Supporting Information

Discovery of Alogliptin: A Potent, Selective, Bioavailable, and Efficacious Inhibitor of Dipeptidyl Peptidase IV

Jun Feng, Zhiyuan Zhang, Michael B. Wallace, Jeffrey A. Stafford, Stephen W. Kaldor, Daniel B. Kassel, Marc Navre, Lihong Shi, Robert J. Skene, Tomoko Asakawa ${ }^{\dagger}$, Koji Takeuchi ${ }^{\dagger}$, Rongda Xu, David R. Webb and Stephen L. Gwaltney, II*

Takeda San Diego, Inc.; 10410 Science Center Drive, San Diego, CA, 92121
${ }^{\dagger}$ Takeda Pharmaceutical Company Limited; Pharmaceutical Research Division; Osaka, Japan

X-ray diffraction data: Wild-type human DPP-4, was purified and crystallized as previously reported, utilizing TSD's automated Nanovolume Crystallization TM technology. ${ }^{1,2}$ All protein-inhibitor complexes were obtained by soaking preformed DPP-4 crystals in a solution containing compound of interest. Crystals were then cryoprotected with ethylene glycol and flash frozen in liquid nitrogen. X-ray diffraction data were collected at Advanced Light Source (ALS) beam line 5.0.3, and processed using the program HKL2000. ${ }^{3}$ The structures of DPP-4 inhibitor complexes were determined by molecular replacement using MOLREP, utilizing the previously determined coordinates of DPP-4 with accession code 1R9M. ${ }^{1,4}$ Subsequent structure refinement and model building were performed utilizing REFMAC and XtalView. ${ }^{4,5}$ Bound inhibitors were clearly visible in the electron density maps.

1a

Space Group	$\mathrm{P} 2_{1}$
Unit cell Lengths (\AA)	$122.4,123.7,145.4$
Unit cell angles $\left({ }^{\circ}\right)$	$90,114.9,90$
Resolution (\AA)	2.55
Observations	432121
Unique	118392
Completeness $(\%)$	$92.9(56.6)$
$\mathrm{I} / \sigma_{\mathrm{I}}$	$10.1(2.1)$
$\mathrm{R}_{\text {sym }}(\%)$	$6.3(38.9)$

Model Refinement

Reflections (work/free)	$112425 / 5942$
$\mathrm{R}_{\text {factor (work/free } \% \text {) }}$	$19.8 / 25.4$
Protein molecules per ASU	4
Solvent molecules	761
Mean B value $\left(\AA^{2}\right)$	54.1
RMSD ideal bond lengths (\AA)	0.008
RMSD ideal bond angles $\left({ }^{\circ}\right)$	1.198

$\mathrm{R}_{\text {sym }}=\Sigma|\mathrm{I}-<\mathrm{I}>| / \Sigma \mathrm{I}$, where I is the integrated intensity for a reflection. $\mathrm{R}_{\text {factor }}=\Sigma\left|\mathrm{F}_{\mathrm{p}}-\mathrm{F}_{\mathrm{c}}\right| / \Sigma \mathrm{F}_{\mathrm{P}}$, where F_{p} and F_{c} are the observed and calculated structure factor amplitudes, while $R_{\text {free }}$ is calculated on 5% of the data excluded from refinement. Values in parenthesis are for the highest resolution shell.

DPP-4 Assay: Solutions of test compounds in varying concentrations ($\leq 10 \mathrm{mM}$ final concentration) were prepared in Dimethyl Sulfoxide (DMSO) and then diluted into assay buffer comprising: 20 mM Tris, $\mathrm{pH} 7.4 ; 20 \mathrm{mM} \mathrm{KCl}$; and $0.1 \mathrm{mg} / \mathrm{mL}$ BSA. Human DPP-4 (0.1 nM final concentration) was added to the dilutions and pre-incubated for 10 minutes at ambient temperature before the reaction was initiated with A-P-7-amido-4trifluoromethylcoumarin (AP-AFC; $10 \mu \mathrm{M}$ final concentration). The total volume of the reaction mixture was $10-100 \mu \mathrm{~L}$ depending on assay formats used (384 or 96 well plates). The reaction was followed kinetically (excitation $\lambda=400 \mathrm{~nm}$; emission $\lambda=505 \mathrm{~nm}$) for 510 minutes or an end-point was measured after 10 minutes. Inhibition constants $\left(\mathrm{IC}_{50}\right)$ were calculated from the enzyme progress curves using standard mathematical models.

Microsomal Stability: The test compounds ($1 \mu \mathrm{M}$) were incubated at $37{ }^{\circ} \mathrm{C}$ in phosphate buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$) containing rat or human liver microsomes $(1 \mathrm{mg} / \mathrm{mL}$ protein) and NADPH (Nicotinamide Adenine Dinucleotide Phosphate, reduced form) (4 $\mathrm{mM})$. The incubation mixtures were quenched with trichloroacetic acid (0.3 M) over 0 , 5, 15, 30 minute time-course. Quenched solutions were centrifuged and supernatants were transferred for LC/MS quantitation. The half-life of test compounds was derived from the compound stability curve over the time course.

General Chemistry Procedures: All references to ether are diethyl ether; brine refers to a saturated aqueous solution of NaCl . Unless otherwise indicated, all temperatures are expressed in ${ }^{\circ} \mathrm{C}$ (degrees Centigrade). All reactions conducted under an inert atmosphere at room temperature unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker Avance 400. Chemical shifts are expressed in parts per million (ppm). Coupling constants are in units of Hertz (Hz). Splitting patterns describe apparent multiplicities and are designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). Low-resolution mass spectra (MS) and compound purity data were acquired on a Waters ZQ LC/MS single quadrupole system equipped with electrospray ionization (ESI) source, UV detector (220 and 254 nm), and evaporative light scattering detector (ELSD). Preparative HPLC was conducted on the same system using mixtures of TFA (0.05%) buffered water and acetonitrile. Thin-layer chromatography was performed on 0.25 mm E. Merck silica gel plates (60F-254), visualized with UV light, 5% ethanolic phosphomolybdic acid, Ninhydrin or p-anisaldehyde solution. Flash column chromatography was performed on silica gel (230-400 mesh, Merck).

2,4-Dichloroquinazoline (4a): To 3.2 g of 1 H -quinazoline-2,4-dione in $20 \mathrm{~mL} \mathrm{POCl}{ }_{3}$ was added $0.8 \mathrm{~mL} N, N$-dimethylaniline. The mixture was then heated at reflux for 16 hours. Excess POCl_{3} was removed in vacuo, providing crude product.

2-Chloro-3H-quinazolin-4-one (5a): A mixture of 20 mL of $1 \mathrm{~N} \mathrm{NaOH}, 20 \mathrm{~mL}$ of THF, and 2 g of 2,4-dichloroquinazoline was stirred at room temperature under N_{2} for 4 hours. The solution was chilled and adjusted to pH 5 with AcOH . The solids that precipitated
were filtered to give $1.62 \mathrm{~g}(90 \%)$ of product. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{ClN}_{2} \mathrm{O}$, 181; found 181.

2-((2-Chloro-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (6a): A mixture of 0.36 g of 2-chloro-3H-quinazolin-4-one, $0.47 \mathrm{~g}(2.4 \mathrm{mmol})$ of 2-cyanobenzylbromide and 0.35 g (2.54 mmol) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 10 mL of DMF was stirred overnight. The reaction mixture was diluted with water, extracted with ethyl acetate, and dried over MgSO_{4}. Removal of the solvent gave crude product (containing O-alkylated product).

2-((2-(3-Aminopiperidin-1-yl)-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (1a): A mixture of 200 mg ($\leq 0.68 \mathrm{mmol}$) of crude 2-(2-chloro-4-oxo-4H-quinazolin-3ylmethyl)benzonitrile, 3 eq. of 3 -aminopiperidne dihydrochloride (350 mg), 5 eq. of $\mathrm{NaHCO}_{3}(286 \mathrm{mg})$ and 3 mL of ethanol in a sealed tube was heated to $150{ }^{\circ} \mathrm{C}$ for 6 hours. After cooling to room temperature and filtering out the inorganic salts, purification via preparative HPLC afforded 108 mg (45% yield) of product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05(\mathrm{~d}, \mathrm{~J}=7.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.62(\mathrm{~m}, 2 \mathrm{H})$, 7.37-7.46 (m, 2H), $7.30(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{AB} \mathrm{q}, \mathrm{J}=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.71(\mathrm{~m}$, $1 \mathrm{H}), 3.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.19-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.98-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.94$ $(\mathrm{m}, 3 \mathrm{H})$. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}, 360$; found 360. HRMS for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}$, calcd: 360.1824, found: 360.1808 .

2-Chloro-5-fluoroquinazolin-4(3H)-one (5b): The title compound was prepared from 5-fluoro- $1 H$-quinazoline-2,4-dione ${ }^{6}$ in 11% yield according to the procedures of examples 4a and 5a. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 13.31$ (br s, 1H), 7.77-7.83 (m, $1 \mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.26-7.32(\mathrm{~m}, 1 \mathrm{H}) . \operatorname{MS}(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{FClN}_{2} \mathrm{O}$ 199, 201 ; found 199, 201.

2-((2-Chloro-5-fluoro-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (6b): The title compound was prepared from 2-chloro-5-fluoro-3H-quinazolin-4-one in 70% yield
according to the procedure for example $\mathbf{6 k} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70-7.79(\mathrm{~m}$, $2 \mathrm{H}), 7.40-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{~s}, 2 \mathrm{H})$. MS (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{FClN}_{3} \mathrm{O} 314,316$; found $314,316$.
(R)-2-((2-(3-aminopiperidin-1-yl)-5-fluoro-4-oxoquinazolin-3(4H)$\mathbf{y l}) m e t h y l) b e n z o n i t r i l e, ~ T F A ~ s a l t ~(1 b): ~ T h e ~ t i t l e ~ c o m p o u n d ~ w a s ~ p r e p a r e d ~ f r o m ~ 2-(2-~$ chloro-5-fluoro-4-oxo-4H-quinazolin-3-ylmethyl)benzonitrile in 53% yield according to the procedure for example 1a. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 7.81(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.6$, $1.2 \mathrm{~Hz}), 7.68-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=7.6,1.2 \mathrm{~Hz}), 7.44(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.32$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.08-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.33(\mathrm{AB}$ $\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=35.6,15.2 \mathrm{~Hz}$), 3.49-3.55 (m, 1H), 3.17-3.36(m, 2H), 2.81-2.99 (m, 2H), 1.90$1.99(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.66(\mathrm{~m}, 2 \mathrm{H}) . \operatorname{MS}(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{FN}_{5} \mathrm{O} 378$; found 378. HRMS for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FN}_{5} \mathrm{O}$, calcd: 378.1730, found: 378.1734.

6-Fluoroquinazoline-2,4(1H,3H)-dione (3c): 2-Amino-6-fluorobenzoic acid was converted to the title compound by the method used for 3a (yield not determined). MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FN}_{2} \mathrm{O}_{2}, 181$; found 181.

2,4-Dichloro-6-fluoroquinazoline (4c): 3c was converted to the title compound by the method used for $\mathbf{4 a}$ (yield: 70%). MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{FN}_{2}$, 217; found 217.

2-Chloro-6-fluoroquinazolin- $\mathbf{4 (3 H)}$-one (5c): 4c was converted to the title compound by the method used for $\mathbf{5 a}$ (yield: 95%). MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{ClFN}_{2} \mathrm{O}, 199$; found 199.

2-((2-Chloro-6-fluoro-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (6c): 5c was converted to the title compound by the method used for $\mathbf{6 a}$ (yield: 85%). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz} \mathrm{CDCl}_{3}$): $\underset{\mathrm{M}}{\mathrm{C}} .93(\mathrm{dd}, \mathrm{J}=2.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}) 7.68-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.42$
$(\mathrm{dd}, \mathrm{J}=7.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 2 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{ClFN}_{3} \mathrm{O}, 314$; found 314 .
(R)-2-((2-(3-aminopiperidin-1-yl)-6-fluoro-4-oxoquinazolin-3(4H)-
$\mathbf{y l}) m$ methyl)benzonitrile, TFA salt (1c): 6c was converted to the title compound by the method used for 1a (yield: 90\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta .7 .52-7.9(\mathrm{~m}, 5 \mathrm{H})$, 7.41-7.51 (m, 1H), $7.35(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44-5.66(\mathrm{AB} \mathrm{q}, \mathrm{J}=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.71$ $(\mathrm{m}, 1 \mathrm{H}), 3.55-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.94-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.20(\mathrm{~m}, 1 \mathrm{H})$, 1.60-1.95 (m, 3H). MS (ES) [M+H] calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{FN}_{5} \mathrm{O}$, 378 ; found 378. HRMS for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FN}_{5} \mathrm{O}$, calcd: 378.1730 , found: 378.1740 .

2,6-Dichloroquinazolin-4(3H)-one (5d): The title compound was prepared from 6-chloro- $1 H$-quinazoline-2,4-dione ${ }^{7}$ in 59% yield according to the procedures of examples 4a and 5a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 13.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}$), $7.85(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4,2.4 \mathrm{~Hz}), 7.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}) . \operatorname{MS}(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ 215, 217; found 215, 217.

2-((2,6-Dichloro-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (6d): The title compound was prepared from 2,6-dichloro-3H-quinazolin-4-one in 63% yield according to the procedure for example $\mathbf{6 k}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.77$ $(\mathrm{m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.54(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=7.6,1.2 \mathrm{~Hz}), 7.43(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz})$, $7.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.74(\mathrm{~s}, 2 \mathrm{H})$. MS (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} 330$, 332; found 330, 332.

(R)-2-((2-(3-aminopiperidin-1-yl)-6-chloro-4-oxoquinazolin-3(4H)-

yl)methyl)benzonitrile, TFA salt (1d): The title compound was prepared from 2-(2,6-dichloro-4-oxo-4H-quinazolin-3-ylmethyl)benzonitrile in 70% yield according to the procedure for example 1a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $\delta 7.99$ (br s, 3H), 7.88 (d, $1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}$), 7.76-7.83 (m, 2H), 7.54-7.63 (m, 2H), $7.44(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.25(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.38(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, \mathrm{J}=48.0,15.2 \mathrm{~Hz}), 3.51-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.45(\mathrm{~m}$, $1 \mathrm{H}), 3.02-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.93(\mathrm{~m}, 1 \mathrm{H}), 1.91-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.50-$
$1.69(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClN}_{5} \mathrm{O}$ 394, 396; found 394, 396. HRMS for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{5} \mathrm{O}$, calcd: 394.1435, found: 394.1443.

2,7-Dichloroquinazolin-4(3H)-one (5e): The title compound was prepared from 7-chloro- $1 H$-quinazoline-2,4-dione ${ }^{8}$ in 58% yield according to the procedures of examples 4a and 5a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 13.41$ (br s, 1 H), $8.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}$), $7.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.3,1.5 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} 214,216$; found 215, 217.

2-((2,7-Dichloro-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (6e): The title compound was prepared from 2,7-dichloro-3H-quinazolin-4-one in 70% yield according to the procedure for $\mathbf{6 k} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}), 7.74$ $(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.7,0.9 \mathrm{~Hz}), 7.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=0.3 \mathrm{~Hz}), 7.49-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.7$ $\mathrm{Hz}), 7.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}), 5.73(\mathrm{~s}, 2 \mathrm{H})$. MS (ES) $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{16} \mathrm{H}_{10}$ $\mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} 330,332$; found 330, 332.

(R)-2-((2-(3-aminopiperidin-1-yl)-7-chloro-4-oxoquinazolin-3(4H)-

$\mathbf{y l}) m e t h y l) b e n z o n i t r i l e, ~ T F A ~ s a l t ~(1 e): ~ T h e ~ t i t l e ~ c o m p o u n d ~ w a s ~ p r e p a r e d ~ f r o m ~ 2-(2,7-~$ dichloro-4-oxo-4H-quinazolin-3-ylmethyl)benzonitrile in 80% yield according to the procedure for compound 1a. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 7.90-8.01(\mathrm{~m}, 4 \mathrm{H}), 7.81$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}), 7.56-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}), 5.36$ $(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=34.8,11.4 \mathrm{~Hz}), 3.52-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.03-3.24(\mathrm{~m}, 2 \mathrm{H})$, 2.87-2.94 (m, 1H), 1.92-1.99 (m, 1H), 1.78-1.85 (m, 1H), 1.50-1.69 (m, 2H). MS (ES) $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{5} \mathrm{O} 394$, 396; found 394, 396. HRMS for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{5} \mathrm{O}$, calcd: 394.1435, found: 394.1446.

2,8-Dichloroquinazolin-4(3H)-one (5f): The title compound was prepared from 8-chloro-1H-quinazoline-2,4-dione ${ }^{9}$ in 37% yield according to the procedures of examples 4a and 5a. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 13.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.04(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0,1.2$
$\mathrm{Hz}), 7.98(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0,1.2 \mathrm{~Hz}), 7.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}) . \mathrm{MS}(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} 215,217$; found 215, 217.

2-((2,8-Dichloro-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (6f): The title compound was prepared from 2,8-dichloro-3H-quinazolin-4-one in 72% yield according to the procedure for $\mathbf{6 k} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.22(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0,1.2 \mathrm{~Hz}$), 7.89 (dd, 1H, J = 6.0, 1.2 Hz), 7.74 (dd, 1H, J = 6.0, 0.9 Hz), 7.42-7.76 (m, 3H), 7.14 (d, $1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}), 5.75(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} 330,332$; found 330,332 .

2-((2-(3-Aminopiperidin-1-yl)-8-chloro-4-oxoquinazolin-3(4H)-

yl)methyl)benzonitrile, TFA salt (1f): The title compound was prepared from 2-(2,8-dichloro-4-oxo-4H-quinazolin-3-ylmethyl)benzonitrile in 76\% yield according to the procedure for compound 1a. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 7.88-8.02(\mathrm{~m}, 5 \mathrm{H}), 7.81$ $(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.7,0.6 \mathrm{~Hz}), 7.60(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=5.7,0.9 \mathrm{~Hz}), 7.44(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.7 \mathrm{~Hz}), 7.27-7.36$ (m, 2H), 5.37 (dd, 2H, J = 33.3, 11.4 Hz), 3.60-3.66 (m, 1H), 3.41-3.50 (m, 1H), 3.15$3.25(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.99(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.69(\mathrm{~m}$, $2 H)$. MS (ES) $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{5} \mathrm{O} 394,396$; found 394, 396. HRMS for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{5} \mathrm{O}$, calcd: 394.1435 , found: 394.1434 .

6,8-Dichloroquinazoline-2,4(1H,3H)-dione (3g): 2-Amino-3,5-dichlorobenzoic acid $(1 \mathrm{~g}, 4.85 \mathrm{mmol})$ and urea $(1 \mathrm{~g}, 16.7 \mathrm{mmol})$ were heated together at $200{ }^{\circ} \mathrm{C}$ for 1 hour. The mixture was cooled and triturated with water. The solid was filtered and dried to give $3 \mathrm{~g}(0.9 \mathrm{mg}$, green solid, 80%). This material was used in the next step without further purification. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}, 230$; found 230.

2,6,8-Trichloroquinazolin-4(3H)-one (5g): The title compound was prepared from 6,8-dichloro-1H-quinazoline-2,4-dione in 69% yield according to the procedures of examples 4a and 5a. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}$, 250; found 250.

2-((2,6,8-Trichloro-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (6g): To a stirred solution of $5 \mathrm{~g}(400 \mathrm{mg}, 1.6 \mathrm{mmol})$ in DME $(4 \mathrm{~mL})$ and DMF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(43 \mathrm{mg}, 1.8 \mathrm{mmol}, 95 \%)$. After ten minutes, $\mathrm{LiBr}(280 \mathrm{mg}, 3.2 \mathrm{mmol})$ was added and the mixture was allowed to warm to room temperature. After 15 minutes, α-bromo-o-tolunitrile ($350 \mathrm{mg}, 1.8 \mathrm{mmol}$) was added and the mixture was heated at $65{ }^{\circ} \mathrm{C}$ overnight. After cooling, water (10 mL) was added. A precipitate formed. This precipitate was filtered and dried to give $\mathbf{6 g}$ which was not further purified. MS (ES) $[\mathrm{m}+\mathrm{H}]$ calculated for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}, 363$; found 363 .
(R)-2-((2-(3-aminopiperidin-1-yl)-6,8-dichloro-4-oxoquinazolin-3(4H)$\mathbf{y l})$ methyl)benzonitrile, TFA salt (1g): A mixture of $\mathbf{6 g}(92 \mathrm{mg}, 0.25 \mathrm{mmol}), 3-(R)-$ aminopiperidine dihydrochloride ($66 \mathrm{mg}, 0.38 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(63 \mathrm{mg}, 0.75 \mathrm{mmol})$ and 2 mL of ethanol in a sealed tube was heated to $150^{\circ} \mathrm{C}$ for 6 hours. After cooling to room temperature and filtering the inorganic salts, purification via preparative HPLC afforded $55 \mathrm{mg}\left(51 \%\right.$ yield) of product $\mathbf{1 g} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 7.93(\mathrm{~d}, \mathrm{~J}=2.53 \mathrm{~Hz}$, $1 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=2.53 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, \mathrm{J}=7.58,1.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{ddd}, \mathrm{J}=7.58,7.58$, $1.26 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, \mathrm{J}=7.58,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=7.83 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{AB} \mathrm{q}, \mathrm{J}=$ $34.86,15.16 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.10$ - $3.19(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.90(\mathrm{~m}, 3 \mathrm{H})$. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}, 428$; found 428. HRMS for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}$, calcd: 428.1045, found: 428.1049 .

6-Bromoquinazoline-2,4(1H,3H)-dione (3h): The title compound was prepared from methyl 2-amino-5-bromobenzoate in 90% yield according to the procedure for example 31. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrN}_{2} \mathrm{O}_{2}, 240,242$; found 240, 242.

6-Bromo-2-chloroquinazolin-4(3H)-one (5h): The title compound was prepared from 3h according to the procedures of examples 4a and 5a. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{BrClN}_{2} \mathrm{O}, 260$; found 260.

2-((6-Bromo-2-chloro-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (6h): The title compound was prepared from $\mathbf{5 h}$ as a mixture of N - and O - alkylation products according to the procedure for $\mathbf{6 a}$. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{BrClN}_{3} \mathrm{O}, 375$; found 375 .
(R)-2-((2-(3-aminopiperidin-1-yl)-6-bromo-4-oxoquinazolin-3(4H)yl)methyl)benzonitrile, TFA salt (1h): The title compound was prepared from $\mathbf{6 h}$ according to the procedure for compound 1a. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.23(\mathrm{~d}, \mathrm{~J}$ $=1.77 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=6.82 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=7.33 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, \mathrm{J}=7.58$, $7.07 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.41(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{AB} \mathrm{q}, \mathrm{J}=137.18,14.91 \mathrm{~Hz}$, $2 H), 3.48-3.81(\mathrm{~m}, 3 \mathrm{H}), 3.18-3.34(\mathrm{~m}, 2 \mathrm{H}), 1.83-2.14(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.76(\mathrm{~m}, 1 \mathrm{H})$. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrN}_{5} \mathrm{O}$, 438; found 438. HRMS for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrN}_{5} \mathrm{O}$, calcd: 438.0929 , found: 438.0945 .

6-Methoxyquinazoline-2,4(1H,3H)-dione (3i): 2-Amino-5-methoxybenzoic acid (2 g, $12 \mathrm{mmol})$ and urea ($2.2 \mathrm{~g}, 36 \mathrm{mmol}$) were heated together at $200^{\circ} \mathrm{C}$ for 1 hour. The mixture was cooled and triturated with water. The solid was filtered and dried to give $\mathbf{3 i}$ $(2.1 \mathrm{~g}$, green solid, $90 \%)$. This material was used in the next step without further purification. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$ 193; found 193.

6-Methoxyquinazoline-2,4(1H,3H)-dione (4i): To 2.1 g of $\mathbf{3 i}$ in $10 \mathrm{~mL} \mathrm{POCl}_{3}$ was added $0.5 \mathrm{~mL} N, N$-dimethylaniline. The mixture was then heated at reflux for 16 hours. Excess POCl_{3} was removed in vacuo and the residue was purified by column chromatography (hexane: ethyl acetate $=4: 1$), providing 1.8 g of product $4 \mathbf{i}$. MS (ES) $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} 230$; found 230 .

2-Chloro-6-methoxyquinazolin- $\mathbf{4 (3 H)}$-one (5i): The title compound was prepared from $4 \mathbf{i}$ in 80% yield according to the procedure for example $5 \mathbf{5 a}$. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2} 211$; found 211.

2-((2-Chloro-6-methoxy-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (6i): The title compound was prepared from $5 \mathbf{i}$ in 91% yield according to the procedure for example $\mathbf{6 k}$. MS (ES) $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2} 326$; found 326 .
(R)-2-((2-(3-aminopiperidin-1-yl)-6-methoxy-4-oxoquinazolin-3(4H)yl)methyl)benzonitrile, TFA salt (1i): A mixture of $\mathbf{6 i}(99 \mathrm{mg}, 0.3 \mathrm{mmol}), 3-(R)-$ aminopiperidine dihydrochloride ($80 \mathrm{mg}, 0.46 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(76 \mathrm{mg}, 0.9 \mathrm{mmol})$ and 2 mL of ethanol in a sealed tube was heated to $120^{\circ} \mathrm{C}$ for 6 hours. After cooling to room temperature and filtering the inorganic salts, purification via preparative HPLC afforded $38 \mathrm{mg}(44 \%$ yield $)$ of product 1i. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53-7.68(\mathrm{~m}, 3 \mathrm{H})$, $7.32-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{AB} \mathrm{q}, \mathrm{J}=72.76,14.65 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-$ $3.94(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.91-2.05$ $(\mathrm{m}, 2 \mathrm{H}), 1.70-1.82(\mathrm{~m}, 1 \mathrm{H})$. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2} 390$; found 390. HRMS for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{2}$, calcd: 390.1930 , found: 390.1933 .

7-Fluoro-6-methoxyquinazoline-2,4(1H,3H)-dione (3j): The title compound was prepared from 2-amino-4-fluoro-5-methoxybenzoic acid methyl ester (see EP602851) in 90% yield according to the procedure for $\mathbf{3 1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 11.05$ (br s, 2H), $7.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}$ (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F} 211$; found 211.

2-Chloro-7-fluoro-6-methoxyquinazolin-4(3H)-one (5j): The title compound was prepared from 7-fluoro-6-methoxy-1H-quinazoline-2,4-dione in 80% yield according to the procedures of examples $\mathbf{4 a}$ and $\mathbf{5 a} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 13.29$ (br s, $1 \mathrm{H}), 7.62(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}), 3.95(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{FCl}$ 229, 231; found 229, 231.

2-((2-Chloro-7-fluoro-6-methoxy-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (6j): The title compound was prepared from 2-chloro-7-fluoro-6-methoxy-3H-quinazolin-4one in 67% yield according to the procedure for example $\mathbf{6 k}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.71-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=7.6,1.2 \mathrm{~Hz}), 7.36-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}$,
$1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.74(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{FCl}$ 344,346 ; found $344,346$.
(R)-2-((2-(3-aminopiperidin-1-yl)-7-fluoro-6-methoxy-4-oxoquinazolin-3(4H)$\mathbf{y l}) m e t h y l) b e n z o n i t r i l e, ~ T F A ~ s a l t ~(1 \mathbf{j}): ~ T h e ~ t i t l e ~ c o m p o u n d ~ w a s ~ p r e p a r e d ~ f r o m ~ 2-(2-~$ chloro-7-fluoro-6-methoxy-4-oxo-4H-quinazolin-3-ylmethyl)benzonitrile in 85% yield according to the procedure for compound 1a. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 7.93$ (br $\mathrm{s}, 3 \mathrm{H}), 7.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.60(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=7.6,1.2 \mathrm{~Hz}), 7.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz})$, 7.38-7.46 (m, 2H), $7.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 5.39(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, \mathrm{J}=51.2,15.2 \mathrm{~Hz}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.46-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.01-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.91-$ $1.99(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.70(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~F}$ 408; found 408. HRMS for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~F}$, calcd: 408.1836, found: 408.1819 .

2-Chloro-6,7-dimethoxyquinazolin-4(3H)-one (5k): 2,4-Dichloro-6,7dimethoxyquinazoline ($1.02 \mathrm{~g}, 3.95 \mathrm{mmol}$) was converted to the title compound (664 mg , 70%) by the method used for 5a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 13.1$ ($\mathrm{s}, 1 \mathrm{H}$), 7.41 (s, $1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}:(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{3}$ 241; found 241.

2-((2-Chloro-6,7-dimethoxy-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (6k): To a stirred solution of $5 \mathbf{k}(280 \mathrm{mg}, 1.17 \mathrm{mmol})$ in DME $(2 \mathrm{~mL})$ and DMF $(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(30 \mathrm{mg}, 1.23 \mathrm{mmol})$. After ten minutes, $\mathrm{LiBr}(203 \mathrm{mg}, 2.33 \mathrm{mmol})$ was added and the mixture was allowed to warm to room temperature. After 15 minutes, α -bromo-o-tolunitrile ($457 \mathrm{mg}, 2.33 \mathrm{mmol}$) was added and the mixture was heated at $65{ }^{\circ} \mathrm{C}$ overnight. After cooling, water (10 mL) was added. A precipitate formed. This precipitate was filtered and dried to give $\mathbf{6 k}$, which was not further purified.
(R)-2-((2-(3-aminopiperidin-1-yl)-6,7-dimethoxy-4-oxoquinazolin-3(4H)$\mathbf{y l})$ methyl)benzonitrile (1k): $\mathbf{6 k}(215 \mathrm{mg}, 0.6 \mathrm{mmol})$ was converted to $\mathbf{1 k}$ by the method used for 1a. The product was recrystallized to give the title compound (95 mg). ${ }^{1} \mathrm{H}$

NMR (400 MHz, DMSO): $\delta 7.84$ (dd, $\mathrm{J}=0.89,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (ddd, $\mathrm{J}=1.0,1.1,7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~s}$, $2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.67(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}:(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3} 420$; found 420. HRMS for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{3}$, calcd: 420.2036, found: 420.2033.

8-Methoxyquinazoline-2,4(1H,3H)-dione (31): 2-amino-3-methoxybenzoic acid (842 $\mathrm{mg}, 5 \mathrm{mmol}$) and urea ($1.5 \mathrm{~g}, 25 \mathrm{mmol}$) were heated together at $200^{\circ} \mathrm{C}$ for 1.5 hours. The mixture was cooled and triturated with water. The solid was filtered and dried to give 31 (843 mg , yellow solid, 88%). MS: (ES) [M+H] calc'd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$ 193; found 193.

2,4-Dichloro-8-methoxyquinazoline (4I): $31(843 \mathrm{mg}, 4.39 \mathrm{mmol})$ was converted to crude $\mathbf{4 l}$ by the method used for $\mathbf{4 a}$.

2-Chloro-8-methoxyquinazolin-4(3H)-one (51): Crude 41 was converted to 51 (388 mg) by the method used for 5a. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2} 211$; found 211.

2-((2-Chloro-8-methoxy-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile (61): 51 (210 $\mathrm{mg}, 1 \mathrm{mmol}$) was converted to $\mathbf{6 l}$ by the procedure used for $\mathbf{6 k}$. MS: (ES) M+H calc'd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2} 326$; found 326 .

2-((2-(3-Aminopiperidin-1-yl)-8-methoxy-4-oxoquinazolin-3(4H)-
yl)methyl)benzonitrile (11): $\mathbf{6 l} \mathbf{(2 3 0 ~ m g , ~} 0.7 \mathrm{mmol})$ was converted to $\mathbf{1 l}(100 \mathrm{mg}, \mathbf{3 7 \%})$ by the method used for 1a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 7.79$ (dd, $\mathrm{J}=1.2,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{dd}, \mathrm{J}=0.98,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (ddd, $\mathrm{J}=1.2,1.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (m, 2H), 7.18 (dd, J = 1.1, 8.0 Hz), 7.03 (d, J = 7.8 Hz, 1H), 5.57 (s, 2H), 4.01 ($\mathrm{s}, 3 \mathrm{H}$), 3.35 (m, $1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{dd}, \mathrm{J}=9.1,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}$, $1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H})$. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2} 390$; found 390. HRMS for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{2}$, calcd: 390.1930, found: 390.1942.

6,7-Difluoroquinazoline-2,4(1H,3H)-dione: 2-Amino-4,5-difluorobenzoic acid (4 g, 23 $\mathrm{mmol})$ and urea $(4.2 \mathrm{~g}, 69 \mathrm{mmol})$ were heated together at $200^{\circ} \mathrm{C}$ for 1 hour. The mixture was cooled and triturated with water. The solid was filtered and dried to give the title compound (4.1 g , green solid, 90%). This material was used in the next step without further purification. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}, 199$; found 199.

6-Fluoro-7-morpholinoquinazoline-2,4(1H,3H)-dione (3m): A mixture of 6,7-difluoro- $1 H$-quinazoline-2,4-dione ($1 \mathrm{~g}, 5.1 \mathrm{mmol}$) and 2 mL of morpholine in 5 mL of DMSO was stirred at $90{ }^{\circ} \mathrm{C}$ for 2 hours. The mixture was diluted with water and acidified with concentrated HCl . The solid product was filtered and dried under vacuum to give $1 \mathrm{~g}(74 \%)$ of product. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{O}_{3} 266$; found 266.

4-(2,4-Dichloro-6-fluoroquinazolin-7-yl)morpholine (4m): To 1 g of 3 m in 10 mL POCl_{3} was added $0.5 \mathrm{~mL} \mathrm{~N}, \mathrm{~N}$-dimethylaniline. The mixture was then heated at reflux for 16 hours. Excess POCl_{3} was removed in vacuo, and the residue was purified by column chromatography (hexane: ethyl acetate $=4: 1$), providing 0.38 g of product $\mathbf{4 m}$. MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{FN}_{3} \mathrm{O} 302$; found 302 .

2-Chloro-6-fluoro-7-morpholinoquinazolin-4(3H)-one (5m): A mixture of 5 mL of $1 \mathrm{~N} \mathrm{NaOH}, 10 \mathrm{~mL}$ of THF, and 0.38 g of 4 m was stirred at room temperature under N_{2} overnight. The solution was acidified with HCl . The solids that precipitated were filtered to give 0.1 g (27%) of product 5 m . MS: (ES) $[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClFN}_{3} \mathrm{O}_{2} 384$; found 384.

2-((2-Chloro-6-fluoro-7-morpholino-4-oxoquinazolin-3(4H)-yl)methyl)benzonitrile

(6m): To a stirred solution of $5 \mathrm{~m}(100 \mathrm{mg}, 0.35 \mathrm{mmol})$ in DME (2 mL) and DMF (0.5 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(9.6 \mathrm{mg}, 0.4 \mathrm{mmol})$. After ten minutes, $\mathrm{LiBr}(61 \mathrm{mg}, 0.7$ mmol) was added and the mixture was allowed to warm to room temperature. After 15 minutes, α-bromo- o-tolunitrile ($76.4 \mathrm{mg}, 0.39 \mathrm{mmol}$) was added and the mixture was heated at $65{ }^{\circ} \mathrm{C}$ overnight. After cooling, water (10 mL) was added. A precipitate
formed. This precipitate was filtered and dried to give $\mathbf{6 m}(70 \mathrm{mg})$, which was not further purified. MS: $(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClFN}_{4} \mathrm{O}_{2} 399$; found 399.
(R)-2-((2-(3-aminopiperidin-1-yl)-6-fluoro-7-morpholino-4-oxoquinazolin-3(4H)yl)methyl)benzonitrile, TFA salt (1m): A mixture of $50 \mathrm{mg}(\leq 0.126 \mathrm{mmol})$ of crude $\mathbf{6 m}, 2$ eq. of $3-(\mathrm{R})$-aminopiperidine dihydrochloride ($43 \mathrm{mg}, 0.25 \mathrm{mmol}$), 5 eq. of $\mathrm{NaHCO}_{3}(53 \mathrm{mg})$, and 2 mL of ethanol in a sealed tube was heated to $150{ }^{\circ} \mathrm{C}$ for 6 hours. After cooling to room temperature and filtering the inorganic salts, purification via preparative HPLC afforded $28 \mathrm{mg}\left(47 \%\right.$ yield) of product $1 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR (400 MHz , MeOD): $\delta 7.71(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, \mathrm{J}=8.0,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d} . \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{AB} \mathrm{q}, \mathrm{J}=15.2,34.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.82-3.90 (m, 4H), 3.49-3.65 (m, 2H), 3.15-3.27 (m, 6H), 2.92-3.02 (m, 1H), 2.09-2.17 $(\mathrm{m}, 1 \mathrm{H}), 1.60-1.90(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{MS}:(\mathrm{ES})[\mathrm{M}+\mathrm{H}]$ calculated for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{FN}_{6} \mathrm{O}_{2} 463$; found 463. HRMS for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{FN}_{6} \mathrm{O}_{2}$, calcd: 463.2258, found: 463.2281.

2-((6-Chloro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl)benzonitrile (8): To a solution of 6-chlorouracil ($20 \mathrm{~g}, 122 \mathrm{mmol}$) in a mixture of DMF-DMSO ($6: 1600 \mathrm{~mL}$) under nitrogen at $0{ }^{\circ} \mathrm{C}$, was added sodium hydride $(60 \%, 5.5 \mathrm{~g}, 137 \mathrm{mmol})$ in portions. After 0.5 h , lithium bromide ($8 \mathrm{~g}, 96 \mathrm{mmol}$) was added into the mixture and stirred for 15 min at $0^{\circ} \mathrm{C}$. A solution of α-bromo-o-tolunitrile ($25.1 \mathrm{~g}, 128 \mathrm{mmol}$) in DMF (30 mL) was added dropwise, and stirred at this temperature for 1 h , and then at room temperature overnight. The mixture was evaporated and azeotroped with water in vacuo to remove most of the DMF, and then poured into ice-water (1L). Solid product was collected by filtration. The crude product was suspended in hot ethyl acetate-chloroform and sonicated for 5 min , then allowed to stand at $0{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was filtered to give a white solid of the title compound (19 g) in 54% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO): $\delta 11.82(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.71(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}$ $=7.6 \mathrm{~Hz}), 7.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}), 6.06(\mathrm{~s}, 1 \mathrm{H}) .5 .31(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ES})[\mathrm{m}+\mathrm{H}]$ calc'd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{ClN}_{3} \mathrm{O}_{2}, 262.03$; found 262.03.

2-((6-Chloro-3-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl)benzonitrile
(9): To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{8}(10 \mathrm{~g}, 38 \mathrm{mmol})$ in DMF-THF $(1: 1,300 \mathrm{~mL})$ under nitrogen, was added $\mathrm{NaH}(60 \%, 1.6 \mathrm{~g}, 39.9 \mathrm{mmol})$ in portions, followed by adding LiBr $(2 \mathrm{~g})$. The mixture was stirred at room temperature for 20 min . After adding iodomethane ($5.4 \mathrm{~mL}, 76 \mathrm{mmol}$), the flask was sealed and stirred at $0^{\circ} \mathrm{C}$ for 10 min , room temperature for 2 h , and $35^{\circ} \mathrm{C}$ overnight, and then was concentrated in vacuo. The residue was dissolved in CHCl_{3} and washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered, and then concentrated in vacuo. Crude product was crystallized from THFhexanes to give $7.6 \mathrm{~g}(72 \%)$ of the title compound. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 7.87$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.70(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8$ $\mathrm{Hz}), 6.21(\mathrm{~s}, 1 \mathrm{H}) .5 .38(\mathrm{~s}, 2 \mathrm{H}) .3 .28(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}(\mathrm{ES})[\mathrm{m}+\mathrm{H}]$ calc'd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{2}$, 275.05; found 275.05.
(R)-2-((6-(3-aminopiperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydropyrimidin-1(2H)yl)methyl)benzonitrile (10): $\quad 9 \quad(3.0 \quad \mathrm{~g}, \quad 10.8 \mathrm{mmol})$, (R)-3-aminopiperidine dihydrochloride ($2.24 \mathrm{~g}, 10.8 \mathrm{mmol}$) and sodium bicarbonate $(5.5 \mathrm{~g}, 54 \mathrm{mmol})$ were stirred with 1 g activated MS (4A) in dry ethanol $(30 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ for 2 h . The reaction was filtered through Celite, concentrated in vacuo, and then diluted with CHCl_{3} and washed with water. The aqueous phase was extracted with CHCl_{3} and the combined organic phases were washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. TFA $(1 \mathrm{~mL})$ was added into the solution and the mixture was concentrated in vacuo. The residue was dissolved in a small amount of MeOH , and $\mathrm{Et}_{2} \mathrm{O}$ was added to force precipitation. The solvents were decanted and the residue washed with $\mathrm{Et}_{2} \mathrm{O}$ two times to give 2.7 g product as an off-white powder. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD} 10: 1\right): \delta 7.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $7.6 \mathrm{~Hz}), 7.65(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.46(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 5.42$ $(\mathrm{s}, 1 \mathrm{H}), 5.50-5.00(\mathrm{ABq}, 2 \mathrm{H}, \mathrm{J}=41.6,15.2 \mathrm{~Hz}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H})$, $2.76(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}) . \operatorname{MS}(\mathrm{ES})[\mathrm{m}+\mathrm{H}]$ calc'd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}, 339.17$; found, 339.17. HRMS for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{2}$, calcd: 340.1774, found: 340.1769 .

Purity data: Elemental analyses were conducted at Robertson Microlit Laboratories:

Compound	Formula	Calculated	Found	Notes
1k	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3}$	$\begin{aligned} & \mathrm{C}, 65.86 ; \mathrm{H}, 6.01 ; \\ & 16.70 \end{aligned}$	$\begin{aligned} & \mathrm{C}, 65.57 ; \mathrm{H}, 6.24 ; \mathrm{N}, \\ & 16.59 \end{aligned}$	free base
11	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2}$	$\begin{aligned} & \mathrm{C}, 67.85 ; \mathrm{H}, 5.95 ; \mathrm{N}, \\ & 17.98 \end{aligned}$	$\begin{aligned} & \mathrm{C}, 67.62 ; \mathrm{H}, 5.76 ; \mathrm{N}, \\ & 17.69 \end{aligned}$	free base
10	$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}$	$\begin{aligned} & \text { C, } 65.06 ; \mathrm{H}, 5.90 ; \mathrm{N}, \\ & 15.17 \end{aligned}$	$\begin{aligned} & \mathrm{C}, 65.00 ; \mathrm{H}, 6.04 ; \mathrm{N}, \\ & 15.15 \end{aligned}$	benzoate salt

HPLC analyses were conducted using the following conditions:

- Column: Gemini (5um, 4.6x50mm)
- Mobile Phase:
- A: 0.05% TFA H2O
- B: 0.035% TFA Acetonitrile
- Flow Rate: $3.5 \mathrm{ml} / \mathrm{min}$
- Gradient: 5-95\%B in 4.2 min
- Run Time: 6min
- Injection volume: 5 uL
- Sample Concentration: 10 mM in DMSO

	HPLC purity by Compound	$\frac{\text { ELSD }}{}$
$\mathbf{1 a}$	100	Salt form
$\mathbf{1 b}$	100	TFA
$\mathbf{1 c}$	97	HCA
$\mathbf{1 d}$	99	TFA
$\mathbf{1 e}$	100	TFA
$\mathbf{1 f}$	100	TFA
$\mathbf{1 g}$	100	TFA
$\mathbf{1 h}$	97	TFA
$\mathbf{1 i}$	100	TFA
$\mathbf{1 j}$	100	TFA
$\mathbf{1 m}$	99	TFA

References

(1) Aertgeerts, K., Ye, S., Tennant, M.G., Kraus, M.L., Rogers, J., Sang, B.C., Skene, R.J., Webb, D.R., Prasad, G.S. Crystal structure of human dipeptidyl peptidase IV in
complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci., 2004, 13, 412-421.
(2) Hosfield, D., Palan, J., Hilgers, M., Scheibe, D., McRee , D.E., and Stevens, R.C. A fully integrated protein crystallization platform for small-molecule drug discovery. J. Struct. Biol., 2003, 142, 207-217.
(3) Otwinowski, Z. and Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymology, 1997, 276, 307-326.
(4) Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Cryst. D, 1994, D50, 760-763.
(5) McRee, D.E. XtalView/Xfit—A Versatile Program for Manipulating Atomic Coordinates and Electron Density. J. Struct. Biol., 1999, 125, 156-165.
(6) Michel, J., Gueguen, G., Vercauteren, J., Moreau, S. Triplex stability of oligodeoxynucleotides containing substituted quinazoline-2,4-($1 \mathrm{H}, 3 \mathrm{H}$)-dione. Tetrahedron, 1997, 53 (25), 8457-8478.
(7) McKee, R.L., McKee, M.K., and Bost, R.W. 6-(and 7-)-Chloro-4-(1-diethylamino-4-pentylamino)-2-(p-methoxyphenyl)- quinazoline Dihydrochlorides. J. Amer. Chem. Soc., 1947, 69, 940-942.
(8) Schneller, S.W., Christ, W.J. Synthesis of lin-benzofervenulin, lin-benzotheophylline, and lin-benzocaffeine. J. Org. Chem., 1981, 46 (8), 1699-1702.
(9) Bindra, J.S., US Patent 4085213, 1978.

