.46; H, 7.17.

Preparation of 3-benzyloxy-propionic acid (R)-3-iodomethyl-1-phenethyl-but-3-enyl ester S14. The crude reaction mixture was obtained by following the general procedure for the Finkelstein reaction using ester S13 $(140 \mathrm{mg}, 0.362 \mathrm{mmol}, 1.00 \mathrm{eq})$ as starting material and was purified by flash chromatography using a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of 5% EtOAc/hexanes $(100 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (1 to 3) were combined and concentrated to give iodide S14 (173 mg, 0.362 mmol , quant.) as a clear colorless oil: $\mathrm{R}_{f} 0.65$ (25% EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{20}+14.1\left(c=1.075, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.35-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.32-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{dddd}, J=7.9,7.9,4.7,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.94(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.75$
(m, 2H), $2.73-2.60(\mathrm{~m}, 5 \mathrm{H}), 2.46(\mathrm{dd}, J=14.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 2 \mathrm{H}) ; 125$ $\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.4,142.8,141.5,138.2,128.6$ (2), 128.6 (2), 128.5 (2), 127.9 (3), 126.2, 117.1, 73.3, 71.8, 65.9, 39.3, 36.0, 35.6, 31.9, 10.7; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 117.1,73.3,65.9,39.3,36.0,35.6,32.0,10.7 . \mathrm{CH}: 128.7$ (2), 128.6 (2), 128.5 (2), 127.9 (3), 126.2, 71.8. C: 171.4, 142.8, 141.5, 138.2; IR (neat) 3084, 3062, 3027, 2952, 2922, 2863, 1732, 1635, 1603, 1496, 1454, 1431, 1365, 1252, 1181, 1104, 1070, 1028, 910, 740, $699 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{IO}_{3}$: C, 57.75; H, 5.69. Found: C, 58.14; H, 5.58.

Preparation of (6R)-2-(2-benzyloxy-ethyl)-2-methoxy-4-methylene-6-phenethyl-tetrahydro-pyran S15. The crude reaction mixture was obtained by following the general procedure for the SmI_{2} promoted cyclization using iodide $\mathbf{S 1 4}$ ($57.0 \mathrm{mg}, 0.119 \mathrm{mmol}, 1.00 \mathrm{eq}$) as starting material and was purified by flash chromatography using a $1.5 \times 25 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $2.5 \% \mathrm{EtOAc} /$ hexanes $(200 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (4 to 6) were combined and concentrated to give 2 methoxypyran S15 ($42.3 \mathrm{mg}, 0.115 \mathrm{mmol}, 97 \%$) as a clear colorless oil consisting of a inseparable 3:1 mixture of anomers: $\mathrm{R}_{f} 0.60(25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}^{20}-7.7(c=1.250$, CHCl_{3}); $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.37-7.34$ ($\mathrm{m}, 4 \mathrm{H}$ major, 4 H minor), 7.32 - 7.28 (m, 4H major, 4H minor), $7.23-7.19$ ($\mathrm{m}, 2 \mathrm{H}$ major, 2 H minor), $4.84-4.83(\mathrm{~m}, 1 \mathrm{H}$ major), $4.82-4.81$ (m, 1H major), $4.82-4.80$ (m, 1H minor), $4.77-4.76(\mathrm{~m}, 1 \mathrm{H}$
minor), $4.54-4.53$ (m, 1H minor), 4.51 ($\mathrm{s}, 2 \mathrm{H}$ major, 2 H minor), $3.85-3.80(\mathrm{~m}, 1 \mathrm{H}$ major), $3.70-3.58$ ($\mathrm{m}, 2 \mathrm{H}$ major, 2 H minor), 3.18 ($\mathrm{s}, 3 \mathrm{H}$ major), 3.15 ($\mathrm{s}, 3 \mathrm{H}$ minor), 2.87 (ddd, $J=13.8,10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$ minor), $2.73-2.60$ ($\mathrm{m}, 2 \mathrm{H}$ major, 1H minor), 2.50 - 2.47 (m, 1H major), $2.41-2.38$ (m, 1H minor), 2.29 - 2.22 ($\mathrm{m}, 1 \mathrm{H}$ major, 1 H minor), $2.16-1.96$ (m , 3H major, 3H minor), $1.91-1.78$ ($\mathrm{m}, 3 \mathrm{H}$ major, 3 H minor); 125 MHz ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.4$ (1 minor), 142.2 (1 major), 142.0 (1 minor), 141.9 (1 major), 138.6 (1 major, 1 minor), 128.6 (2 major, 2 minor), 128.6 (2 major, 2 major), 128.5 (1 minor), 128.4 (2 major, 1 minor), 127.9 (1 major, 1 minor), 127.8 (1 major, 1 minor), 127.8 (1 major, 1 minor), 126.1 (1 major), 126.0 (1 minor), 110.6 (1 major), 110.4 (1 minor), 100.4 (1 major), 99.9 (1 minor), 73.3 (1 major, 1 minor), 70.5 (1 minor), 67.9 (1 major), 66.9 (1 major), 66.1 (1 minor), 48.1 (1 minor), 47.9 (1 major), 42.8 (1 minor), 42.2 (1 major), 40.2 (1 major), 39.9 (1 minor), 37.8 (1 major, 1 minor), 36.3 (1 major), 36.1 (1 minor), 32.0 (1 minor), 29.9 (1 major); 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 48.1$ (1 minor), 47.9 (1 major). $\mathrm{CH}_{2}: 110.6$ (1 major), 110.4 (1 minor), 73.3 (1 major, 1 minor), 66.9 (1 major), 66.1 (1 minor), 42.8 (1 minor), 42.2 (1 major), 40.2 (1 major), 39.9 (1 minor), 37.8 (1 major, 1 minor), 36.3 (1 major), 36.1 (1 minor), 32.0 (1 minor), 29.9 (1 major). CH: 128.6 (2 major, 2 minor), 128.6 (2 major, 2 minor), 128.5 (1 minor), 128.4 (2 major, 1 minor), 127.9 (1 major, 1 minor), 127.8 (1 major, 1 minor), 127.8 (1 major, 1 minor), 126.1 (1 major), 126.0 (1 minor), 70.5 (1 minor), 67.9 (1 major). C: 142.4 (1 minor), 142.2 (1 major), 142.0 (1 minor), 141.9 (1 major), 138.6 (1 major, 1 minor), 100.4 (1 major), 99.9 (1 minor); IR (neat) 3063, 3027, 2946, 2961, 1680, 1656, 1581, 1496, 1454, 1363, 1327, 1153, 1101, 1030, $698 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}$
(M): 366.2195. Found: 366.2194; LRMS (EI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}-\mathrm{MeOH})$: 334.4. Found: 334.3.

Preparation of 2,2-dimethyl-propionic acid (R)-3-
chloromethyl-1-phenethyl-but-3-enyl ester S16. To a stirring solution of alcohol S3 $(150 \mathrm{mg}, 0.670 \mathrm{mmol}, 1.00 \mathrm{eq})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.30 \mathrm{~mL}, 0.10 \mathrm{M})$ in a 15 mL round-bottom flask at $0{ }^{\circ} \mathrm{C}$ were added pyridine ($190 \mu \mathrm{~L}, 2.34 \mathrm{mmol}, 3.50 \mathrm{eq}$), DMAP ($8.0 \mathrm{mg}, 67$ $\mu \mathrm{mol}, 0.10 \mathrm{eq})$ and trimethylacetyl chloride ($248 \mu \mathrm{~L}, 2.01 \mathrm{mmol}, 3.00 \mathrm{eq}$). After 20 h the solution was added to a mixture of pH 7 sodium potassium phosphate buffer $(0.05 \mathrm{M}, 20$ $\mathrm{mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 20 \mathrm{~mL})$ and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $2.5 \% \mathrm{EtOAc} /$ hexanes $(600 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (7 to 9) were combined and concentrated; remaining volatiles were removed under vacuum $(0.025 \mathrm{~mm} \mathrm{Hg})$ to give ester S16 (208 mg, 0.673 mmol , quant.) as a clear colorless oil: $\mathrm{R}_{f} 0.77(25 \%$ EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+6.5\left(c=1.015, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32-$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{dddd}, J=8.2,8.2,4.3,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.00(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=11.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-$ $2.60(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{dd}, J=15.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=14.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 178.3,141.6,141.5,128.7$ (2),
128.5 (2), 126.2, 117.9, 70.8, 48.1, 39.1, 38.4, 36.4, 32.0, 27.5 (3); 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 27.5$ (3). $\mathrm{CH}_{2}: 117.9,48.1,38.4,36.4,32.0 . \mathrm{CH}: 128.7$ (2), 128.5 (2), 126.2, 70.8. C: 178.3, 141.6, 141.5, 39.4; IR (neat) 3084, 3063, 3027, 2999, 2933, 2870, 1724, 1496, 1479, 1454, 1396, 1367, 1282, 1261, 1159, 1033, 911, 749, $699 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClO}_{2}$: C, 70.00; H, 8.16. Found: C, $70.22 ; \mathrm{H}, 8.19$.

Preparation of (\boldsymbol{R})-3-iodomethyl-1-phenethyl-but-3-enyl
ester S17. The crude reaction mixture was obtained by following the general procedure for the Finkelstein reaction using ester $\mathbf{S 1 6}(160 \mathrm{mg}, 0.520 \mathrm{mmol}, 1.00 \mathrm{eq})$ as starting material and was purified by flash chromatography using a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $5 \% \mathrm{EtOAc} /$ hexanes $(500 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (3 to 6) were combined and concentrated to give iodide $\mathbf{S 1 7}(206 \mathrm{mg}, 0.515 \mathrm{mmol}, 99 \%)$ as a clear colorless oil: R_{f} $0.78(25 \%$ EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+19.2\left(c=0.955, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.09$ (dddd, $J=8.2,8.2,4.5,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ - 2.61 (m, 3H), 2.45 (dd, $J=14.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ - 1.87 (m, 2H), 1.22 (s, 9H); 125 $\mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 178.2,142.9,141.6,128.7$ (2), 128.5 (2), 126.2, 117.0, 70.9, 39.4, 39.1, 36.4, 32.0, 27.5 (3), 10.5; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 27.5$ (3). CH_{2} : 117.0, 39.4, 36.4, 32.0, 10.5. CH: 128.7 (2), 128.5 (2), 126.3, 70.9. C: 178.2, 142.9, 141.6, 39.1; IR (neat) 3084, 3062, 3026, 2967, 2958, 2931, 2868, 1723, 1495, 1478,

1454, 1433, 1396, 1366, 1281, 1157, 1032, 908, 753, $699 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{IO}_{2}$: C, 54.01; H, 6.29. Found: C, 54.27; H, 6.21.

Preparation of $(2 R, 6 R)$-2-tert-butyl-2-methoxy-4-methylene-6-
phenethyl-tetrahydro-pyran S18. The crude reaction mixture was obtained by following the general procedure for the SmI_{2} promoted cyclization using iodide $\mathbf{S 1 7}$ (80.0 $\mathrm{mg}, 0.200 \mathrm{mmol}, 1.00 \mathrm{eq}$) as starting material and was purified by flash chromatography using a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of 2.5% EtOAc/hexanes $(200 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (4 to 5) were combined and concentrated to give 2-methoxypyran S18 ($53.8 \mathrm{mg}, 0.187 \mathrm{mmol}, 93 \%$) as a clear colorless oil consisting of a single anomer: $\mathrm{R}_{f} 0.77$ (25\% EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{20}-15.3\left(c=1.030, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32-7.11(\mathrm{~m}, 5 \mathrm{H}), 4.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (dd, $J=11.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{ddd}, J=13.1,13.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (ddd, $J=13.1,13.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=13.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.09-$ $1.71(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.0$, $142.4,128.6$ (2), 128.5 (2), 126.1, 110.2, 100.4, 77.9, 48.0, 42.1, 38.1, 34.3, 34.2, 30.2, 26.0 (3); 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 48.0,16.0$ (3). $\mathrm{CH}_{2}: 110.3,42.1,38.1,34.3$, 30.2. CH: 128.6 (2), 128.5 (2), 126.1, 77.9. C: 143.0, 142.4, 100.4, 34.2; IR (neat) 3065, $3025,2958,2870,1724,1659,1603,1577,1478,1456,1392,1364,1285,1218,1147$,

1105, 1028, 933, $888 \mathrm{~cm}^{-1}$; HRMS (CI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H}): 289.2168$. Found: 289.21731; LRMS (CI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O} m / \mathrm{z}$ (M-MeO): 257.2. Found: 257.3.

Preparation of benzoic acid (R)-3-chloromethyl-1-
phenethyl-but-3-enyl ester S19. To a solution of alcohol S3 (150 mg, $0.670 \mathrm{mmol}, 1.00$ eq) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.30 \mathrm{~mL}, 0.20 \mathrm{M})$ in a 15 mL round-bottom flask at $0{ }^{\circ} \mathrm{C}$ were added pyridine ($190 \mu \mathrm{~L}, 2.34 \mathrm{mmol}, 3.50 \mathrm{eq}$), DMAP ($8.0 \mathrm{mg}, 67 \mu \mathrm{~mol}, 0.10 \mathrm{eq}$) and benzoyl chloride ($233 \mu \mathrm{~L}, 2.01 \mathrm{mmol}, 3.00 \mathrm{eq}$). After 18 h the solution was added to a mixture of pH 7 sodium potassium phosphate buffer $(0.05 \mathrm{M}, 20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 15 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of 2.5% EtOAc/hexanes $(200 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (7 to 10) were combined and concentrated to give ester S19 (221 mg, 0.672 mmol , quant.) as a clear colorless oil: $\mathrm{R}_{f} 0.73$ ($25 \% \mathrm{EtOAc} /$ hexanes); $[\alpha]_{\mathrm{D}}^{20}+9.8\left(c=1.130, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.06-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.61-$ $7.57(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.41-5.37$ (m, 1H), $5.19(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.82-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{dd}, J=14.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=14.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ - $2.01(\mathrm{~m}, 2 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.4,141.5,141.4,133.2,130.5,129.8$ (2), 128.7 (2), 128.6 (2), 128.5 (2), $126.2,118.2,72.3,48.3,38.4,36.3,32.0 ; 125 \mathrm{MHz}$

DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 118.2,48.3,38.4,36.3,32.0 . \mathrm{CH}: 133.2,129.8$ (2), 128.7 (2), 128.6 (2), 128.5 (2), 126.2, 72.3. C: 166.4, 141.5, 141.4, 130.5; IR (neat) 3084, 3062, 3027, 3002, 2953, 2926, 2861, 1789, 1715, 1645, 1601, 1584, 1495, 1451, 1358, 1313, 1272, 1175, 1112, 1069, 1026, 914, 749, 711, $667 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClO}_{2}$: C, 73.05; H, 6.44. Found: C, 73.25; H, 6.47.

Preparation of (\boldsymbol{R})-3-iodomethyl-1-phenethyl-but-3-enyl
ester S20. The crude reaction mixture was obtained by following the general procedure for the Finkelstein reaction using ester $\mathbf{S 1 9}$ ($199 \mathrm{mg}, 0.607 \mathrm{mmol}, 1.00 \mathrm{eq}$) as starting material and was purified by flash chromatography using a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $2.5 \%(300 \mathrm{~mL})$ through 5% EtOAc/hexanes (300 mL). The eluant was collected in 30 mL portions and the product containing fractions (5 to 13) were combined and concentrated to give iodide S20 ($254 \mathrm{mg}, 0.604 \mathrm{mmol}$, quant.) as a clear colorless oil: $\mathrm{R}_{f} 0.70(25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+10.4\left(c=0.955, \mathrm{CHCl}_{3}\right)$; $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.07-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}$, $2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{dddd}, J=8.4,8.4,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.72$ $(\mathrm{m}, 3 \mathrm{H}), 2.63(\mathrm{dd}, J=14.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.00(\mathrm{~m}, 2 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.3,142.7,141.4,133.2,130.5,129.8$ (2), 128.7 (2), 128.6 (2), 128.5 (2), 126.2, 117.2, 72.3, 39.5, 36.2, 23.0, 10.6; $125 \mathrm{MHz} \operatorname{DEPT}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 117.2,39.5$, 36.2, 32.0, 10.6. CH: 133.2, 129.8 (2), 128.7 (2), 128.6 (2), 128.5 (2), 126.2 72.3. C:
166.3, 142.7, 141.4, 130.5; IR (neat) 3084, 3061, 3026, 2953, 2927, 2860, 1819, 1713, $1634,1602,1584,1494,1451,1432,1399,1357,1313,1272,1218,1175,1157,1113$, 1069, 1025, 991, 910, 851, 752, $711 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{IO}_{2}: \mathrm{C}, 57.16 ; \mathrm{H}, 5.04$. Found: C, 57.42; H, 4.98.

Preparation of (2S,6R)-2-
methoxy-4-methylene-6-phenethyl-2-phenyl-tetrahydro-pyran S21 and (2R,6R)-2-methoxy-4-methylene-6-phenethyl-2-phenyl-tetrahydro-pyran S22. The crude reaction mixture was obtained by following the general procedure for the SmI_{2} promoted cyclization using iodide $\mathbf{S 2 0}(90.0 \mathrm{mg}, 0.214 \mathrm{mmol}, 1.00 \mathrm{eq})$ as starting material and was purified by flash chromatography using a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $0.5 \% \mathrm{EtOAc} /$ hexanes $(300 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (6 to 7 for the ($2 S$)-isomer S21, and 9 to 12 for the $(2 R)$-isomer $\mathbf{S 2 2}$) were each combined and concentrated to give (2S)-2methoxypyran S21 ($6.1 \mathrm{mg}, 20 \mu \mathrm{~mol}, ~ 9 \%$) and (2R)-2-methoxypyran S22 (55.2 mg, $0.179 \mathrm{mmol}, 84 \%$) as clear slightly yellow oils (93% combined yield): (2S,6R)-2-Methoxy-4-methylene-6-phenethyl-2-phenyl-tetrahydro-pyran S21: $\quad \mathrm{R}_{f} 0.77$ (25\% EtOAc/hexanes $) ;[\alpha]_{D}^{20}+32.7\left(c=0.420, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.57-$ $7.55(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 6 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.87-$ $3.83(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~d}, \mathrm{~J}=14.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-1.94(\mathrm{~m}, 3 \mathrm{H}) ; 125$
$\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.5,142.5,142.1,128.6$ (2), 128.6 (2), 128.4 (2), 128.0, 126.2 (2), 126.0, 110.5, 100.7, 70.7, 49.6, 46.8, 39.8, 38.0, $32.1 ; 125 \mathrm{MHz}$ DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 49.6 . \mathrm{CH}_{2}: 110.5,46.8,39.8,38.0,32.1 . \mathrm{CH}: 128.6$ (2), 128.6 (2), 128.4 (2), 128.0, 126.2 (2), 126.0, 70.7. C: $142.5,142.5,142.1,100.7$; IR (neat) 3084, 3062, 3027, 2982, 2941, 2861, 2828, 1717, 1657, 1622, 1603, 1575, 1495, 1449, 1435, 1418, $1373,1323,1272,1229,1203,1140,1112,1086,1043,1016,888,762,754,700,637$ cm^{-1}; HRMS (EI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}):$ 308.1776. Found: 308.1774; LRMS (EI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O} \mathrm{m} / \mathrm{z}(\mathrm{M}-\mathrm{MeO}):$ 277.2. Found: 277.2; LRMS (EI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}$ m/z (M-MeOH): 276.2. Found: 276.1.
(2R,6R)-2-Methoxy-4-methylene-6-phenethyl-2-phenyl-tetrahydro-pyran S22: $\mathrm{R}_{f} 0.73$ (25\% EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{20}-54.3\left(c=0.700, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.43$ $-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.94(\mathrm{~d}, \mathrm{~J}$ $=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=11.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{ddd}, J=$ 13.7, 13.1, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{ddd}, J=13.7,13.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.52-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=12.7,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16$ $(\mathrm{ddd}, J=13.1,13.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{ddd}, J=11.6,11.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.4,142.1,141.8,128.7$ (2), 128.6 (2), 128.5 (2), 127.8, 126.2 (2), $126.1,111.0,101.0,73.1,48.2,42.2,41.9,37.9,30.1 ; 125 \mathrm{MHz}$ DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}$: 48.2. $\mathrm{CH}_{2}: 111.0,42.2,41.9,37.9,30.1 . \mathrm{CH}: 128.7$ (2), 128.6 (2), 128.5 (2), 127.8, 126.2 (2), 126.1, 73.1. C: 142.4, 142.1, 141.8, 101.0; IR (neat) 3084, 3064, 3027, 2982, 2955, $2900,2827,1657,1603,1496,1454,1418,1362,1326,1312,1269,1233,1221,1186$, $1172,1145,1117,1073,1044,1013,991,883,872,824,787,753,698,648 \mathrm{~cm}^{-1} ;$ LRMS (EI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}):$ 308.2. Found: 308.2; LRMS (EI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}$
m/z (M-MeO): 277.2. Found: 277.2; LRMS (EI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O} \mathrm{m} / \mathrm{z}(\mathrm{M}-\mathrm{MeOH})$: 276.2. Found: 276.1.

Preparation of 3-methyl-but-2-enoic acid (R)-3-chloromethyl-1-phenethyl-but-3-enyl ester S23. To a stirring solution of alcohol S3 $(150 \mathrm{mg}, 0.670 \mathrm{mmol}, 1.00 \mathrm{eq})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.30 \mathrm{~mL}, 0.20 \mathrm{M})$ in a 15 mL round-bottomflask at $0{ }^{\circ} \mathrm{C}$ were added pyridine ($190 \mu \mathrm{~L}, 2.34 \mathrm{mmol}, 3.50 \mathrm{eq}$), DMAP ($8.0 \mathrm{mg}, 67$ $\mu \mathrm{mol}, 0.10 \mathrm{eq}$) and 3,3-dimethylacryloyl chloride ($224 \mu \mathrm{~L}, 2.01 \mathrm{mmol}, 3.00 \mathrm{eq}$). After 36 h the solution was added to a mixture of pH 7 sodium potassium phosphate buffer ($0.05 \mathrm{M}, 20 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 20$ $\mathrm{mL})$ and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 15 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $2.5 \% \mathrm{EtOAc} /$ hexanes $(200 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (6 to 9) were combined and concentrated to give ester S23 ($156 \mathrm{mg}, 0.508 \mathrm{mmol}, 76 \%$) as a clear colorless oil: $\mathrm{R}_{f} 0.82(25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+3.0\left(c=0.910, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.67-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~s}$, $1 \mathrm{H}), 5.14$ (dddd, $J=7.8,7.7,4.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.04(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{dd}, J=14.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}$, $J=14.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~d}, J=1.3 \mathrm{~Hz}$,
$3 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.4,157.2,141.7,141.6,128.6$ (2), 128.5 (2), $126.1,117.8,116.2,70.5,48.3,38.5,36.3,32.0,27.6,20.5 ; 125 \mathrm{MHz}$ DEPT $\left(\mathrm{CDCl}_{3}\right) \delta$ $\mathrm{CH}_{3}: 27.6,20.5 . \mathrm{CH}_{2}: 117.8,48.3,38.5,36.3,32.0 . \mathrm{CH}: 128.6$ (2), 128.5 (2), 126.1, 116.2, 70.5. C: 166.4, 157.2, 141.7, 141.6; IR (neat) 3084, 3062, 3027, 2937, 2917, 2861, $1714,1651,1603,1495,1446,1379,1345,1262,1227,1146,1076,1030,997,977,912$, 850, 749, 699, $669 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{ClO}_{2}$: C, 70.46; H, 7.56. Found: C, 70.67; H, 7.55.

Preparation of 3-methyl-but-2-enoic acid (R)-3-iodomethyl-1-phenethyl-but-3-enyl ester S24. The crude reaction mixture was obtained by following the general procedure for the Finkelstein reaction using ester S23 (84.0 mg , $0.270 \mathrm{mmol}, 1.00 \mathrm{eq})$ as starting material and was purified by flash chromatography using a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of 2.5% EtOAc/hexanes $(150 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (4 to 7) were combined and concentrated to give iodide S24 (106 $\mathrm{mg}, 0.266 \mathrm{mmol}, 99 \%)$ as a clear colorless oil: $\mathrm{R}_{f} 0.73(25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+6.1$ $\left(c=1.035, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.19(\mathrm{~m}$, $3 \mathrm{H}), 5.69-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{dddd}, J=7.8,7.7,4.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}$, $1 \mathrm{H}), 4.03(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{dd}, J=$ $14.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$;
$125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 166.4,157.2,143.0,141.7,128.6$ (2), 128.5 (2), 126.1, 117.0, 116.2, $70.6,39.4,36.3,32.0,27.6,20.5,10.9 ; 125 \mathrm{MHz}$ DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}$: 27.6, 20.5. $\mathrm{CH}_{2}: 117.0,39.4,36.3,32.0,10.9 . \mathrm{CH}: 128.6$ (2), 128.5 (2), 126.1, 116.2, 70.6. C: 166.4, 157.2, 143.0, 141.7; IR (neat) 3083, 3061, 3026, 3001, 2936, 2916, 2860, $1713,1650,1603,1584,1495,1452,1444,1379,1345,1308,1271,1227,1146,1113$, 1076, 1029, 978, 908, 850, 750, $699 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{IO}_{2}: \mathrm{C}, 54.28 ; \mathrm{H}, 5.82$. Found: C, 54.60; H, 5.84.

Preparation of (2R,6R)-2-methoxy-4-methylene-2-(2-methyl-propenyl)-6-phenethyl-tetrahydro-pyran S25. The crude reaction mixture was obtained by following the general procedure for the SmI_{2} promoted cyclization using iodide $\mathbf{S} 24$ ($104 \mathrm{mg}, 0.261 \mathrm{mmol}, 1.00 \mathrm{eq}$) as starting material and was purified by flash chromatography using a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $2.5 \%(50 \mathrm{~mL})$ through $5 \% \mathrm{EtOAc} /$ hexanes $(150 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (4 to 9) were combined and concentrated to give 2-methoxypyran S25 ($53.3 \mathrm{mg}, 0.186 \mathrm{mmol}, 71 \%$) as a clear slightly yellow oil: $\mathrm{R}_{f} 0.85(25 \%$ EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{20}-51.9\left(c=1.065, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.24-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.86-$ $4.83(\mathrm{~m}, 2 \mathrm{H}), 4.41-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.47(\mathrm{~m}, 1 \mathrm{H})$, $2.27-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$; $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.0,141.8,136.2,128.6$ (2), 128.4 (2), 126.1, 125.7,
$110.6,100.7,68.4,48.1,41.9,40.3,37.7,29.8,26.1,18.6 ; 125 \mathrm{MHz}$ DEPT $\left(\mathrm{CDCl}_{3}\right) \delta$ $\mathrm{CH}_{3}: 48.1,26.1,18.6 . \mathrm{CH}_{2}: 110.6,41.9,40.3,37.7,29.8 . \mathrm{CH}: 128.6$ (2), 128.4 (2), 126.1, 125.7, 68.4. C: 142.0, 141.8, 136.2, 100.7; IR (neat) 3072, 3026, 2941, 2827, 1716, 1657, $1604,1496,1454,1418,1376,1325,1269,1230,1183,1146,1116,1074,1042,1005$, 980, 940, 887, 821, 781, 750, $700 \mathrm{~cm}^{-1}$; LRMS (EI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}): 286.2$. Found: 286.2; HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O} \mathrm{m} / \mathrm{z}$ (M-MeOH): 254.1671. Found: 254.1667.

BPSO

Preparation of 3-(tert-butyl-diphenyl-silanyloxy)-propan-1-ol S26. ${ }^{8}$ To a stirring solution of $\operatorname{BPSCl}(59.1 \mathrm{~mL}, 227 \mathrm{mmol}, 1.00 \mathrm{eq})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1350 \mathrm{~mL}, 0.17$ M) in a 2000 mL round-bottom flask at room temperature were added 1,3-propanediol ($82.1 \mathrm{~mL}, 1.14 \mathrm{~mol}, 5.00 \mathrm{eq}$), triethylamine ($63.3 \mathrm{~mL}, 454 \mathrm{mmol}, 2.00 \mathrm{eq}$), and DMAP $(1.39 \mathrm{~g}, 11.4 \mathrm{mmol}, 0.05 \mathrm{eq})$. After 36 h the mixture was diluted with a mixture of 50% EtOAc/hexanes $(100 \mathrm{~mL})$ and washed with water $(250,250$ and 500 mL$)$ and brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, and purified by flash chromatography on a $7.5 \times 28 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from 3\% (4000 mL) through 5\% (1000 mL) and 20\% (4000 mL) EtOAc/hexanes. The eluant was first collected in $180,30 \mathrm{~mL}$ fractions and then in two 2000 mL round-bottom flasks. The product containing fractions (141 to 180) and the contents of the two 2000 mL round-bottom flasks were combined and concentrated under reduced pressure to give alcohol S26 ($63.2 \mathrm{~g}, 201 \mathrm{mmol}, 89 \%$ yield) as a white crystalline solid: $\mathrm{R}_{f} 0.25(25 \%$ EtOAc/hexanes); mp $39{ }^{\circ} \mathrm{C} ; 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.72-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.49-$ 7.27 (m, 6H), 3.87 (t, $J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.43(\mathrm{bs}, 1 \mathrm{H}), 1.83(\mathrm{tt}, J=5.6,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.07$
(s, 9H); $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 135.8$ (4), 133.4 (2), 130.0 (2), 128.0 (4), 63.6, 62.2, 34.4, 27.0 (3), 19.3; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3422$ (bs), 3071, 3050, 3012, 2931, 2858, 1471, $1427,1390,1361,1216,1110,966,822,756,703,612 \mathrm{~cm}^{-1}$.

Preparation of 3-(tert-butyl-diphenyl-silanyloxy)-propionaldehyde

S27. ${ }^{\text {² }}$ To a solution of oxalyl chloride $(26.3 \mathrm{~mL}, 301 \mathrm{mmol}, 1.50 \mathrm{eq})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2000$ $\mathrm{mL}, 0.10 \mathrm{M}$) in a 3000 mL three-neck round-bottom flask equipped with a mechanical stirrer at $-78{ }^{\circ} \mathrm{C}$ was slowly added a solution of dimethyl sulfoxide $(42.8 \mathrm{~mL}, 603 \mathrm{mmol}$, $3.00 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(56 \mathrm{~mL})$. After 1 h , a solution of alcohol $\mathbf{S 2 6}(63.2 \mathrm{~g}, 201 \mathrm{mmol}, 1.00$ eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added via cannula, followed, after 1 h , by slow addition of triethylamine ($140 \mathrm{~mL}, 1.00 \mathrm{~mol}$). After 1 h the cold bath was removed and the mixture warmed to $-20^{\circ} \mathrm{C}$ over a period of 40 min and pH 7 phosphate buffer $(0.05 \mathrm{M}$ aqueous solution, 400 mL) was added. The mixture was warmed to room temperature, the organic phase separated and the solvent removed under reduced pressure. The residue was diluted with $15 \% \mathrm{EtOAc} /$ hexanes $(500 \mathrm{~mL})$, and extracted with water $(2 \times 200 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, and purified by flash chromatography on a $7.5 \times 28 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $2 \%(1000 \mathrm{~mL})$ through $5 \%(1000 \mathrm{~mL}), 10 \%$ $(1000 \mathrm{~mL}), 15 \%(1000 \mathrm{~mL})$ and $20 \%(1000 \mathrm{~mL}) \mathrm{EtOAc} / \mathrm{hexanes}$ and the eluant collected in 1000 mL fractions. The product containing fractions (3 to 5) were combined and concentrated under reduced pressure to give aldehyde S27 ($60.6 \mathrm{~g}, 194 \mathrm{mmol}, 97 \%$ yield) as a clear colorless oil: $\mathrm{R}_{f} 0.56(25 \% \mathrm{EtOAc} /$ hexanes $) ; 300 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$
$9.86(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 6 \mathrm{H}), 4.08(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.65(\mathrm{td}, J=6.0,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) ; 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 202.0$, 135.7 (4), 133.4 (2), 130.0 (2), 128.0 (4), 58.4, 46.5, 26.9 (3), 19.3; IR (neat) 3050, 2932, $2858,1727,1471,1390,1256,1110,972,823,705,509 \mathrm{~cm}^{-1}$.

Preparation of (S)-1-(tert-butyl-diphenyl-silanyloxy)-5-

chloromethyl-hex-5-en-3-ol S28. The crude reaction mixture was obtained by following the general procedure for the CAA using BPS aldehyde $\mathbf{S 2 7}(1.00 \mathrm{~g}, 3.20 \mathrm{mmol})$ and was purified by flash chromatography using a $3 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient of $2.5 \%(1000 \mathrm{~mL})$ through $5 \%(1000 \mathrm{~mL})$ and 7.5% EtOAc/hexanes $(750 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (45 to 80) were combined and concentrated to give alcohol S28 (1.07 g, 2.65 $\mathrm{mmol}, 83 \%$) as a clear colorless oil. The ratio of enantiomers was determined to be $e r>$ 99: 1 (using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, er $=50: 50$) by HPLC analysis using a Daicel Chiralcel OD-H silica column, eluting with a mobile phase of 1\% 2-propanol/hexanes and a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$, which gave the retention times for the major and minor enantiomers of 19.2 and 20.8 min, respectively, detecting with a Rainin Dynamax Refractive Index Detector Model RI-1: $\mathrm{R}_{f} 0.46$ (25\% EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{20}-6.19\left(c=1.030, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.71-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 6 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.18-4.12(\mathrm{~m}, 3 \mathrm{H}), 3.94-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.81$ $-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.6,135.8$ (2), 135.7 (2), $133.2,133.1,130.1,130.1,128.0$ (2), 128.0 (2), 117.3, 69.9, 63.5, 48.6, 41.5, 38.5, 27.0
(3), 19.2; $125 \mathrm{MHz} \operatorname{DEPT}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 27.1$ (3). $\mathrm{CH}_{2}: 117.3,63.5,48.6,41.5,38.5$. CH: 135.8 (2), 135.8 (2), 130.1, 130.1, 128.1 (4), 69.9. C: 142.6, 133.2, 133.1, 19.2; IR (neat) 3500 (bs), 3071, 3050, 2953, 2931, 2858, 1471, 1427, 1390, 1111, 1082, 910, 736, $702 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{ClO}_{2} \mathrm{Si}$: C, $68.54 ; \mathrm{H}, 7.75$. Found: C, $68.60 ; \mathrm{H}, 7.69$.

Preparation of propionic acid (S)-1-[2-(tert-butyl-diphenyl-silanyloxy)-ethyl]-3-chloromethyl-but-3-enyl ester S29. To a stirring solution of alcohol S28 (182 mg, $0.452 \mathrm{mmol}, 1.00 \mathrm{eq})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL}, 0.20 \mathrm{M})$ in a 15 mL round-bottom flask at $0{ }^{\circ} \mathrm{C}$ were added pyridine ($128 \mu \mathrm{~L}, 1.58 \mathrm{mmol}, 3.50 \mathrm{eq}$), DMAP $(6.0 \mathrm{mg}, 45 \mu \mathrm{~mol}, 0.10 \mathrm{eq})$ and propionyl chloride ($118 \mu \mathrm{~L}, 1.36 \mathrm{mmol}, 3.00 \mathrm{eq})$. After 3 h the solution was added to a mixture of pH 7 sodium potassium phosphate buffer (0.05 $\mathrm{M}, 20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from 2.5\% (300 mL) through 5\% EtOAc/hexanes (300 mL). The eluant was collected in 30 mL portions and the product containing fractions (5 to 12) were combined and concentrated to give ester S29 (206 mg, 0.450 mmol , quant.) as a clear colorless oil: $\mathrm{R}_{f} 0.65(25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+11.3\left(c=1.120, \mathrm{CHCl}_{3}\right)$; $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.68-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 6 \mathrm{H}), 5.29(\mathrm{dddd}, J=$ 8.3, 8.3, 4.3, $4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.19 (s, 1H), 4.99 (s, 1H), $4.10(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J$ $=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{dd}, J=14.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=15.0$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{dd}, J=8.6,7.7 \mathrm{~Hz}, 3 \mathrm{H})$,
1.06 (s, 9H); $125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 174.1, 141.7, 135.8 (2), 135.8 (2), 133.9, $133.8,129.9$ (2), 127.9 (4), 117.7, 69.0, 60.3, 48.2, 38.6, 37.1, 27.9, 27.0 (3), 19.4, 9.4; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 27.0(3), 9.4 . \mathrm{CH}_{2}: 117.7,60.3,48.2,28.5,37.0,27.9$. CH: 135.8 (2), 135.8 (2), 129.9 (2), 127.9 (4), 69.0. C: 174.1, 141.7, 133.9, 133.8, 19.4; IR (neat) 3071, 3049, 2957, 2931, 2881, 2858, 1735, 1473, 1462, 1427, 1361, 1186, 1111, 1006, 822, 739, $702 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{ClO}_{3} \mathrm{Si}: \mathrm{C}, 68.02 ; \mathrm{H}, 7.68$. Found: C, 68.15; H, 7.66.

Preparation of (S)-1-[2-(tert-butyl-diphenyl-silanyloxy)-ethyl]-3-iodomethyl-but-3-enyl ester S30. The crude reaction mixture was obtained by following the general procedure for the Finkelstein reaction using ester S29 (107 mg, $0.234 \mathrm{mmol}, 1.00 \mathrm{eq}$) as starting material and was purified by flash chromatography using a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of 2.5% EtOAc/hexanes $(250 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (4 to 7) were combined and concentrated to give iodide S30 (86.9 $\mathrm{mg}, 0.233 \mathrm{mmol}$, quant.) as a clear colorless oil: $\mathrm{R}_{f} 0.82(25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}$ $+23.9\left(c=1.040, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.69-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.38$ $(\mathrm{m}, 6 \mathrm{H}), 5.31-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}$, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{dd}, J=14.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=14.6$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{dd}, J=7.7,7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 174.0,143.1,135.8$ (2), 135.8 (2), 133.9, 133.7, 129.8 (2), 127.9 (4), 116.9, 69.0, 60.2, 39.5, 37.0, 27.9, 27.0 (3), 19.3, 10.6, 9.4;

125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 27.0(3), 9.4 . \mathrm{CH}_{2}: 116.9,60.2,39.5,37.0,27.9,10.6$. CH: 135.8 (2), 135.8 (2), 129.8 (2), 127.9 (4), 69.0. C: 174.0, 143.1, 133.9, 133.7, 19.3; IR (neat) 3070, 3048, 2957, 2931, 2879, 2857, 1735, 1427, 1184, 1158, 1111, 1089, 1006, 738, $702 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{IO}_{3} \mathrm{Si}: \mathrm{C}, 56.72 ; \mathrm{H}, 6.41$. Found: C, 56.99; H, 6.49.

Preparation of tert-butyl-[2-((2S,6S)-6-ethyl-6-methoxy-4-

methylene-tetrahydro-pyran-2-yl)-ethoxy]-diphenyl-silane S31. The crude reaction mixture was obtained by following the general procedure for the SmI_{2} promoted cyclization using iodide $\mathbf{S 3 0}(70.0 \mathrm{mg}, 0.127 \mathrm{mmol}, 1.00 \mathrm{eq})$ as starting material and was purified by flash chromatography using a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $2.5 \% \mathrm{EtOAc} /$ hexanes $(250 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (8 to 11) were combined and concentrated to give 2-methoxypyran S31 ($55.3 \mathrm{mg}, 0.126 \mathrm{mmol}, 99 \%$) as a clear colorless oil consisting of a single anomer: $\mathrm{R}_{f} 0.69$ ($25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+19.4$ (c = 1.010, $\left.\mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.69-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 6 \mathrm{H}), 4.82-$ $4.81(\mathrm{~m}, 1 \mathrm{H}), 4.80-4.79(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H})$, $2.40(\mathrm{dd}, J=13.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=13.3,1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.09(\mathrm{~m}$, $1 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{dddd}, J=15.4,7.7,7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}, 3 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 142.3,135.8$ (4), 134.2 (2), 129.8 (2), 127.8 (4), 110.2, 101.0, 67.7, 60.5, 47.8, 41.6, 40.2, 39.2, 28.8,
27.0 (3), 19.4, 7.9; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 47.8,27.0$ (3), 7.9. $\mathrm{CH}_{2}: 110.2,60.5$, 41.5, 40.2, 39.2, 28.8. CH: 135.7 (4), 129.8 (2), 127.8 (4), 67.7. C: 142.3, 134.2 (2), 101.0, 19.4; IR (neat) 3071, 3049, 2940, 2884, 2857, 2827, 1471, 1427, 1148, 1110, 1084, 1065, 1033, 887, 822, 736, $701 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 73.92 ; \mathrm{H}$, 8.73. Found: C, 73.82; H, 8.80.

Preparation of 3-benzyloxy-propionic acid (S)-1-[2-(tert-butyl-diphenyl-silanyloxy)-ethyl]-3-chloromethyl-but-3-enyl ester S32. To a stirring solution of alcohol S28 ($100 \mathrm{mg}, 0.248 \mathrm{mmol}, 1.00 \mathrm{eq}$) and ethanol-free $\mathrm{CHCl}_{3}(2.5 \mathrm{~mL}$, 0.10 M) in a 15 mL round-bottom flask at room temperature were added 3-benzyloxypropionic acid S12 (54.0 mg, $0.298 \mathrm{mmol}, 1.20 \mathrm{eq})$, DMAP ($3.1 \mathrm{mg}, 25 \mu \mathrm{~mol}, 0.10 \mathrm{eq}$), DMAP $\cdot \mathrm{HCl}(4.0 \mathrm{mg}, 25 \mu \mathrm{~mol}, 0.10 \mathrm{eq})$ and $\mathrm{DCC}(128 \mathrm{mg}, 0.620 \mathrm{mmol}, 2.50 \mathrm{eq})$. The mixture was then diluted with ethanol-free $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$. After 14 h the mixture was added to a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic phase was washed with pH 7 sodium potassium phosphate buffer ($0.05 \mathrm{M}, 20 \mathrm{~mL}$), water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $2.5 \%(100 \mathrm{~mL})$ through $5 \%(100 \mathrm{~mL})$ and 10% EtOAc/hexanes $(200 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (19 to 33) were combined and concentrated to give ester S32 ($131 \mathrm{mg}, 0.232 \mathrm{mmol}, 94 \%$) as a clear colorless oil: $\mathrm{R}_{f} 0.69(25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}$ $+10.3\left(c=0.990, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.68-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.27$
$(\mathrm{m}, 11 \mathrm{H}), 5.32(\mathrm{dddd}, J=7.8,7.8,4.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=12.0,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{dd}, J$ $=14.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $171.2,141.5,138.3,135.8$ (2), 135.8 (2), 133.9, 133.7, 129.9 (2), 128.6 (2), 127.9 (7), $117.8,73.3,69.6,65.8,60.2,48.2,38.4,37.0,35.4,27.0$ (3), 19.3; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 27.0(3) . \mathrm{CH}_{2}: 117.8,73.3,65.8,60.2,48.2,38.4,37.0,35.5 . \mathrm{CH}: 135.8$ (2), 135.8 (2), 129.9 (2), 128.6 (2), 127.9 (7), 69.6. C: 171.2, 141.5, 138.3, 133.9, 133.7, 19.3; IR (neat) 3070, 3031, 2957, 2930, 2858, 1736, 1472, 1428, 1363, 1257, 1182, 1111, 1008, 823, 738, 702, $613 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{ClO}_{4} \mathrm{Si}: \mathrm{C}, 70.12 ; \mathrm{H}, 7.31$. Found: C, 70.05; H, 7.43.

Preparation of (S)-1-[2-(tert-butyl-diphenyl-silanyloxy)-ethyl]-3-iodomethyl-but-3-enyl ester S33. The crude reaction mixture was obtained by following the general procedure for the Finkelstein reaction using ester S32 (110 mg, $0.195 \mathrm{mmol}, 1.00 \mathrm{eq}$) as starting material and was purified by flash chromatography using a $1.5 \times 27 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $2.5 \%(400 \mathrm{~mL})$ through 5\% EtOAc/hexanes (100 mL). The eluant was collected in 10 mL portions and the product containing fractions (13 to 35) were combined and concentrated to give iodide S33 (127 mg, $0.193 \mathrm{mmol}, 99 \%)$ as a clear colorless oil: $\mathrm{R}_{f} 0.62(25 \%$ EtOAc/hexanes $) ;[\alpha]_{D}^{20}+20.9\left(c=1.070, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.68-$ $7.66(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 11 \mathrm{H}), 5.34-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.49$
$(\mathrm{s}, 2 \mathrm{H}), 4.00(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 4 \mathrm{H}), 2.62(\mathrm{dd}$, $J=14.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{dd}, J=15.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.80$ $(\mathrm{m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 171.1, 143.0, 138.3, 135.8 (2), 135.8 (2), 133.9, 133.7, 129.9 (2), 128.6 (2), 127.9 (5), 127.9 (2), 117.0, 73.3, 69.7, 65.9, 60.2, 39.4, 37.0, 35.5, 27.1 (3), 19.4, 10.7; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 27.1$ (3). $\mathrm{CH}_{2}: 117.0,73.3,65.8,60.2,39.4,37.0,35.5,10.7 . \mathrm{CH}: 135.8$ (2), 135.8 (2), 129.9 (2), 128.6 (2), 127.9 (7), 69.7. C: 171.1, 143.0, 138.3, 133.9, 133.7, 19.4; IR (neat) 3069, 3048, 3030, 2957, 2930, 2857, 1735, 1472, 1454, 1428, 1362, 1253, 1181, 1159, 1111, $1028,1008,909,823,738,702,613 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{IO}_{4} \mathrm{Si}: \mathrm{C}, 60.36 ; \mathrm{H}$, 6.29. Found: C, 60.25; H, 6.20 .

Preparation of \{2-[(2S)-6-(2-benzyloxy-ethyl)-6-methoxy-4-methylene-tetrahydro-pyran-2-yl]-ethoxy\}-tert-butyl-diphenyl-silane S34. The crude reaction mixture was obtained by following the general procedure for the SmI_{2} promoted cyclization using iodide S33 (79.0 mg, $0.120 \mathrm{mmol}, 1.00 \mathrm{eq})$ as starting material and was purified by flash chromatography using a $1.5 \times 25 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $2.5 \% \mathrm{EtOAc} /$ hexanes $(500 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (15 to 40) were combined and concentrated to give 2-methoxypyran S34 (56.4 mg, $0.104 \mathrm{mmol}, 96 \%$) as a clear colorless oil consisting of an inseparable 1:1 mixture of anomers: $\mathrm{R}_{f} 0.77$ (25\% EtOAc/hexanes); $[\alpha]_{D}^{20}$ $+0.8\left(c=1.300, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.71-7.66(\mathrm{~m}, 8 \mathrm{H}), 7.45-7.28$
$(\mathrm{m}, 22 \mathrm{H}), 4.81-4.72(\mathrm{~m}, 4 \mathrm{H}), 4.57-4.49(\mathrm{~m}, 4 \mathrm{H}), 3.90-3.70(\mathrm{~m}, 6 \mathrm{H}), 3.67-3.62(\mathrm{~m}$, $1 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.17(\mathrm{~m}$, $4 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}$, 9H); $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 142.0$ (2), 142.0, 138.6, 135.8 (2), 135.4 (4), 135.0 (2), 134.1, 134.0, 129.9 (6), 128.6 (4), 127.9 (4), 127.9 (2), 127.8 (8), 110.4 (2), 99.7 (2), $73.2,67.7,67.6$ (2), 66.9, 66.2, 60.5, 59.8, 48.1, 47.9, 42.9, 42.8, 40.1, 40.0, 39.1, 38.9, 36.2, 36.1, 27.0 (3), 26.8 (3), 19.4, 19.3; $125 \mathrm{MHz} \mathrm{DEPT}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 48.1,47.9,27.1$ (3), 26.8 (3). $\mathrm{CH}_{2}: 110.3$ (2), 73.2, 67.5, 66.9, 66.1, 60.5, 59.8, 42.9, 42.8, 40.0, 40.0, 39.1, 38.8, 36.2, 36.0. CH: 135.8 (2), 135.8 (2), 135.0 (2), 129.9 (2), 129.8 (2), 129.8 (2), 128.6 (4), 127.9 (4), 127.9 (2), 127.8 (2), 127.8 (2), 127.8 (2), 127.7 (2), 67.7, 67.6. C: 142.0 (2), 142.0, 138.6, 135.4 (2), 134.1, 134.0, 99.7 (2), 19.4, 19.3; IR (neat) 3071, 3049, 3030, 2955, 2933, 2890, 2857, 2741, 1960, 1889, 1823, 1737, 1657, 1589, 1472, $1462,1428,1362,1330,1307,1251,1221,1111,1030,999,941,888,823,737,702,613$ cm^{-1}; HRMS (EI) Calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si} \mathrm{m} / \mathrm{z}(\mathrm{M}): 544.3009$. Found: 544.3002; LRMS (EI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Si} \mathrm{m} / \mathrm{z}$ (M-MeOH): 511.2. Found: 511.1.

Preparation of (S)-3-chloromethyl-1-phenyl-but-3-en-1-ol S35. ${ }^{5}$
The crude reaction mixture was obtained by following the general procedure for the CAA using benzaldehyde ($323 \mu 1,3.18 \mathrm{mmol}, 1.00 \mathrm{eq}$) as starting material and was purified by flash chromatography using a $3.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $1 \%(300 \mathrm{~mL})$ through $5 \%(500 \mathrm{~mL}), 7.5 \%(500 \mathrm{~mL})$ and 10% $\mathrm{EtOAc} /$ hexanes $(1000 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product
containing fractions (37 to 65) were combined and concentrated to give alcohol S35 (613 $\mathrm{mg}, 3.12 \mathrm{mmol}, 98 \%$) as a clear colorless oil. The ratio of enantiomers was determined to be er $=98: 2$ (using (R)-BITIP er $=4: 96$) by HPLC analysis using a Daicel Chiralcel OD-H silica column, eluting with a mobile phase of 20\% 2-propanol/hexanes and a flow rate of $0.45 \mathrm{~mL} / \mathrm{min}$, which gave the retention times for the major and minor enantiomers of 11.4 and 12.8 min, respectively, detecting with a Rainin Dynamax Refractive Index Detector Model RI-1: $\mathrm{R}_{f} 0.38$ ($25 \% \mathrm{EtOAc} /$ hexanes); $[\alpha]_{\mathrm{D}}^{20}-42.9$ ($c=1.190, \mathrm{CHCl}_{3}$); 500 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.40-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~d}$, $J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=9.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=11.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}$, $J=11.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=14.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=14.4,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.13(\mathrm{~s}, 1 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 144.0,142.1,128.7$ (2), 128.0, 125.9 (2), 118.0, 72.7, 48.4, 43.3; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 118.0,48.4,43.3$. CH: 128.7 (2), 128.0, 125.9 (2), 72.7. C: 144.0, 142.1; IR (neat) 3550, 3392 (bs), 3084, 3063, 3030, 2947, 2920, 1645, 1603, 1493, 1453, 1401, 1360, 1309, 1258, 1201, 1081, 1052, 1018, 914, 885, 857, 757, 701, 673, $631 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{OCl}: \mathrm{C}, 67.18 ; \mathrm{H}, 6.66$. Found: C, 67.13; H, 6.60.

Preparation of propionic acid (S)-3-chloromethyl-1-phenyl-but-
3-enyl ester S36. To a stirring solution of alcohol S35 ($120 \mathrm{mg}, 0.610 \mathrm{mmol}, 1.00 \mathrm{eq}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.1 \mathrm{~mL}, 0.10 \mathrm{M})$ in a 15 mL round-bottom flask at $0^{\circ} \mathrm{C}$ were added pyridine ($173 \mu \mathrm{~L}, 2.14 \mathrm{mmol}, 3.50 \mathrm{eq}$), DMAP ($7.5 \mathrm{mg}, 61 \mu \mathrm{~mol}, 0.10 \mathrm{eq}$) and propionyl chloride
$(159 \mu \mathrm{~L}, 1.83 \mathrm{mmol}, 3.00 \mathrm{eq})$. The reaction was warmed to $4{ }^{\circ} \mathrm{C}$, and after 12 h the solution was added to a mixture of pH 7 sodium potassium phosphate buffer $(0.05 \mathrm{M}, 20$ $\mathrm{mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 20 \mathrm{~mL})$ and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 15 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $3 \% \mathrm{EtOAc} /$ hexanes $(300 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (5 to 9) were combined and concentrated to give ester $\mathbf{S 3 6}(142 \mathrm{mg}, 0.562 \mathrm{mmol}, 92 \%)$ as a clear colorless oil: R_{f} $0.80(25 \%$ EtOAc/hexanes $) ;[\alpha]_{D}^{20}-55.3\left(c=1.130, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.98(\mathrm{dd}, J=7.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{dq}, J=15.0,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{dq}, J=15.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=7.7,7.3 \mathrm{~Hz}, 3 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.7,141.1,140.3,128.7$ (2), 128.3, 126.6 (2), 118.2, 73.7, 46.3, 40.3, 27.9, 9.3; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 9.3 . \mathrm{CH}_{2}: 118.2,48.3,40.3,27.9 . \mathrm{CH}: 128.7$ (2), 128.3, 126.6 (2), 73.3. C: 173.7, 141.1, 140.3; IR (neat) 3086, 3066, 3034, 2983, 2942, 2882, 1739, 1647, 1495, 1455, 1434, 1359, 1331, 1262, 1184, 1081, 1011, 914, 753, 700, $676 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClO}_{2}$: C, $66.53 ; \mathrm{H}, 6.78$. Found: C, $66.63 ; \mathrm{H}, 6.81$.

Preparation of (S)-3-iodomethyl-1-phenyl-but-3-enyl ester S37.
The crude reaction mixture was obtained by following the general procedure for the Finkelstein reaction using ester S36 (120 mg, $0.475 \mathrm{mmol}, 1.00 \mathrm{eq})$ as starting material
and was purified by flash chromatography using a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $5 \% \mathrm{EtOAc} /$ hexanes $(200 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (2 to 5) were combined and concentrated to give iodide $\mathbf{S 3 7}(161 \mathrm{mg}, 0.467 \mathrm{mmol}, 98 \%)$ as a clear colorless oil: R_{f} $0.65(25 \%$ EtOAc/hexanes $) ;[\alpha]_{D}^{20}-13.7\left(c=1.030, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.96(\mathrm{dd}, J=8.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, $2 \mathrm{H}), 2.79-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{dq}, J=15.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dq}, J=15.0,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.14(\mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}, 3 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.7,142.5,140.3,128.7$ (2), 128.3, 126.6 (2), $117.3,73.8,41.5,28.0,10.6,9.3 ; 125 \mathrm{MHz} \mathrm{DEPT}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}$: 9.3. $\mathrm{CH}_{2}: 117.3,41.5,28.0,10.6 . \mathrm{CH}: 128.7$ (2), 128.3, 126.6 (2), 73.8. C: 173.3, 142.5, 140.5; IR (neat) 3064, 3033, 2981, 2941, 2881, 1738, 1635, 1495, 1455, 1428, 1358, 1331, 1273, 1176, 1081, 1066, 1004, 911, 758, $699 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{IO}_{2}$: C,48.85; H, 4.98. Found: C, 49.08; H, 5.01.

Preparation of (2R,6S)-2-ethyl-2-methoxy-4-methylene-6-phenyl-tetrahydro-pyran S38 and (2S,6S)-2-ethyl-2-methoxy-4-methylene-6-phenyl-tetrahydro-pyran S39. The crude reaction mixture was obtained by following the general procedure for the SmI_{2} promoted cyclization using iodide S37 ($59.1 \mathrm{mg}, 0.171 \mathrm{mmol}, 1.00 \mathrm{eq}$) as starting material and was purified by flash chromatography using a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $1 \% \mathrm{EtOAc} /$ hexanes $(200 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the
product containing fractions (4 to 6 for the $(2 R)$-isomer S38, and 7 to 13 for the $(2 S)$ isomer S39) were each combined and concentrated to give (2R)-2-methoxypyran S38 (14.3 mg, $61.6 \mu \mathrm{~mol}, 36 \%)$ and (2S)-2-methoxypyran S39 (23.0 mg, $99.0 \mu \mathrm{~mol}, 58 \%)$ as clear slightly yellow oils (94\% combined yield): (2R,6S)-2-ethyl-2-methoxy-4-methylene-6-phenyl-tetrahydro-pyran S38: $\mathrm{R}_{f} 0.81$ (25\% EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{20}-48.2$ (c $\left.=0.610, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.67(\mathrm{~m}$, $1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=13.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{dd}, J=7.7,7.3 \mathrm{~Hz}, 3 \mathrm{H}) ; 125$ $\mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 142.7,142.4,128.3$ (2), 127.9, 126.2 (2), 110.2, 100.5, 72.4, 49.5, 46.8, 39.4, 29.2, 10.2; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 49.5,10.2 . \mathrm{CH}_{2}: 110.2$, 46.8, 39.4, 29.2. CH: 128.3 (2), 127.9, 126.2 (2), 72.4. C: 142.7, 142.4, 100.5; IR (neat) 3073, 3030, 2960, 2938, 2856, 2829, 1743, 1658, 1492, 1463, 1449, 1419, 1323, 1228, $1199,1176,1149,1133,1118,1078,1041,1018,978,757,700,675,636 \mathrm{~cm}^{-1} ;$ HRMS (EI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}):$ 232.1463. Found: 232.1752; HRMS (EI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O} \mathrm{m} / \mathrm{z}$ (M-MeO): 201.1279. Found: 201.1373; HRMS (EI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O} \mathrm{m} / \mathrm{z}$ (M-MeOH): 200.1201. Found: 200.1284. (2S,6S)-2-ethyl-2-methoxy-4-methylene-6-phenyl-tetrahydro-pyran S39: $\mathrm{R}_{f} 0.73$ (25\% EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+68.1\left(c=1.370, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.43-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}$, $J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 2.30-$ $2.24(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{dq}, J=14.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dq}, J=14.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{dd}, J$ $=7.7,7.7 \mathrm{~Hz}, 3 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 142.5,142.1,128.6$ (2), 127.8, 126.3
(2), 110.7, 101.7, 73.1, 48.0, 42.1, 41.3, 28.9, 8.0; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 48.0$, 8.0. $\mathrm{CH}_{2}: 110.7,42.1,41.3,28.9 . \mathrm{CH}: 128.6$ (2), 127.8, 126.3 (2), 73.1. C: 142.5, 142.1, 101.7; IR (neat) 3072, 3030, 2971, 2943, 2899, 2828, 1739, 1655, 1496, 1455, 1437, $1419,1340,1320,1299,1226,1175,1143,1068,1049,1026,989,960,879,830,754$, 698, $656 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}): 232.1463$. Found: 232.1752; HRMS (EI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O} \mathrm{m} / \mathrm{z}$ (M-MeO): 201.1279. Found: 201.1373; HRMS (EI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$ m/z (M-MeOH): 200.1201. Found: 200.1284.

Spectroscopic data for [2-((2S,6R)-6-benzyloxymethyl-4-

 methylene-tetrahydro-pyran-2-yl)-ethoxy]-tert-butyl-diphenyl-silane $\mathbf{S 4 0}{ }^{10} \mathrm{R}_{f} 0.77$ (25\% EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{20}+3.1\left(c=1.100, \mathrm{CHCl}_{3}\right.$, er $\left.=96: 4\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.69-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 11 \mathrm{H}), 4.76-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H})$, 3.86 (ddd, $J=10.1,7.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{ddd}, J=10.5,5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.49$ (m, 3H), $3.49-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{dd}, J=12.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ $(\mathrm{dd}, J=12.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ; 125$ $\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 144.6,138.6,135.8$ (4), 134.2, 134.1, 129.7 (2), 128.6 (2), 127.9 (2), 127.8 (4), $127.8,109.0,77.7,75.7,73.6,73.4,60.6,41.1,39.3,37.7,27.1$ (3), 19.4; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 27.1$ (3). $\mathrm{CH}_{2}: 109.0,73.6,73.4,60.6,40.0,39.3$, 37.7. CH: 135.8 (4), 129.7 (2), 128.6 (2), 127.9 (2), 127.8 (4), 127.8, 77.7, 75.7. C: 144.6, 138.6, 134.2, 134.1, 19.4; IR (neat) 3070, 3049, 3030, 2998, 2939, 2932, 2889, 2857,$1652,1589,1472,1453,1428,1389,1361,1327,1309,1247,1174,1112,1029,1007$, $998,957,940,891,823,737,701,614 \mathrm{~cm}^{-1}$.

Preparation of 2-((2S,6R)-6-benzyloxymethyl-4-methylene-tetrahydro-pyran-2-yl)-ethanol S41. ${ }^{10}$ To stirring solution of pyran S40 (300 mg, 0.599 $\mathrm{mmol}, 1.00 \mathrm{eq}$) and THF ($40 \mathrm{~mL}, 15 \mathrm{mM}$), in a 100 mL round-bottom flask at room temperature was added TBAF ($659 \mu \mathrm{~L}, 0.659 \mathrm{mmol} 1.10 \mathrm{eq}$). After 4 h the solution was added to a mixture of a saturated aqueous NaHCO_{3} solution $(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200$ $\mathrm{mL})$. The organic phase was washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $15 \%(300 \mathrm{~mL})$ through 50% EtOAc/hexanes $(900 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (13 to 19) were combined and concentrated to give alcohol S41 (108 mg, $0.412 \mathrm{mmol}, 69 \%$) as a clear colorless oil: $\mathrm{R}_{f} 0.09(25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}-1.6\left(c=1.060, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J$ $=10.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, \mathrm{J}=8.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{bs}, 1 \mathrm{H}), 2.24-2.20(\mathrm{~m}, 2 \mathrm{H})$, $2.10-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 1 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.5,138.3,128.6$ (2), 127.9 (2), 127.9, 109.7, 79.5, 77.7, 73.7, 73.3, 61.8, 40.9, 38.0, 37.2; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 109.6,73.6,73.3,61.8,40.9,38.0$,
37.2. CH: 128.6 (2), 127.9 (2), 127.9, 79.4, 77.7. C: 143.5, 138.3; IR (neat) 3435 (bs), 3070, 3030, 2979, 2941, 2888, 2862, 1652, 1497, 1454, 1426, 1366, 1327, 1310, 1262, $1241,1205,1172,1097,1055,1028,999,972,941,892,738,698,659,609 \mathrm{~cm}^{-1}$.

Preparation of ((2S,6R)-6-benzyloxymethyl-4-methylene-tetrahydro-pyran-2-yl)-acetaldehyde S42. ${ }^{10}$ To a stirring solution of alcohol S41 (110 $\mathrm{mg}, 0.419 \mathrm{mmol}, 1.00 \mathrm{eq})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.20 \mathrm{~mL}, 0.10 \mathrm{M})$ in a 20 mL round-bottom flask at $-10^{\circ} \mathrm{C}$ were added Hünig's base ($512 \mu \mathrm{~L}, 2.94 \mathrm{mmol}, 7.00 \mathrm{eq}$), DMSO ($298 \mu \mathrm{~L}, 4.19$ $\mathrm{mmol}, 10.0 \mathrm{eq})$ and $\mathrm{SO}_{3} \cdot$ py ($267 \mathrm{mg}, 1.68 \mathrm{mmol}, 4.00 \mathrm{eq}$). After 1 h the mixture was added to pH 7 sodium potassium phosphate buffer $(0.05 \mathrm{M}, 30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ $\mathrm{mL})$. The organic phase was washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $10 \% \mathrm{EtOAc} /$ hexanes $(900 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (7 to 14) were combined and concentrated to give aldehyde S42 (106 mg, $0.407 \mathrm{mmol}, 97 \%)$ as a clear colorless oil: $\mathrm{R}_{f} 0.39(25 \%$ EtOAc/hexanes); $[\alpha]_{D}^{20}-2.6\left(c=1.030, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{dd}, J$ $=2.2,2.2 . \mathrm{Hz}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.80-4.79(\mathrm{~m}, 2 \mathrm{H}), 4.58$ (s, 2H), 3.87 (dddd, $J=11.3,7.5,4.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=$ $10.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=10.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=16.4,7.6,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55(\mathrm{ddd}, J=16.5,4.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.01(\mathrm{~m}, 2 \mathrm{H}) ; 125 \mathrm{MHz}$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 201.1,143.1,138.4,128.6$ (2), 127.9 (2), 127.8, 110.0, 78.0, 73.8,
73.6, 73.1, 49.8, 40.6, 37.1; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 110.0,73.6,73.1,49.8$, 40.6, 37.1. CH: 201.1, 128.6 (2), 127.9 (2), 127.8, 78.0, 73.8. C: 143.1, 138.4; IR (neat) 3071, 3030, 3006, 2981, 2893, 2860, 1726, 1653, 1497, 1454, 1422, 1382, 1363, 1323, 1310, 1205, 1172, 1106, 1048, 1029, 896, 738, 699, 668, $606 \mathrm{~cm}^{-1}$; HRMS (CI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H}):$ 261.1491. Found: 261.1481; HRMS (CI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~m} / \mathrm{z}$ (M): 260.1412. Found: 260.1416.

Preparation of ((2S,6R)-6-benzyloxymethyl-4-methylene-

 tetrahydro-pyran-2-yl)-acetic acid S43. To a stirring solution of aldehyde S42 (100 $\mathrm{mg}, 0.384 \mathrm{mmol}, 1.00 \mathrm{eq})$ in t-butanol ($5.80 \mathrm{~mL}, 66 \mathrm{mM}$) and 2-methyl-2-butene (5.80 $\mathrm{mL}, 66 \mathrm{mM})$ in a 100 mL round-bottom flask at $-5^{\circ} \mathrm{C}$ was added $\mathrm{KH}_{2} \mathrm{PO}_{4}(1.25 \mathrm{M}$ solution, $1.6 \mathrm{~mL}, 0.25 \mathrm{M})$ and then $\mathrm{NaClO}_{2}(139 \mathrm{mg}, 1.54 \mathrm{mmol}, 4.00 \mathrm{eq})$. After 4 h the mixture was added to water $(20 \mathrm{~mL})$ and acidified with $\mathrm{HCl}(2.0 \mathrm{M}$ solution) to pH 3 . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $3 \%(300 \mathrm{~mL})$ through $6 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (3 to 12) were combined and concentrated to give acid S43 ($99.7 \mathrm{mg}, 0.361 \mathrm{mmol}, 94 \%$) as a clear colorless oil: $\mathrm{R}_{f} 0.09(25 \%$ EtOAc/hexanes); $\mathrm{R}_{f} 0.60\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{\mathrm{D}}^{20}+3.4\left(c=0.886, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}$ ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 10.4(\mathrm{bs}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 4.74-4.72$(m, 2H), $4.53(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dddd}, J=11.6,7.7$, $5.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=10.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=10.3$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=15.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=15.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.24$ $(\mathrm{m}, 1 \mathrm{H}), 2.20-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 2 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 175.6, 142.7, 138.3, 128.6 (2), 127.9 (2), 127.8, 110.3, 78.0, 74.7, 73.6, 72.9, 41.1, 40.2, 36.9; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 110.3,73.6,72.9,41.1,40.2,36.9$. CH: 128.6 (2), 127.9 (2), 127.8, 78.0, 74.7. C: 175.6, 142.7, 138.3; IR (neat) 3166, 3069, 3031, 2981, 2940, 2894, 2866, 2703, 2688, 2653, 1732, 1713, 1652, 1497, 1454, 1422, 1363, 1328, 1292, $1261,1208,1162,1102,1075,1028,947,896,738,698,651,608 \mathrm{~cm}^{-1} ;$ HRMS (CI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H}):$ 277.3355. Found: 277.1422.

Preparation of ((2S,6R)-6-benzyloxymethyl-4-methylene-tetrahydro-pyran-2-yl)-acetic acid (S)-1-[2-(tert-butyl-diphenyl-silanyloxy)-ethyl]-3-chloromethyl-but-3-enyl ester S44. To a stirring solution of alcohol S28 (54.0 mg, $0.135 \mathrm{mmol}, 1.00 \mathrm{eq})$, acid S43 ($41.0 \mathrm{mg}, 0.148 \mathrm{mmol}, 1.10 \mathrm{eq}$) and THF ($2.10 \mathrm{~mL}, 0.20$ M) in a 5 mL vial at room temperature was added DMAP ($1.6 \mathrm{mg}, 13 \mu \mathrm{~L}, 0.10 \mathrm{eq}$), DMAP $\cdot \mathrm{HCl}(2.1 \mathrm{mg}, 13 \mu \mathrm{~L}, 0.10 \mathrm{eq})$ and EDCI ($65 \mathrm{mg}, 0.337 \mathrm{mmol}, 2.50 \mathrm{eq}$), and the mixture was heated to $50^{\circ} \mathrm{C}$. After 36 h the mixture was cooled to room temperature and added to a mixture of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $5 \%(300 \mathrm{~mL})$ through $10 \% \mathrm{EtOAc} /$ hexanes $(300 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (7 to 13) were combined and concentrated to give ester $\mathbf{S} 44(75.7 \mathrm{mg}, 0.115 \mathrm{mmol}, 85 \%)$ as a clear colorless oil: R_{f} 0.79 (25\% EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{20}+4.8\left(c=1.060, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $7.68-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.26(\mathrm{~m}, 11 \mathrm{H}), 5.35-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}$, $1 \mathrm{H}), 4.77(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 3 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{dd}, J=$ $10.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.03$ (dd, $J=12.2,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=12.2,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.06$ (s, 9H); $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 170.5, 143.4, 141.6, 138.5, 135.8 (2), 135.8 (2), $133.9,133.7,129.9$ (2), 128.6 (2), 127.9 (6), 127.8, 117.7, 109.8, 77.7, 75.1, 73.6, 73.1, 69.6, 60.3, 48.2, 41.7, 40.5, 38.4, 37.3, 37.1, 27.0 (3), 19.3; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta$ $\mathrm{CH}_{3}: 27.0(3) . \mathrm{CH}_{2}: 117.7,109.8,73.6,73.1,60.3,48.2,41.7,40.4,38.4,37.3,37.1 . \mathrm{CH}:$ 135.8 (2), 135.8 (2), 129.9 (2), 128.6 (2), 127.9 (6), 127.8, 77.7, 75.1, 69.9. C: 170.5, $143.4,141.6,138.5,133.9,133.7,19.3$; IR (neat) $3071,3030,2956,2931,2892,2858$, 1737, 1653, 1589, 1472, 1453, 1428, 1390, 1362, 1328, 1259, 1217, 1155, 1111, 1029, $1008,975,897,823,738,702,668,614 \mathrm{~cm}^{-1}$; HRMS (CI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{ClO}_{5} \mathrm{Si} \mathrm{m} / \mathrm{z}$ (M+H): 661.3116. Found: 661.3105.

Preparation of ((2S,6R)-6-benzyloxymethyl-4-methylene-
tetrahydro-pyran-2-yl)-acetic acid (S)-1-[2-(tert-butyl-diphenyl-silanyloxy)-ethyl]-3-iodomethyl-but-3-enyl ester S45. The crude reaction mixture was obtained by following the general procedure for the Finkelstein reaction using ester S44 (40.0 mg , $60.0 \mu \mathrm{~mol}, 1.00 \mathrm{eq})$ as starting material and was purified by flash chromatography using a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $2.5 \%(50 \mathrm{~mL})$ through 5\% EtOAc/hexanes (150 mL). The eluant was collected in 10 mL portions and the product containing fractions (7 to 13) were combined and concentrated to give iodide S45 (44.8 mg, $59.5 \mu \mathrm{~mol}, 99 \%)$ as a clear colorless oil: $\mathrm{R}_{f} 0.85$ (25% EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{20}+11.4\left(c=1.516, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.68-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.45-$ $7.26(\mathrm{~m}, 11 \mathrm{H}), 5.32-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.74(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.73-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{dd}, \mathrm{J}=9.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.55(\mathrm{~m}$, $2 \mathrm{H}), 2.44(\mathrm{dd}, J=14.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=15.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.24(\mathrm{~m}, 2 \mathrm{H})$, $2.03(\mathrm{dd}, J=12.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dd}, J=12.4,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 2 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.5,143.4,143.0,138.5,135.8$ (2), 135.8 (2), 133.8, 133.7, 129.9 (2), 128.6 (2), 127.9 (6), 127.8, 116.9, 109.8, 77.7, 75.1, 73.6, 73.1, 69.6, 60.3, 41.8, 40.5, 39.4, 37.3, 37.1, 27.1 (3), 19.4, 10.6; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 27.1$ (3). $\mathrm{CH}_{2}: 116.9,109.8,73.6,73.1,60.3,41.8,40.5,39.4,37.3,37.1$, 10.6. CH: 135.8 (2), 135.8 (2), 129.9 (2), 128.6 (2), 127.9 (6), 127.8, 77.7, 75.1, 69.6. C:
$170.5,143.4,143.0,138.5,133.8,133.7,19.4$; IR (neat) $3070,3030,2955,2931,2891$, $2857,1737,1652,1634,1589,1472,1428,1389,1362,1328,1259,1217,1191,1156$, 1111, 1028, 998, 973, 904, 823, 738, 702, $614 \mathrm{~cm}^{-1}$; HRMS (CI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{IO}_{5} \mathrm{Si}^{2}$ m/z (M+H): 753.2472. Found: 753.2487.

methylene-tetrahydro-pyran-2-ylmethyl)-6-methoxy-4-methylene-tetrahydro-pyran-2-yll-ethoxy\}-tert-butyl-diphenyl-silane S46. The crude reaction mixture was obtained by following the general procedure for the SmI_{2} promoted cyclization using iodide $\mathbf{S 4 5}$ (20.9 mg, $27.7 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) as starting material and was purified by flash chromatography using a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $5 \% \mathrm{EtOAc} /$ hexanes $(250 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (8 to 16) were combined and concentrated to give 2 methoxypyran S46 (16.1 mg, $25.1 \mu \mathrm{~mol}, 91 \%$) as a clear colorless and viscous oil: R_{f} $0.65(25 \%$ EtOAc$/$ hexanes $) ;[\alpha]_{D}^{20}+15.1\left(c=0.780, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.70-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.28(\mathrm{~m}, 11 \mathrm{H}), 4.81-4.72(\mathrm{~m}, 4 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.88-$ $3.74(\mathrm{~m}, 3 \mathrm{H}), 3.56-3.49(\mathrm{~m}, 4 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, J=$ $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{dd}, \mathrm{J}$ $=14.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $144.5,142.4,138.6,135.8$ (3), 134.2 (2), 129.8 (2), 128.6 (3), 127.9, 127.8 (4), 127.8, $127.7,110.1,109.2,99.8,77.5,75.2,73.6,73.5,67.8,60.6,48.1,42.6,42.5,42.0,39.9$,
39.2, 37.3, 27.1 (3), 19.4; $125 \mathrm{MHz} \operatorname{DEPT}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 48.2$, 27.1 (3). $\mathrm{CH}_{2}: 110.1$, $109.3,73.6,73.5,60.6,42.6,42.5,42.0,39.9,39.2,37.3$. CH: 135.8 (3), 129.8 (2), 128.6 (3), 127.9, 127.9 (4), 127.8, 127.7, 77.5, 75.2, 67.8. C: 144.5, 142.4, 138.6, 134.2 (2), 99.8, 19.4; $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.79-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.09(\mathrm{~m}, 13 \mathrm{H}), 4.85$ (s, 1H), $4.84(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.46$ $(\mathrm{dd}, J=9.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=10.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~d}, J=13.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 3 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.79$ $(\mathrm{m}, 2 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 145.3,143.0$, $139.8,136.5$ (3), 134.9, 134.9, 130.5 (2), 129.1, 128.9 (5), 128.5 (2), 128.3, 128.1, 110.7, 109.7, 100.6, 78.3, 75.7, 74.3, 73.9, 68.5, 61.5, 48.2, 43.5, 43.4, 42.7, 40.8, 40.0, 38.1, 27.7 (3), 20.0; $125 \mathrm{MHz} \operatorname{DEPT}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta \mathrm{CH}_{3}: 48.2$, 27.7 (3). $\mathrm{CH}_{2}: 110.7,109.7$, 74.3, 73.9, 61.5, 43.5, 43.4, 42.7, 40.8, 40.0, 38.1. CH: 136.6 (3), 130.5 (2), 129.1, 128.9 (5), 128.6 (2), 128.3, 128.2, 78.3, 75.7, 68.5. C: 145.3, 143.0, 139.8, 134.9, 134.9, 100.6, 20.0; IR (neat) 3071, 2951, 2932, 2892, 2857, 1738, 1652, 1471, 1455, 1428, 1389, 1362, $1331,1311,1224,1179,1111,1029,1008,950,890,823,737,701,613 \mathrm{~cm}^{-1} ;$ HRMS (EI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{O}_{4} \mathrm{Si} \mathrm{m} / \mathrm{z}$ (M-MeO): 609.3400. Found: 609.3333; HRMS (EI) Calcd for $\mathrm{C}_{39} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si} \mathrm{m} / \mathrm{z}(\mathrm{M}-\mathrm{MeOH}): 608.3297$. Found: 608.3322; LRMS (EI) Calcd for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{Si} \mathrm{m} / \mathrm{z}$ (M-MeOH-tBu): 551.3. Found: 551.2; LRMS (EI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{Si}$ m/z (M-MeOH-Bn): 517.3. Found: 551.2.

Preparation of 16-hydroxy-hexadecanethioic acid S-ethyl ester
S47. ${ }^{11}$ To a stirring solution of 16-hydroxyhexadecanoic acid ($500 \mathrm{mg}, 1.84 \mathrm{mmol}, 1.00$ eq) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL}, 1.0 \mathrm{M})$ in a 50 mL round-bottom flask at $0{ }^{\circ} \mathrm{C}$ was added DMAP ($22.0 \mathrm{mg}, 0.184 \mathrm{mmol}, 0.10 \mathrm{eq}$), ethane thiol ($544 \mu \mathrm{~L}, 7.34 \mathrm{mmol}, 4.00 \mathrm{eq}$) and DCC ($757 \mathrm{mg}, 3.67 \mathrm{mmol}, 2.00 \mathrm{eq}$) and the ice bath was allowed to expire over a period of 10 h . The mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and filtered through a plug of silica gel. The organic phase was washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and silica gel (ca. 1 g$)$ was added. The mixture was carefully concentrated under reduced pressure and the residue purified by flash chromatography on a $3.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $10 \%(500 \mathrm{~mL})$ through $15 \%(500 \mathrm{~mL})$ and 20% EtOAc/hexanes $(500 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (20 to 40) were combined and concentrated to give ester $\mathbf{S 4 7}(508 \mathrm{mg}, 1.61 \mathrm{mmol}, 87 \%)$ as a white crystalline solid: $\mathrm{R}_{f} 0.39$ (25% EtOAc/hexanes); mp $59{ }^{\circ} \mathrm{C}$; $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 3.67-3.63(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.62(\mathrm{~m}$, $2 H), 1.60-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 26 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 200.1, 63.3, 44.4, 33.0, 29.8 (4), 29.8 (3), 29.6, 29.5, 29.2, $26.0,25.9,23.4,15.0 ; 125 \mathrm{MHz}$ DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 15.0 . \mathrm{CH}_{2}: 63.3,44.4,33.0,29.8$ (7), 29.6, 29.5, 29.2, 26.0, 25.9, 23.4. C: 200.1; IR (neat) 3228 (bs), 2917, 2849, 1692, 1462, 1404, 1058, 1024, 978, 959, $769,728,719,613 \mathrm{~cm}^{-1}$.

Preparation of 16-oxo-hexadecanethioic acid S-ethyl ester S48.
To a solution of ester $\mathbf{S 4 7}(400 \mathrm{mg}, 1.26 \mathrm{mmol}, 1.00 \mathrm{eq})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL}, 0.10 \mathrm{M})$ in a 50 mL round-bottom flask at $-10^{\circ} \mathrm{C}$ was added Hünig's base $(1.55 \mathrm{~mL}, 8.86 \mathrm{mmol}$, $7.00 \mathrm{eq})$, $\mathrm{DMSO}(897 \mu \mathrm{~L}, 12.6 \mathrm{mmol}, 10.0 \mathrm{eq})$ and $\mathrm{SO}_{3} \bullet$ py $(805 \mathrm{mg}, 5.06 \mathrm{mmol}, 4.00$ eq). After 2 h the mixture was added to pH 7 sodium phosphate buffer ($0.05 \mathrm{M}, 40 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $3.5 \times 15 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $10 \% \mathrm{EtOAc} /$ hexanes $(500 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (5 to 10) were combined and concentrated to give aldehyde S48 ($382 \mathrm{mg}, 1.22 \mathrm{mmol}, 96 \%$) as a white crystalline solid: $\mathrm{R}_{f} 0.86(25 \% \mathrm{EtOAc} /$ hexanes $) ; \mathrm{mp} 41{ }^{\circ} \mathrm{C} ; 500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{~d}, \mathrm{~J}$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{td}, J=7.3,2.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 23 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 203.2, $200.0,44.3,44.1,29.8$ (2), 29.8 (2), 29.6 (2), 29.5, 29.5, 29.4, 29.2, 25.9, 23.4, 22.3, 15.0; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 15.0 . \mathrm{CH}_{2}: 44.3,44.1,29.8$ (2), 29.8 (2), 29.6 (2), 29.6, 29.5, 29.4, 29.2, 25.9, 23.4, 22.3. CH: 203.2. C: 200.0; IR (neat) 2916, 2849, 2740, $1714,1692,1471,1462,1405,1374,1357,1328,1279,1264,1235,1189,1087,1058$, 1039, 1015, 984, 961, 897, 770, 726, 719, 699, $657 \mathrm{~cm}^{-1}$; HRMS (CI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H}): 315.2358$. Found: 315.2353.

Preparation of (R)-18-chloromethyl-16-hydroxy-nonadec-18-
enethioic acid S-ethyl ester S49. The crude reaction mixture was obtained by following the general procedure for the CAA using aldehyde $\mathbf{S 4 8}(270 \mathrm{mg}, 0.858 \mathrm{mmol}, 1.00 \mathrm{eq})$ as starting material and was purified by flash chromatography using a $3.5 \times 15 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from 7.5% (1000 mL) through 10% EtOAc/hexanes (1000 mL). The eluant was collected in 30 mL portions and the product containing fractions (31 to 57) were combined and concentrated to give alcohol S49 (288 $\mathrm{mg}, 0.711 \mathrm{mmol}, 83 \%$) as a clear colorless oil. The ratio of enantiomers was determined to be er $>97: 3$ by HPLC analysis using a Daicel Chiralcel OD-H silica column, eluting with a mobile phase of 5% 2-propanol/hexanes and a flow rate of $0.45 \mathrm{~mL} / \mathrm{min}$, which gave the retention times for the major and minor enantiomers of 13.8 and 14.9 min , respectively, detecting with a Rainin Dynamax Refractive Index Detector Model RI-1: R R_{f} $0.52(25 \%$ EtOAc$/$ hexanes $) ; \mathrm{R}_{f} 0.48(20 \%$ acetone $/$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+0.8(c=0.990$, $\left.\mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{dd}, J=14.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=14.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-162$ $(\mathrm{m}, 2 \mathrm{H}), 1.60-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 24 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 200.1,142.7,117.6,69.8,48.4,44.3,41.7,37.6,29.8$ (4), 29.8 (3), 29.6, 29.5, 29.2, 25.9 (2), 23.4, 15.0; $125 \mathrm{MHz} \operatorname{DEPT}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 15.0 . \mathrm{CH}_{2}: 117.6,48.4$,
$44.3,41.7,37.6,29.8$ (4), 29.8 (3), 29.6, 29.5, 29.2, 25.9 (2), 23.4. CH: 69.8. C: 200.1, 142.7; IR (neat) $3509,3389,3359,3330,2917,2849,1689,1675,1468,1408,1376$, 1262, 1119, 1092, 1070, 1038, 1009, 959, 905, 868, 768, 748, $719 \mathrm{~cm}^{-1} ;$ HRMS (CI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{ClO}_{2} \mathrm{~S} \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H}): 405.2594$. Found: 405.2601 .

Preparation of (R)-16-(tert-butyl-dimethyl-silanyloxy)-18-chloromethyl-nonadec-18-enethioic acid \boldsymbol{S}-ethyl ester S50. To a stirring solution of alcohol S49 ($160 \mathrm{mg}, 0.395 \mathrm{mmol}, 1.00 \mathrm{eq}$) and DMF ($2.6 \mathrm{~mL}, 0.15 \mathrm{M}$) in a 15 mL round-bottom flask at $0^{\circ} \mathrm{C}$ was added imidazole ($67.2 \mathrm{mg}, 0.987 \mathrm{mmol}, 2.50 \mathrm{eq}$), DMAP $(8.9 \mathrm{mg}, 79 \mu \mathrm{~mol}, 0.10 \mathrm{eq})$ and $\mathrm{TBSCl}(143 \mathrm{mg}, 0.948 \mathrm{mmol}, 2.40 \mathrm{eq})$ and the ice bath was allowed to expire over a period of 14 h . The solution was then added to a mixture of a saturated aqueous NaHCO_{3} solution $(30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic phase was washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 15 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $5 \% \mathrm{EtOAc} /$ hexanes $(600 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (4 to 5) were combined and concentrated to give ester S50 (205 mg, 0.395 mmol, quant.) as a clear colorless liquid: $\mathrm{R}_{f} 0.92(25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+2.5(c=$ $\left.1.010, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dddd}, J=6.0,6.0,6.0,5.6, \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{q}, J=$
$7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{dd}, J=13.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=13.7$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 25 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 200.0,142.8,117.2,71.4,49.0$, $44.4,40.9,37.2,30.0,29.9$ (4), 29.8 (2), 29.7, 29.5, 29.2, 26.1 (3), 25.9, 25.5, 23.4, 18.3, 15.0, -4.2, -4.3; $125 \mathrm{MHz} \operatorname{DEPT}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 26.1$ (3), 15.0, -4.2, -4.3. $\mathrm{CH}_{2}: 117.2$, 49.0, 44.4, 40.9, 37.2, 30.0, 29.9 (4), 29.8 (2), 29.6, 29.5, 29.2, 25.9, 25.5, 23.4. CH: 71.3. C: 200.0, 142.8, 18.3; IR (neat) 2928, 2855, 1732, 1694, 1645, 1471, 1463, 1435, 1412, $1388,1372,1361,1256,1059,1005,968,939,908,836,809,775,752,722,665 \mathrm{~cm}^{-1}$; HRMS (CI) Calcd for $\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{ClO}_{2} \mathrm{SSi} m / z(\mathrm{M}+\mathrm{H}): 519.3459$. Found: 519.3453; LRMS (CI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{49} \mathrm{O}_{2} \mathrm{SSi} \mathrm{m} / \mathrm{z}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Cl}\right)$: 429.3. Found: 429.2; LRMS (CI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{OS} m / \mathrm{z}$ (M-Cl-TBSO-H): 351.3. Found: 351.1.

Preparation of (R)-17-(tert-butyl-dimethyl-silanyloxy)-19-chloromethyl-icos-19-en-2-one S51. To a stirring solution of ester S50 (450 mg, 0.866 $\mathrm{mmol}, 1.00 \mathrm{eq})$ and a $4: 1$ mixture of THF and water $(84 \mathrm{~mL}, 0.01 \mathrm{M})$ in a 500 mL roundbottom flask at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(354 \mathrm{mg}, 8.44 \mathrm{mmol}, 9.7 \mathrm{eq})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ solution, $1.91 \mathrm{~mL}, 16.9 \mathrm{mmol}, 19.5 \mathrm{eq})$. After 30 min the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(150 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. An aqueous solution of $\mathrm{HCl}(2 \mathrm{M})$ was added dropwise until reaching pH 2 . The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and the combined organic phase was washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and
concentrated under reduced pressure. The residue was purified by flash chromatography on a $2.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from 5:95 EtOAc/hexanes (300 mL), 1:15:84 MeOH/EtOAc/hexanes (300 mL) through 2:15:83 $\mathrm{MeOH} / \mathrm{EtOAc} /$ hexanes $(300 \mathrm{~mL})$. The eluant was collected in 30 mL portions and the product containing fractions (12 to 29) were combined and concentrated to give acid S51 ($396 \mathrm{mg}, 0.832 \mathrm{mmol}, 96 \%$) as a clear colorless oil: $\mathrm{R}_{f} 0.69\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $[\alpha]_{\mathrm{D}}^{20}$ $+1.5\left(c=1.194, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.11$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dddd}, J=6.0,6.0,6.0,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.39-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.30(\mathrm{dd}, J=14.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.41(\mathrm{~m}$, $2 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 22 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), \mathrm{C}_{1} \mathrm{OOH}$ not detected; $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 179.4,142.9,117.2,71.4,49.0,41.0,37.2,34.2,30.0$ (2), 29.9 (4), 29.7, 29.5, 29.3, 26.1 (3), 25.5, 25.0, 23.0, 18.3, -4.2, -4.3; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}: 26.1$ (3), -4.2, -4.3. $\mathrm{CH}_{2}: 117.2,49.0,41.0,37.2,34.2,30.0$ (2), 29.9 (4), 29.7, 29.5, 29.3, 25.5, 25.0, 23.0. CH: 71.4. C: 179.4, 142.9, 18.3; IR (neat) 3081, 2926, 2855, 2737, 2709, 2681, 1738, 1712, 1463, 1447, 1435, 1412, 1387, 1361, 1256, 1174, 1093, 1076, 1006, 939, 908, 836, 809, 775, 751, $663 \mathrm{~cm}^{-1}$; HRMS (CI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{ClO}_{3} \mathrm{Si} \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H}): 475.3374$. Found: 475.3367; LRMS (CI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{Si} \mathrm{m} / \mathrm{z}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{Cl}\right)$: 385.3. Found: 385.2; LRMS (CI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}$ (M-Cl-TBSO-H): 307.3. Found: 307.2.

Preparation of (R)-18-chloromethyl-16-hydroxy-nonadec-18-
enoic acid S52. To a 100 mL round-bottom flask containing acid $\mathbf{S 5 1}(120 \mathrm{mg}, 0.253$ $\mathrm{mmol}, 1.00 \mathrm{eq})$ at room temperature was added a $3: 1: 1$ solution of $\mathrm{AcOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(26$ $\mathrm{mL}, 0.01 \mathrm{M})$. After 36 h the solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ and hexanes (30 mL), and the organic phase was washed with brine $(2 \times 15 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from 1:15:84 MeOH/EtOAc/hexanes (200 mL) through 2:15:83 MeOH/EtOAc/hexanes (100 mL). The eluant was collected in 30 mL portions and the product containing fractions (6 to 12) were combined and concentrated to give seco-acid S52 $83.3 \mathrm{mg}, 0.231 \mathrm{mmol}$, 91\%) as a white solid: $\mathrm{R}_{f} 0.68\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{mp} 42{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+2.4(c=0.420$, $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dddd}, J=12.0,6.0,3.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=14.6$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=14.6,9.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 21 \mathrm{H}), \mathrm{C}_{1} \mathrm{OOH}$ and $\mathrm{C}_{16} \mathrm{OH}$ not observed; $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 178.9$ (bs), 142.7, 117.6, 69.9, 48.4, 41.7, 37.6, 34.0, 29.8, 29.8 (5), 29.7, 29.6, 29.4, 29.3, 25.9, 24.9; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 117.6,48.5,41.7,37.6,34.1,29.8$ (6), 29.7, 29.6, 29.4, 29.3, 25.9, 24.9. CH: 69.9. C: 178.9, 142.7; $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.13$ $(\mathrm{d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.86(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=14.4$,
$3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{dd}, J=14.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.81(\mathrm{~m}$, $2 \mathrm{H}), 1.79-1.50(\mathrm{~m}, 24 \mathrm{H}), \mathrm{C}_{1} \mathrm{OOH}$ and $\mathrm{C}_{16} \mathrm{OH}$ not observed; $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta 179.8,143.4,128.7,117.1,70.1,48.7,42.1,38.1,34.5,30.5(5), 30.3,30.1,29.9,29.7$, 26.4, 25.4; 125 MHz DEPT $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta \mathrm{CH}_{2}: 128.7,117.1,48.7,42.1,38.1,34.5,30.4$ (5), 30.3, 30.1, 29.9, 29.7, 26.4, 25.4. CH: 70.1. C: 179.8, 143.4; IR (neat) 3347, 3243, 2917, 2849,2673 (bs), 1704, 1470, 1434, 1411, 1338, 1259, 1204, 1121, 1089, 1068, 923, 870, 857, 753, 719, $683 \mathrm{~cm}^{-1}$; HRMS (CI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{ClO}_{3} \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H}): 361.2509$. Found: 361.2494.

Preparation of (R)-17-(2-chloromethyl-allyl)-oxacycloheptadecan-

2-one S53. To a stirring solution of seco-acid S52 ($38.8 \mathrm{mg}, 107 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) and THF ($3.6 \mathrm{~mL}, 0.03 \mathrm{M}$) in a 50 mL pear-shaped flask at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{~N}(39.0 \mu \mathrm{~L}$, $0.279 \mathrm{mmol}, 2.60 \mathrm{eq})$ and 2,4,5-trichlorobenzoyl chloride ($22.0 \mu \mathrm{~L}, 140 \mu \mathrm{~mol}, 1.30 \mathrm{eq}$). After 5 min the mixture was warmed to room temperature. After 3 h , TLC analysis showed consumption of the seco-acid starting material (mixed anhydride $\mathrm{R}_{f} 0.23(25 \%$ EtOAc/hexanes) and a 3:1 mixture of toluene and THF (25 mL) was added. The mixture was transferred into a gas-tight glass-syringe and diluted with a $3: 1$ mixture of toluene and THF to a total volume of 50 mL . The mixture was added by syringe pump over a period of 12 h to a solution of DMAP ($263 \mathrm{mg}, 2.15 \mathrm{mmol}, 20.0 \mathrm{eq}$) and toluene (72.0 $\mathrm{mL}, 1.50 \mathrm{mM}$) in a 500 mL round-bottom flask at $45^{\circ} \mathrm{C}$; during the addition the tip of the
hypodermic needle was adjusted to barely maintain contact with the surface of the reaction mixture. After the addition was complete the residue was washed into the reaction mixture with a $3: 1$ mixture of toluene and THF $(20 \mathrm{~mL})$, and the temperature maintained at $45^{\circ} \mathrm{C}$ for an additional 2 h . The organic phase was then diluted with 15% EtOAc/hexanes $(300 \mathrm{~mL})$, washed with water $(3 \times 100 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from $1 \%(100 \mathrm{~mL})$ through $5 \% \mathrm{EtOAc} /$ hexanes $(100 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (5 to 10) were combined and concentrated to give macrolactone S53 (33.9 mg, $98.9 \mathrm{mmol}, 92 \%)$ as a clear colorless oil: $\mathrm{R}_{f} 0.92$ ($25 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{\mathrm{D}}^{20}+18.3\left(c=1.480, \mathrm{CHCl}_{3}\right) ; 500$ $\mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.14-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~d}, \mathrm{~J}=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=14.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=$ $15.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.40-$ $1.23(\mathrm{~m}, 21 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 173.8,141.8,117.6,71.7,48.3,38.9,34.7$ (2), 28.5, 28.5, 28.4, 27.9, 27.8, 27.2, 27.1 (2), 27.1, 26.8, 25.1, 25.0; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 117.6,48.2,38.9,34.7$ (2), 28.5, 28.4, 28.4, 27.9, 27.8, 27.2, 27.1 (2), 27.0, 26.8, 25.1, 25.0. CH: 71.7. C: 173.8, 141.8; IR (neat) 2928, 2857, 1732, 1646, 1580, 1459, 1372, 1251, 1181, 1109, 1061, 912, 752, $678 \mathrm{~cm}^{-1}$; HRMS (CI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{ClO}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H}): 343.2404$. Found: 343.2408; LRMS (CI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{2}$ m/z (M-Cl): 307.3. Found: 307.2.

Preparation of (R)-17-(2-iodomethyl-allyl)-oxacycloheptadecan-2-
one S54. The crude reaction mixture was obtained by following the general procedure for the Finkelstein reaction using macrolactone $\mathbf{S} 53(14.0 \mathrm{mg}, 40.8 \mu \mathrm{~mol}, 1.00 \mathrm{eq})$ as starting material and was purified by flash chromatography using a $1.5 \times 18 \mathrm{~cm}$ silica gel column eluting with a solvent gradient from 2.5\% (50 mL) through 5\% EtOAc/hexanes $(150 \mathrm{~mL})$. The eluant was collected in 10 mL portions and the product containing fractions (3 to 6) were combined and concentrated to give iodide S54 ($17.2 \mathrm{mg}, 39.6$ $\mu \mathrm{mol}, 97 \%)$ as a clear colorless oil: $\mathrm{R}_{f} 0.91$ (25\% EtOAc/hexanes); $[\alpha]_{\mathrm{D}}^{20}+34.6$ ($c=$ $\left.0.905, \mathrm{CHCl}_{3}\right) ; 500 \mathrm{MHz}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~s}$, $1 \mathrm{H}), 4.03(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=14.6,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{dd}, J=14.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.55(\mathrm{~m}$, $4 \mathrm{H}), 1.40-1.24(\mathrm{~m}, 21 \mathrm{H}) ; 125 \mathrm{MHz}{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 173.8,143.2,116.8,71.8,39.9$, 34.7, 34.6, 28.5, 28.4, 28.4, 27.9, 27.8, 27.2, 27.1 (2), 27.1, 26.8, 25.1, 25.0, 10.7; 125 MHz DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{2}: 116.8,39.9,34.7,34.7,28.5,28.5,28.4,27.9,27.8,27.2$, 27.1 (2), 27.1, 26.8, 25.1, 25.0, 10.5. CH: 71.8. C: 173.8, 143.2; IR (neat) 2927, 2856, 1732, 1460, 1440, 1372, 1349, 1238, 1160, 1111, 1061, 906, $717 \mathrm{~cm}^{-1}$; HRMS (CI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{IO}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}+\mathrm{H}): 435.1760$. Found: 435.1777; LRMS (CI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{2}$ m/z (M+H-I): 307.3. Found: 307.2

Preparation of (1S,16R)-1-methoxy-18-methylene-20-oxa-
bicyclo[14.3.1]icosane S55. The crude reaction mixture was obtained by following the general procedure for the SmI_{2} promoted cyclization using iodide $\mathbf{S} 54(11.2 \mathrm{mg}, 25.8$ $\mu \mathrm{mol}, 1.00 \mathrm{eq})$ as starting material and was purified by flash chromatography using a 1.5 $\times 18 \mathrm{~cm}$ silica gel column eluting with a solvent mixture of $2.5 \% \mathrm{EtOAc} /$ hexanes (150 mL). The eluant was collected in 10 mL portions and the product containing fractions (3 to 4) were combined and concentrated to give 2-methoxypyran S55 (7.3 mg, $22.6 \mu \mathrm{~mol}$, $88 \%)$ as a clear colorless and viscous oil: $[\alpha]_{\mathrm{D}}^{20}-6.3\left(c=0.410, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{f} 0.82(25 \%$ EtOAc/hexanes); $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.79(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.14$ $-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.28(\mathrm{~m}, 27 \mathrm{H}) ; 125 \mathrm{MHz}$ ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 143.1,109.7,100.8,71.2,48.0,41.2,39.7,35.9,35.6,28.6,28.4$, 28.3, 28.0, $27.9,27.8,27.6,27.6,27.4,27.3,24.4,23.2 ; 125 \mathrm{MHz}$ DEPT $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{CH}_{3}$: 48.0. $\mathrm{CH}_{2}: 109.7,41.2,39.6,35.9,35.5,28.5,28.3,28.2,27.9,27.9,27.7,27.6,27.5$, 27.4, 27.3, 24.3, 23.1. CH: 71.2. C: 143.1, 100.8; IR (neat) 2927, 2856, 1737, 1682, 1657, $1645,1581,1459,1380,1351,1327,1229,1218,1164,1140,1086,1051,1011$, $886 \mathrm{~cm}^{-1}$; HRMS (EI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{~m} / \mathrm{z}(\mathrm{M}): 322.2872$. Found: 322.2860. LRMS (EI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O} \mathrm{m} / \mathrm{z}(\mathrm{M}-\mathrm{MeO}):$ 291.3. Found: 291.3. LRMS (EI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}$ m/z (M-MeOH): 290.3. Found: 290.3.

References:

(1) Armarego, W. L. F.; Perrin, D. D., Purification of Laboratory Chemicals, Fourth Edition. Butterworth-Heinemann: Oxford, 1997.
(2) Watson, S. C.; Eastham, J. F. J. Organomet. Chem. 1967, 9, 165.
(3) van der Kerk, G. J. M.; Noltes, J. G.; Luijten, J. G. A. Journal of Applied Chemistry 1957, 7, 356.
(4) van der Kerk, G. J. M.; Noltes, J. G.; Luijten, J. G. A. Journal of Applied Chemistry 1957, 7, 366.
(5) Keck, G. E.; Yu, T.; McLaws, M. D. J. Org. Chem. 2005, 70, 2543.
(6) Wei, Z. Y.; Wang, D.; Li, J. S.; Chan, T. H. J. Org. Chem. 1989, 54, 5768.
(7) Davis, F. A.; Kasu, P. V. N.; Sundarababu, G.; Qi, H. J. Org. Chem. 1997, 62, 7546.
(8) Holmes, A. B.; Hughes, A. B.; Smith, A. L. J. Chem. Soc., Perkin Trans. 1 1993, 23, 633.
(9) Breen, A. P.; Murphy, J. A. J. Chem. Soc., Perkin Trans. 1 1993, 23, 2979.
(10) Keck, G. E.; Covel, J. A.; Schiff, T.; Yu, T. Org. Lett. 2002, 4, 1189.
(11) Neises, B.; Steglich, W. Angew. Chem., Int. Ed. Eng. 1978, 17, 522.

NMR Spectra:

ppm
i

N
n
n
$\begin{array}{ll}\mathrm{S} 1 & \mathrm{Bu}_{3} \mathrm{Sn}-\mathrm{H} \\ & { }^{1} \mathrm{H} \text { NMR }\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)\end{array}$

๗

S3

DEPT ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\oplus

8

S10

ppa
i
-

DEPT ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

OH

S12 BnO

S13

咅

$\stackrel{ \pm}{i}$

$\stackrel{\pi}{5}$

S14

$\stackrel{\circ}{i}$

S17
DEPT ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

DEPT ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

HMQC ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

NOESY1D ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

DEPT (125 MHz, CDC $_{3}$)

pom

80

S22 MeO O
$\xrightarrow{(1)}$
$1|\mid$

$\stackrel{\Im}{\aleph}$

S24

S25

