Bispyridinium Dienes, Histone Deacetylase

Inhibitors With Selective Activities

Carlos Pérez-Balado, ${ }^{a}$ Angela Nebbioso, ${ }^{\text {b }}$ Paula Rodríguez-Graña, ${ }^{a}$ Annunziata Minichiello, ${ }^{\text {b }}$ Marco Miceli, ${ }^{\mathrm{b}}$ Lucia Altucci ${ }^{\text {b,c,* }}$ and Ángel R. de Lera ${ }^{{ }^{\text {* }}}$
${ }^{\text {a }}$ Departamento de Química Orgánica, Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain.
${ }^{\mathrm{b}}$ Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Vico L. de Crecchio 780138 Napoli; ${ }^{c}$ NOGEC, Naples Oncogenomic Center, CEINGE Biotecnologia Avanzata, Napoli, Italy.

2-(11-Bromoundecyloxy)-tetrahydro-2H-pyran (4a). To a stirred solution of 11bromoundecanol ($10.0 \mathrm{~g}, 33.80 \mathrm{mmol}$) in dichloromethane (100 mL) was added pyridinum para-toluenesulfonate ($100 \mathrm{mg}, 0.39 \mathrm{mmol}, 1 \mathrm{~mol} \%$) and dihydropyran (5.45 $\mathrm{mL}, 59.70 \mathrm{mmol}, 1.5$ equiv). The resulting colourless solution was stirred at $25^{\circ} \mathrm{C}$ for 14 h . Then it was washed with a 2 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($2 \times 50 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents removed under reduced pressure. The residue was purified by flash chromatography (96:4, hexaneEtOAc) to afford $12.85 \mathrm{~g}\left(96 \%\right.$ yield) of the title compound as a colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.58($ broad s, 1 H$), 3.9-3.8(\mathrm{~m}, 1 \mathrm{H}), 3.8-3.7(\mathrm{~m}, 1 \mathrm{H}), 3.5-3.4(\mathrm{~m}$, $1 \mathrm{H}), 3.41(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.4-3.3(\mathrm{~m}, 1 \mathrm{H}), 1.9-1.8(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{t}, J=10.7 \mathrm{~Hz}$, $1 \mathrm{H})$, 1.6-1.5 (m, 5H), 1.5-1.2 (m, 15H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 98.8,67.6$, $62.3,34.0,32.8,30.7,29.7,29.5,29.4,29.3,28.7,28.1,26.2,25.5,19.7 \mathrm{ppm} . \operatorname{IR}(\mathrm{NaCl})$ $v 2924$ (s, C-H), 2852 ($\mathrm{s}, \mathrm{C}-\mathrm{H}$), 1635 (w), 1459 (m), 1350 (m), 1258 (w), 1120 (s), 1075 (s), 1028 (s). MS (EI $) m / z(\%) 335\left([\mathrm{M}-1]^{+}\left[{ }^{81} \mathrm{Br}\right], 2\right), 333\left([\mathrm{M}-1]^{+}\left[{ }^{79} \mathrm{Br}\right], 2\right), 164$ (33), 162 (38), 150 (57), 147 (69), 101 (80), 97 (88), 85 (100). HRMS (EI ${ }^{+}$) calcd for $\mathrm{C}_{16} \mathrm{H}_{30}{ }^{81} \mathrm{BrO}_{2}, 335.1409$ and $\mathrm{C}_{16} \mathrm{H}_{30}{ }^{79} \mathrm{BrO}_{2}, 333.1429$; found 335.1410 and 333.1443.

2-(12-Bromododecyloxy)-tetrahydro-2H-pyran (4b). Following the same procedure described for $\mathbf{4 a}$, protected alcohol $\mathbf{4 b}$ was obtained in 93% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.57$ (broad s, 1H), 3.9-3.8 (m, 1H), 3.8-3.7 (m, 1H), 3.5-3.4 (m, $1 \mathrm{H}), 3.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.4-3.3(\mathrm{~m}, 1 \mathrm{H}), 1.9-1.8(\mathrm{~m}, 3 \mathrm{H}), 1.7-1.6(\mathrm{~m}, 1 \mathrm{H}), 1.6-1.4$ $(\mathrm{m}, 6 \mathrm{H}), 1.4-1.2(\mathrm{~m}, 16 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 98.8,67.6,62.3,34.0$, $32.8,30.7,29.7,29.6,29.5,29.4,29.3,28.7,28.1,26.2,25.5,19.7 \mathrm{ppm} . \mathrm{IR}(\mathrm{NaCl}) v$ 2913 (s, C-H), 2849 (s, C-H), 1458 (m), 1349 (m), 1257 (w), 1200 (w), 1120 (s), 1075 (s), 1027 (s). MS (EI $\left.{ }^{+}\right) m / z(\%) 349\left([\mathrm{M}-1]^{+}\left[{ }^{81} \mathrm{Br}\right], 1\right), 347\left([\mathrm{M}-1]^{+}\left[{ }^{79} \mathrm{Br}\right], 1\right), 150(21)$,

148 (22), 111 (13), 101 (24), 97 (74), 85 (100). HRMS (EI ${ }^{+}$) calcd for $\mathrm{C}_{17} \mathrm{H}_{32}{ }^{81} \mathrm{BrO}_{2}$, 349.1565 and $\mathrm{C}_{17} \mathrm{H}_{32}{ }^{79} \mathrm{BrO}_{2}, 347.1586$; found 349.1573 and 347.1601.

3-[12-(Tetrahydro-2H-pyran-2-yloxy)dodecyl]pyridine (5a). n-BuLi (16.8 mL , $26.8 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) was added dropwise to a stirred solution of diisopropylamine ($3.8 \mathrm{~mL}, 26.80 \mathrm{mmol}$) in THF (17 mL) at $0^{\circ} \mathrm{C}$. The slightly yellow solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min . DMPU ($3.2 \mathrm{~mL}, 26.8 \mathrm{mmol}$) was added and stirring at $0^{\circ} \mathrm{C}$ was continued for another 20 min . A solution of 3-methylpyridine (2.6 $\mathrm{mL}, 26.8 \mathrm{mmol}$) in THF (8 mL) was added dropwise to the reaction mixture. The resulting deep red solution was stirred at $0^{\circ} \mathrm{C}$ for further 30 min . Then it was cooled down to $-78{ }^{\circ} \mathrm{C}$ and a solution of $\mathbf{4 a}(3.0 \mathrm{~g}, 8.95 \mathrm{mmol})$ in THF (8 mL) was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then it was allowed to reach slowly room temperature. The excess organolithium was quenched by the addition of a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with EtOAc ($3 \times 70 \mathrm{~mL}$), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents removed under reduced pressure. The residue was purified by flash chromatography (60:40, hexane-EtOAc) to afford 2.53 g (76% yield) of the title compound as a colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42-8.41(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\operatorname{broad~s}, 1 \mathrm{H}), 3.9-3.8(\mathrm{~m}, 1 \mathrm{H}), 3.7-$ $3.6(\mathrm{~m}, 1 \mathrm{H}), 3.5-3.4(\mathrm{~m}, 1 \mathrm{H}), 3.4-3.3(\mathrm{~m}, 1 \mathrm{H}), 2.7-2.6(\mathrm{~m}, 1 \mathrm{H}), 1.9-1.8(\mathrm{~m}, 1 \mathrm{H}), 1.7-1.6$ $(\mathrm{m}, 1 \mathrm{H}), 1.6-1.4(\mathrm{~m}, 8 \mathrm{H})$, 1.4-1.12 (m, 16H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.9$, $147.1,137.9,135.6,123.1,98.8,67.6,62.3,32.9,31.1,30.7,29.7,29.5,29.4(2 x), 29.3$, 29.1, 26.2, 25.4, 19.6 ppm. IR (NaCl) v2924 (s, C-H), 2851 (s, C-H), 1582 (m), 1461 (m), 1371 (m), 1119 (s), 1075 (s), 1026 (s), 982 (m), 712 (m). MS (EI ${ }^{+}$m/z (\%) 346 ([M-1] $\left.{ }^{+}, 2\right), 318$ (7), 262 (97), 246 (100), 232 (38), 218 (32), 204 (51), 190 (38), 176
(25), 148 (30), 106 (96), 93 (95). HRMS (EI^{+}) calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NO}_{2}, 346.2746$; found 346.2739.

3-[13-(Tetrahydro-2H-pyran-2-yloxy)tridecyl]pyridine (5b). Following the same procedure described for $\mathbf{5 a}$, pyridine $\mathbf{5 b}$ was obtained in 70% yield. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45-8.41(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.7,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57$ (broad s, 1H), 3.9-3.8 (m, 1H), 3.8-3.7 (m, 1H), 3.5-3.4 (m, 1H), 3.4-3.3 (1H), 2.7-2.6 (m, 1H), 1.9-1.8 (m, 1H), 1.7-1.6 (m, 1H), 1.6-1.5 (m, 8H), 1.42-1.2 (m, 18H) $\operatorname{ppm}{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.8,147.0,137.7,135.5,123.0,98.6,67.5,62.1$, $32.8,30.9,30.6,29.6,29.4,29.3(2 x), 29.2,29.0,26.1,25.3,19.5 \mathrm{ppm} . \operatorname{IR}(\mathrm{NaCl}) v$ 2912 (s, C-H), 2849 (s, C-H), 1574 (w), 1459 (m), 1422 (m), 1349 (m), 1120 (s), 1074 (s), 1026 (s), 987 (m), $713(\mathrm{~m}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}(\%) 362\left([\mathrm{M}+1]^{+}, 45\right), 278(100), 260$ (27). HRMS (EI^{+}) calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NO}_{2}, 360.2903$; found 360.2911.

1-(Oct-7-enyl)-3-[12-(tetrahydro-2H-pyran-2-yloxy)dodecyl]pyridinium Bromide (6a). 8-Bromo-1-octene ($2 \mathrm{~mL}, 11.93 \mathrm{mmol}, 1$ equiv) was added to a solution of $\mathbf{5 a}$ $(4.15 \mathrm{~g}, 11.93 \mathrm{mmol})$ in acetonitrile $(20 \mathrm{~mL})$. The resulting solution was heated at reflux and the disappearance of the starting material was monitored by TLC. After completion of the reaction (usually 24 h), the solvent was removed under reduced pressure. The residue was purified by flash chromatography $\left(90: 10, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ to afford 6.16 g (96% yield) of the title compound as a viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41$ (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.29(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.0,5.9 \mathrm{~Hz}$, $1 \mathrm{H})$, 5.7-5.6 (m, 1H), $4.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.9-4.8(\mathrm{~m}, 2 \mathrm{H}), 4.5-4.4(\mathrm{~m}, 1 \mathrm{H}), 3.80-$ 3.7- $(\mathrm{m}, 1 \mathrm{H}), 3.7-3.6(\mathrm{~m}, 1 \mathrm{H}), 3.5-3.4(\mathrm{~m}, 1 \mathrm{H}), 3.3-3.2(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 H), 2.0-1.9(\mathrm{~m}, 4 \mathrm{H}), 1.8-1.7(\mathrm{~m}, 1 \mathrm{H}), 1.7-1.6(\mathrm{~m}, 3 \mathrm{H}), 1.5-1.4(\mathrm{~m}, 6 \mathrm{H}), 1.4-1.1(\mathrm{~m}$, $22 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.3,143.8,143.6,142.6,138.3,127.9$, $114.2,98.6,67.4,62.1,61.4,33.3,32.2,31.6,30.5,30.1,29.4,29.2,29.1,28.9,28.7$,
28.2, 28.1, 25.9, 25.5, 25.1, 19.4 ppm. IR (NaCl) v 2924 (s, C-H), 2852 (s, C-H), 1635 (m), 1503 (m), 1461 (m), 1351 (w), 1120 (s), 1075 (s), 1026 (s), 906 (m), 690 (m). MS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}(\%) 458\left(\left[\mathrm{M}-\mathrm{Br}^{-}\right]^{+}, 4\right), 374$ (1), 262 (56), 246 (95), 106 (100).

1-(Oct-7-enyl)-3-[13-(tetrahydro-2H-pyran-2-yloxy)tridecyl]pyridinium Bromide

 ($\mathbf{6 b}$). Following the same procedure described for $\mathbf{6 a}$, pyridinium salt $\mathbf{6 b}$ was obtained in 98% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.37(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H}), 8.21$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) 8.01(\mathrm{dd}, J=7.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.7-5.6(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 H), 5.0-4.9(\mathrm{~m}, 2 \mathrm{H}), 3.9-3.8(\mathrm{~m}, 1 \mathrm{H}), 3.7-3.6(\mathrm{~m}, 1 \mathrm{H}), 3.5-3.4(\mathrm{~m}, 1 \mathrm{H}), 3.4-3.3(\mathrm{~m}$, $1 \mathrm{H}), 2.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.1-1.9(\mathrm{~m}, 4 \mathrm{H}), 1.9-1.8(\mathrm{~m}, 1 \mathrm{H}), 1.7-1.6(\mathrm{~m}, 3 \mathrm{H}), 1.6-1.5$ $(\mathrm{m}, 6 \mathrm{H}), 1.4-1.2(\mathrm{~m}, 24 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.5,144.1,143.8$, $142.7,138.5,127.8,114.5,98.8,67.6,62.3,61.8,33.4,32.7,31.9,30.7,30.4,29.7$, 29.5, 29.4, 29.2, 29.0, 28.4 (2x), 26.1, 25.8, 25.4, 19.7 ppm. IR (NaCl) v2925 (s, C-H), 2853 (s, C-H), 1637 (m), 1505 (m), 1465 (m), 1352 (w), 1136 (m), 1120 (s), 1032 (s), $906(\mathrm{~m}), 691(\mathrm{~m}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}(\%) 472\left(\left[\mathrm{M}-\mathrm{Br}^{+}\right]^{+}, 100\right)$. HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{NO}_{2}{ }^{+}, 472.4155$; found 472.4144 .3-(12-Hydroxydodecyl)-1-(oct-7-enyl)pyridinium Bromide (7a). A 3M aqueous solution of $\mathrm{HCl}(4.4 \mathrm{~mL}, 1.1$ equiv) was added to a solution of $\mathbf{6 a}(6.0 \mathrm{~g}, 11.14 \mathrm{mmol})$ in $\mathrm{MeOH}(44 \mathrm{~mL})$. The reaction mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 16 h . Most of the solvents were removed under reduced pressure to give a viscous oil. The residue was disolved in dichloromethane (80 mL) and washed with a saturated NaHCO_{3} aqueous solution (80 mL). The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure. The residue was purified by flash chromatography (90:10, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ to afford 4.45 g (88% yield) of the title compound as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 9.28(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=8.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{tdd}, J=13.2,10.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.9-$
$4.8(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.4-2.3(\mathrm{~m}, 1 \mathrm{H}), 2.0-1.9$ $(\mathrm{m}, 4 \mathrm{H})$, 1.7-1.56 (m, 2H), 1.5-1.4 (m, 2H), 1.4-1.1 (m, 23H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.5,144.0,143.9,142.4,138.4,127.9,114.3,62.4,61.4,33.3,32.5$, $32.4,31.7,30.2,29.2(2 x), 28.9,28.7,28.3,28.2,25.6,25.5 \mathrm{ppm}$. IR (NaCl) v 35003100 (br, O-H), 2918 (s, C-H), 2847 (s, C-H), 1634 (m), 1513 (m), 1465 (m), 1058 (s), 922 (m). MS ($\left.\mathrm{EI}^{+}\right) m / z(\%) 374$ ([M-Br$\left.]^{+}, 12\right), 262$ (10), 246 (15), 232 (11), 204 (12), 190 (12), 120 (11), 106 (100). HRMS (EI^{+}) calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{NO}_{2}{ }^{+}, 374.3423$; found 374.3430 .

3-(13-Hydroxytridecyl)-1-(oct-7-enyl)pyridinium Bromide (7b). Following the same procedure described for $\mathbf{7 a}$, alcohol $\mathbf{7 b}$ was obtained in 82% yield. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.35(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.29(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05$ (dd, $J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{tdd}, J=16.9,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{t}, J=7.4, \mathrm{~Hz}$, $2 \mathrm{H}), 4.93-4.86(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.9-2.8(\mathrm{~m}, 2 \mathrm{H}), 2.1-1.9(\mathrm{~m}, 6 \mathrm{H}), 1.7-$ $1.6(\mathrm{~m}, 2 \mathrm{H}), 1.6-1.5(\mathrm{~m}, 2 \mathrm{H}), 1.4-1.1(\mathrm{~m}, 25 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $144.5,144.0,143.9,142.4,138.4,127.9,114.3,62.4,61.4,33.3,32.5,32.4,31.7,30.2$, 29.2 (2x), 28.9, 28.7, 28.3, 28.2, 25.6, 25.5 ppm. IR (NaCl) v 3500-3100 (br, O-H), 2922 (s, C-H), 2848 (s, C-H), 1636 (m), 1513 (m), 1466 (m), 1306 (w), 1172 (w), 1056 (s). MS ($\left.\mathrm{EI}^{+}\right) m / z(\%) 388\left(\left[\mathrm{M}-\mathrm{Br}^{-}\right]^{+}, 11\right), 260(10), 258$ (12), 218 (16), 216 (11), 204 (15), 150 (40), 148 (41), 106 (100). HRMS (EI^{+}) calcd for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{NO}_{2}{ }^{+}$, 388.3579; found 374.3585 .

3-(12-Chlorododecyl)-1-(oct-7-enyl)pyridinium Chloride (8a). Thionyl chloride ($0.95 \mathrm{~mL}, 13.02 \mathrm{mmol}$) was added to a solution of $7 \mathbf{a}(4.1 \mathrm{~g}, 10.02 \mathrm{mmol})$ in dichloromethane $(37 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was maintained at $0^{\circ} \mathrm{C}$ for 30 min and then it was stirred at $25^{\circ} \mathrm{C}$ for 6 h . Dichloromethane (60 mL) was added and the resulting solution was washed with a 0.2 N NaOH solution (2 x 50 mL) and brine (2 x

50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure. The crude residue was purified by flash chromatography (90:10, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ to afford $3.9 \mathrm{~g}(91 \%)$ yield of the title compound as a viscous oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.44(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01$ (dd, $J=7.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{tdd}, J=16.9,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.0-4.9(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.8, \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.1-1.9$ $(\mathrm{m}, 4 \mathrm{H}), 1.9-1.7(\mathrm{~m}, 4 \mathrm{H}), 1.5-1.1(\mathrm{~m}, 22 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.4$, $144.0,143.9,142.7,138.4,127.9,114.4,61.6,45.1,33.3,32.6,32.4,31.9,30.3,29.3$ (2x), 29.2, 29.1, 28.9, 28.7, 28.3 (2x), 26.7, 25.7 ppm. IR (NaCl) v 2924 (s, C-H), 2853 (s, C-H), 1637 (m), 1504 (m), 1462 (m), 1154 (m), 925 (m), 726 (s). MS ($\left.\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}(\%)$ 394 ([M-Cl$\left.\left.\left.]^{-}\right]^{37} \mathrm{Cl}\right], 8\right) 392$ ([M-Cl$\left.\left.]^{-}\right]^{+}\left[{ }^{35} \mathrm{Cl}\right], 48\right), 356$ (7), 246 (94), 218 (15), 204 (18), 106 (100). HRMS (EI^{+}) calcd for $\mathrm{C}_{25} \mathrm{H}_{43}{ }^{35} \mathrm{ClN}^{+}, 392.3084$ and $\mathrm{C}_{25} \mathrm{H}_{43}{ }^{37} \mathrm{ClN}^{+}, 394.3055$; found 392.3082 and 394.3073 .

3-(13-Chlorotridecyl)-1-(oct-7-enyl)pyridinium Chloride (8b). Following the same procedure, pyridinium chloride $\mathbf{8 b}$ was obtained in 95% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.37(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.27(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.1-8.0(\mathrm{~m}$, $1 \mathrm{H}), 5.8-5.7(\mathrm{~m}, 1 \mathrm{H}), 5.0-4.9(\mathrm{~m}, 2 \mathrm{H}), 4.9-4.8(\mathrm{~m}, 2 \mathrm{H}), 3.5-3.4(\mathrm{~m}, 2 \mathrm{H}), 2.9-2.8(\mathrm{~m}$, $2 \mathrm{H})$, 2.1-1.9 (m, 4H), 1.8-1.6 (m, 4H), 1.5-1.1 (m, 24H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.2,143.8,143.7,142.2,138.1,127.6,114.0,61.1,44.8,33.0,32.1,31.5$, 30.0, 29.0 (2x), 28.9, 28.8, 28.6, 28.3, 28.0 (2x), 26.3, 25.4 ppm . IR (NaCl) v 2925 (s, C-H), 2853 (s, C-H), 1633 (m), 1504 (m), 1463 (m), 1154 (m), 726 (s). MS (EI^{+}) m/z (\%) 408 ([$\left.\mathrm{M}-\mathrm{Cl}^{-}\right]^{+}\left[{ }^{37} \mathrm{Cl}\right], 33$), 406 ($\left.\left[\mathrm{M}-\mathrm{Cl}^{-}\right]^{+}\left[{ }^{35} \mathrm{Cl}\right], 100\right), 370$ (18), 260 (73), 232 (23), 174 (21), 150 (52), 148 (50). HRMS (EI^{+}) calcd for $\mathrm{C}_{26} \mathrm{H}_{45}{ }^{35} \mathrm{ClN}^{+}, 406.3241$ and $\mathrm{C}_{26} \mathrm{H}_{45}{ }^{37} \mathrm{ClN}^{+}, 408.3211$; found 406.3235 and 408.3209.

Preparation of pyridines 9a-c. See procedure for pyridines 5a,b

3-(Pent-4-enyl)pyridine (9a). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.5-8.40(\mathrm{~m}, 2 \mathrm{H}), 7.48$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{tdd}, J=16.9,10.2,6.7 \mathrm{~Hz}$, $1 \mathrm{H})$, 5.0-4.9 (m, 2H), 2.7-2.6 (m, 2H), 2.1-2.0 (m, 2H), 1.8-1.7 (m, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.9,147.2,138.0,137.4,135.7,123.2,115.0,33.0,32.2,30.1$ ppm. IR (NaCl) v2932 (s, C-H), 2858 (w, C-H), 1640 (m), 1575 (m), 1478 (m), 1422 (s), 912 (s). MS ($\left.\mathrm{EI}^{+}\right) m / z(\%) 147\left([\mathrm{M}]^{+}, 9\right), 146\left([\mathrm{M}-1]^{+}, 4\right), 118$ (18), 105 (100), 93, (20), 92 (57), 78 (14). HRMS (EI^{+}) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}, 147.1048$; found 147.1050.

3-(Hex-5-enyl)pyridine (9b). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.5-8.4(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=7.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{tdd}, J=16.9,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.98(\mathrm{dd}, J=17.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2 H), 2.1-2.0 (m, 2H), 1.7-1.6 (m, 2H), 1.5-1.4 (m, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.8,147.1,138.4,137.6,135.6,123.1,114.5,33.4,32.7,30.4,28.2 \mathrm{ppm} . \mathrm{IR}$ (NaCl) $v 2907(\mathrm{w}, \mathrm{C}-\mathrm{H}), 2858(\mathrm{w}, \mathrm{C}-\mathrm{H}), 1639(\mathrm{~m}), 1575(\mathrm{~m}), 1477(\mathrm{~m}), 1421$ (s$), 1189$ (w), 1025 (m), 992 (m), 909 (s), 795 (m), 712 (s). MS ($\left.\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}(\%) 161$ ([M] ${ }^{+}, 3$), 160 (8), 137 (11), 133 (65), 118 (19), 105 (29), 92 (47), 81 (11), 69 (100). HRMS (EI^{+}) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}$ 161.1204; found 161.1210.

3-(Oct-7-enyl)pyridine (9c). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.5-8.4 (m, 2H), 7.47 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{tdd}, J=17.0,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.98(\mathrm{dd}, J=17.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{ddd}, J=10.2,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.1-2.0(\mathrm{~m}, 2 \mathrm{H}), 1.7-1.6(\mathrm{~m}, 1 \mathrm{H}), 1.4-1.3(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.9,147.1,139.0,137.9,135.7,123.2,114.2,33.7,32.9,31.0,28.9,28.8$, 28.7 ppm. IR (NaCl) v 2925 ($\mathrm{s}, \mathrm{C}-\mathrm{H}$), 2854 ($\mathrm{w}, \mathrm{C}-\mathrm{H}$), 1639 (m), 1574 (m), 1477 (m), 1421 (s), 1188 (w), 1026 (m), 994 (m), 907 (s), 793 (m), 712 (s). MS (EI ${ }^{+}$) m/z (\%) 189 $\left([\mathrm{M}]^{+}, 21\right), 188(25), 146(100), 133$ (27), 106 (27), 105 (19), 93 (29), 92 (63).

1-(Oct-7-enyl)-3-\{12-[3-(oct-7-enyl)pyridinium-1-yl]dodecyl\}pyridinium Chloride

 Iodide (10c). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.13$ (br s, 2H), 9.0-8.9 (m, 2H), 8.53 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{dd}, J=8.0,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.8-5.7(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.91(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.93(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.1-$ $2.0(\mathrm{~m}, 8 \mathrm{H}), 1.8-1.7(\mathrm{~m}, 4 \mathrm{H}), 1.5-1.2(\mathrm{~m}, 28 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 146.7, 145.6, 145.5, 145.3, 143.2, 139.9, 139.8, 129.0, 115.0, 114.9, 62.7, 34.7, 34.6, 33.4 (2x), 32.5, 31.5, 31.4, 30.7, 30.6 (2x), 30.5, 30.1, 29.9, 29.8 (2x), 29.7, 29.5, 26.9 ppm. IR (NaCl) v 3015 (s), 2924 (s, C-H), 2853 (s, C-H), 1633 (m), 1504 (s), 1457 (s), $1153(\mathrm{~m}), 910 \mathrm{~s}), 732(\mathrm{~s}), 688(\mathrm{~s}) . \operatorname{HRMS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{38} \mathrm{H}_{62} \mathrm{IN}_{2}{ }^{+} 673.3951$ (found 673.3945). $\mathrm{C}_{38} \mathrm{H}_{62} \mathrm{~N}_{2}{ }^{2+} 273.2451$ (found 273.2447).
1-(Oct-7-enyl)-3-\{13-[3-(pent-4-enyl)pyridinium-1-yl]tridecyl\}pyridinium

Chloride Iodide (10d). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 9.36$ (br s, 1 H), 9.34 (br s, 1 H), $9.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{dd}, J$ $=8.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.9-5.7(\mathrm{~m}, 2 \mathrm{H}), 5.1-4.9(\mathrm{~m}, 4 \mathrm{H}), 4.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.9-2.8$ $(\mathrm{m}, 4 \mathrm{H})$, 2.1-2.0 (m, 2H), 2.06-1.9 (m, 6H), 1.8-1.7 (m, 4H), 1.5-1.1 (m, 24H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 145.2,144.2,144.0,143.9,143.8,142.2,142.1,138.8$, $137.5,128.0,115.4,114.2,61.5,61.4,33.5,32.8,32.4,31.8,31.7,30.3,29.4,29.3$, 29.2, 29.1, 29.0, 28.8 (2x), 28.4, 28.3, 25.8, 25.7 ppm. IR (NaCl) v 3016 (m), 2925 (s, C-H), 2853 (w, C-H), 1631 (m), 1503 (s), 1460 (m), 1152 (m), 911 (m), 688 (s). MS $\left(\mathrm{ESI}^{+}\right)(\%) 645\left(\left[\mathrm{M}-\mathrm{Cl}^{-}\right]^{+}, 5\right)$. HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{IN}_{2}{ }^{+} 645.3639$ (found 645.3626), $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{~N}_{2}{ }^{2+} 259.2294$ (found 259.2290).

3-(Hex-5-enyl)-1-\{13-[1-(oct-7-enyl)pyridinium-3-yl]tridecyl\}pyridinium

Chloride Iodide (10e). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.05$ (br s, 2H), 8.90 (t, $J=5.3$ $\mathrm{Hz}, 2 \mathrm{H}), 8.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{dd}, J=7.8,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.8-5-7(\mathrm{~m}, 2 \mathrm{H}), 5.0-$ $4.9(\mathrm{~m}, 4 \mathrm{H}), 4.66(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.9-2.8(\mathrm{~m}, 4 \mathrm{H}), 2.2-2.1(\mathrm{~m}, 2 \mathrm{H}), 2.0-1.9(\mathrm{~m}, 6 \mathrm{H})$,
1.8-1.7 (m, 4H), 1.5-1.4 (m, 2H), 1.4-1.2 (m, 24H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 146.7,145.7,145.6,145.3,143.4,143.3,139.9,139.6,129.0,115.4,115.0,62.8(2 x)$, $34.7,34.5,33.5,33.3,32.6,32.5,31.6,31.0,30.7,30.6(2 x), 30.5,30.4,30.1(2 x), 29.8$, 29.6, 29.4, 27.2, $27.0 \mathrm{ppm} . \mathrm{IR}(\mathrm{NaCl}) v 3016$ (m), 2925 ($\mathrm{s}, \mathrm{C}-\mathrm{H}$), 2853 ($\mathrm{s}, \mathrm{C}-\mathrm{H}), 1631$ (m), 1505 (s), 1460 (m), 1152 (m), 911 (m), 688 (s). HRMS (ESI ${ }^{+}$) m/z calcd for $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{IN}_{2}{ }^{+} 659.3795$ (found 659.3787), $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{~N}_{2}{ }^{2+} 266.2372$ (found 266.2369).

1-(Oct-7-enyl)-3-\{13-[3-(oct-7-enyl)pyridinium-1-yl]tridecyl\}pyridinium Chloride

Iodide (10f). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.02(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.9-8.8(\mathrm{~m}, 2 \mathrm{H}), 8.48(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{dd}, J=7.7,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.8-5.7(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.91(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.9-2.8(\mathrm{~m}, 4 \mathrm{H}), 2.1-2.0(\mathrm{~m}$, $8 \mathrm{H}), 1.8-1.7(\mathrm{~m}, 4 \mathrm{H}), 1.5-1.2(\mathrm{~m}, 30 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 146.7$, $145.8,145.7,145.3,143.3,140.0,139.9,129.0,115.0,114.9,62.9,34.8,34.7,33.5$, 32.5, 32.4, 31.5 (2x), 30.6 (2x), 30.4 (2x), 30.1, 30.0, 29.9 (2x) 29.8, 29.5, 27.1, 26.9 ppm. IR (NaCl) v 3016 (m), 2925 (s, C-H), 2853 (s, C-H), 1631 (m), 1503 (s), 1460 (m), $1152(\mathrm{~m}), 911(\mathrm{~m}), 688$ (s). HRMS ($\left.\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{39} \mathrm{H}_{64} \mathrm{IN}_{2}{ }^{+} 687.4109$ (found 687.4097), $\mathrm{C}_{39} \mathrm{H}_{64} \mathrm{~N}_{2}{ }^{2+} 280.2529$ (found 280.2524).

Cyclostellettamine A (1a). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.95$ (br s, 2H, H2/2'), 8.85 (d, $\left.J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6 / 6^{\prime}\right), 8.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / 4$ '), 8.02 (dd, $J=7.9,5.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H} / 5^{\prime}\right)$, 4.61 ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} / 7^{\prime}$ '), 2.9-2.8 (m, 4H, H18/18'), 2.1-2.0 (m, $4 \mathrm{H}, \mathrm{H} 8 / 8^{\prime}$), 1.7-1.6 (m, 4H, H17/17'), 1.5-1.3 (m, 32H, H9-16/9'-16') ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 146.6$ ($\left.\mathrm{C} 4 / 44^{\prime}\right), 145.7$ ($\left.\mathrm{C} 3 / 3^{\prime}\right), 145.3$ ($\left.\mathrm{C} 2 / 2^{\prime}\right), 143.4$ ($\left.\mathrm{C} 6 / 6{ }^{\prime}\right)$, 129.0 (C5/5'), 62.9 (C7/7'), 33.6 (C18/18'), 32.6 (C8/8'), 31.6 (C17/17'), 30.7, 30.6, 30.5 (C10-15/10'-15'), 30.1 (C16/16'), 27.1 (C9/9') ppm. IR (NaCl) v 3020 (m), 2924 (s, C-H), 2853 ($\mathrm{s}, \mathrm{C}-\mathrm{H}$), 1632 (m), 1505 (s$), 1463$ (m), 1155 (m), 732 (m), 692 (s). HRMS (ESI ${ }^{+}$)
m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{IN}_{2}{ }^{+}, 619.3483$ (found 619.3475), $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{ClN}_{2}{ }^{+} 527.4126$ (found 527.4120), $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{~N}_{2}{ }^{2+} 246.2216$ (found 246.2221).

Cyclostellettamine B (1b). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.99$ (br s, 2H, H2/2'), 8.88 (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} / 6 /$ '), 8.48 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / 4$ '), 8.04 (dd, $J=7.8,5.5$ Hz 2H, H5/5'), 4.65 (t, $\left.J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 7 / 7{ }^{\prime}\right), 2.90\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 18 / 19{ }^{\prime}\right), 2.1-1.9$ (m, 4H, H8/8'), 1.8-1.6 (m, 4H, H17/18'), 1.5-1.2 (m, 34H, H9-16/9'-17') ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 146.6$ (C4/4'), 145.7 (C3/3'), 145.3 (C2/2'), 143.4(C6/6'), 129.0 (C5/5'), 62.9 (C7/7'), 33.5 (C18/19'), 32.6 (C8/8'), 31.6 (C17/18'), 30.7, 30.6, 30.5 (C10-15/10'-16'), 30.2 (C16/17'), 27.2 (C9/9') ppm. IR (NaCl) v3020 (m), 2924 (s, CH), 2853 ($\mathrm{s}, \mathrm{C}-\mathrm{H}$), 1632 (m), 1505 (s$), 1464$ (m), 1155 (m), 691 (s). HRMS (ESI ${ }^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{IN}_{2}{ }^{+} 633.3639$ (found 633.3632), $\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{ClN}_{2}{ }^{+} 541.4283$ (found 541.4275), $\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{~N}_{2}{ }^{2+} 253.2294$ (found 253.2295).

Cyclostellettamine E (1e). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.96$ (br s, 2H, H2/2'), 8.86 (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6 / 6$ '), 8.46 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / 4$ '), 8.0-7.9 (m, 2H, H5/5'), $4.62\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} / 7^{\prime}\right), 2.89\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 19 / 20^{\prime}\right), 2.0-1.9(\mathrm{~m}, 4 \mathrm{H}$, H8/8'), 1.74 (t, $\left.J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 18 / 19^{\prime}\right), 1.5-1.2$ (m, 36H, H9-17/9'-18') ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 146.7\left(\mathrm{C} 4 / 4{ }^{\prime}\right)$, 145.8 ($\mathrm{C} 3 / 3^{\prime}$), 145.3 ($\left.\mathrm{C} 2 / 2^{\prime}\right), 143.4$ ($\left.\mathrm{C} 6 / 6^{\prime}\right), 129.0$ (C5/5'), 62.9 (C7/7'), 33.6 (C19/20'), 32.6 (C8/8'), 31.7 (C18/19'), 30.7, 30.6, 30.5, 30.3 (C10-16/10'-17'), 30.2 (C17/18'), 27.2 (C9/9') ppm. IR (NaCl) v 3021 (m), 2925 (s, CH), 2853 ($\mathrm{s}, \mathrm{C}-\mathrm{H}$), 1632 (m), 1505 (s), 1456 (s$), 1155$ (m), 1035 (m), 692 (s). HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{37} \mathrm{H}_{62} \mathrm{IN}_{2}{ }^{+} 661.3952$ (found 661.3949), $\mathrm{C}_{37} \mathrm{H}_{62} \mathrm{ClN}_{2}{ }^{+} 569.4596$ (found 569.4590), $\mathrm{C}_{37} \mathrm{H}_{62} \mathrm{~N}_{2}{ }^{2+} 267.2451$ (found 267.2452).

Cyclostellettamine G (1g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.96$ (br s, 2H, H2/2'), 8.85 (d, $\left.J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6 / 6^{\prime}\right), 8.47\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / 4 \mathrm{~A}^{\prime}\right), 8.02(\mathrm{dd}, J=8.1,6.2$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H} / 5^{\prime}\right)$, 4.62 ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} / 7^{\prime}$ '), 2.9-2.8 (m, 4H, H17/18'), 2.1-1.9 (m,
$\left.4 \mathrm{H}, \mathrm{H} 8 / 8^{\prime}\right), 1.73$ (t, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 16 / 17$ '), 1.3-1.2 (m, 30H, H9-14/9'-15') ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CD ${ }_{3} \mathrm{OD}$) $\delta 146.7$ (C4/4'), 145.8 (C3/3'), 145.3 (C2/2'), 143.4 (C6/6'), 129.0 (C5/5'), 62.9 (C7/7'), 33.6 (C17/18'), 32.6 (C8/8'), 31.6 (C16/17'), 30.7, 3.06, 30.5, 30.4 (C10-14/C10'-15'), 30.2 (C15/16'), 27.2 (C9/9') ppm. IR (NaCl) v 3022 (m), 2922 (s, C-H), 2852 (s, C-H), 1632 (m), 1505 (s), 1464 (m), 1156 (m), 691 (s). HRMS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{IN}_{2}{ }^{+}, 605.3326$ (found 605.3317), $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{ClN}_{2}{ }^{+} 513.3970$ (found 513.3964), $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{~N}_{2}{ }^{2+} 239.2138$ (found 239.2140).

Cyclostellettamine analogue (12). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.97$ (br s, 2H, H2/2'), 8.85 (d, $\left.J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6 / 6^{\prime}\right), 8.46$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4 / 4$ '), 8.02 (dd, $J=$ $\left.8.0,5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5 / 5^{\prime}\right), 4.62$ (t, $\left.J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 7 / 7^{\prime}\right), 2.9-2.8$ (m, 4H, H19/17'), 2.01.9 (m, 4H, H8/8'), 1.74 (t, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H} 18 / 16$ '), 1.4-1.2 (m, 36H, H9-17/9'-15') ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 146.7$ (C4/4'), 145.8 (C3/3'), 145.3 (C2/2'), 143.4 (C6/6'), 129.0 (C5/5'), 62.9 (C7/7'), 33.6 (C19/17'), 32.6 (C8/8'), 31.7 (C18/16'), 30.8, 30.7, 30. 6, 30.5, 30.4, 30.3, 30.2 (C10-16/10'-14'), 30.1 (C17/15'), 27.2 (C9/9') ppm. IR (NaCl) v 3021 (m), 2923 ($\mathrm{s}, \mathrm{C}-\mathrm{H}), 2852$ ($\mathrm{s}, \mathrm{C}-\mathrm{H}), 1632$ (m), 1505 (s), 1464 (m), 1155 (m), 692 (s). HRMS (ESI^{+}) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{IN}_{2}{ }^{+}, 619.3483$ (found 619.3474), $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{ClN}_{2}^{+} 527.4126$ (found 527.4121), $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{~N}_{2}{ }^{2+} 246.2216$ (found 246.2219).

	Name	Retention Time (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	Int Type	Amount	Units	Peak Type	Peak Codes
1		1.495	43999	1.08	2352	BB			Unknown	
2		2.701	4523	0.11	527	BB			Unknown	
3		3.537	659	0.02	93	BV			Unknown	
4		3.859	5585	0.14	528	VB			Unknown	
5		4.131	868	0.02	157	BB			Unknown	
6		4.438	21834	0.54	3427	BV			Unknown	
7		4.731	3974704	97.78	377434	VB			Unknown	
8		5.213	624	0.02	130	BB			Unknown	
9		5.671	143	0.00	26	BB			Unknown	
10		6.114	210	0.01	28	BB			Unknown	
11		6.377	183	0.00	21	BV			Unknown	
12		6.649	247	0.01	39	VB			Unknown	
13		7.700	678	0.02	66	BV			Unknown	
14		8.354	10499	0.26	337	VB			Unknown	

Develosil C-30
$\mathrm{H}_{2} 0 / \mathrm{CH}_{3} \mathrm{CN}: 17 / 83$ (0.1\% TFA)
Flow: $3.2 \mathrm{~mL} / \mathrm{min}$
$\mathrm{v}=267 \mathrm{~nm}$

	Name	Retention Time (min)	Area $(\mu \mathrm{V}$ sec $)$	\% Area	Height $(\mu \mathrm{V})$	Int Type	Amount	Units	Peak Type	Peak Codes
1		2.697	1123	0.04	108	BB			Unknown	
2		3.615	449	0.02	83	BB			Unknown	
3		3.859	7526	0.26	1067	BV			Unknown	
4		4.055	1347	0.05	190	VB			Unknown	
5		4.442	2863353	98.81	362979	BB			Unknown	
6		4.804	19824	0.68	3412	BB			Unknown	
7		5.324	3498	0.12	325	BB			Unknown	
8		6.104	752	0.03	97	BB			Unknown	

Develosil C-30
$\mathrm{H}_{2} 0 / \mathrm{CH}_{3} \mathrm{CN}: 17 / 83$ ($0.1 \% \mathrm{TFA}$)
Flow: $3.2 \mathrm{~mL} / \mathrm{min}$
$\mathrm{v}=267 \mathrm{~nm}$

	Name	Retention Time (min)	Area $(\mu \mathrm{V} / \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	Int Type	Amount	Units	Peak Type	Peak Codes
1		2.818	959	0.04	62	BB			Unknown	
2		3.869	6715	0.31	695	BB			Unknown	
3		4.175	355	0.02	65	BB			Unknown	
4		4.494	23084	1.05	3021	BV			Unknown	
5		5.000	2158065	98.27	218843	VB			Unknown	
6		5.571	4686	0.21	405	BB			Unknown	
7		6.095	1321	0.06	159	BB			Unknown	
8		6.642	928	0.04	131	BB			Unknown	

Develosil C-30
$\mathrm{H}_{2} 0 / \mathrm{CH}_{3} \mathrm{CN}: 17 / 83$ (0.1% TFA)
Flow: $3.2 \mathrm{~mL} / \mathrm{min}$
$\mathrm{v}=267 \mathrm{~nm}$

P1

	Name	Retention Time (min)	Area $\left(\mu \mathrm{V}^{\prime} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	Int Type	Amount	Units	Peak Type	Peak Codes
1		2.678	3164	0.08	356	BB			Unknown	
2		3.612	1424	0.03	136	BV			Unknown	
3		3.869	6528	0.16	810	WV			Unknown	
4		4.033	685	0.02	129	WV			Unknown	119
5		4.496	4138283	99.34	515653	WV			Unknown	
6		5.449	7733	0.19	441	W			Unknown	
7		6.107	425	0.01	52	VB			Unknown	
8		6.653	563	0.01	80	BB			Unknown	
9		7.013	6867	0.16	726	BB			Unknown	

Develosil C-30
$\mathrm{H}_{2} 0 / \mathrm{CH}_{3} \mathrm{CN}: 17 / 83$ ($0.1 \% \mathrm{TFA}$)
Flow: $3.2 \mathrm{~mL} / \mathrm{min}$
$\mathrm{v}=267 \mathrm{~nm}$

	Name	Retention Time (min)	Area $\left(\mu V^{*} \sec \right)$	\% Area	Height ($\mu \mathrm{V}$)	Int Type	Amount	Units	Peak Type	Peak Codes
1		2.254	10347	0.13	711	BV			Unknown	
2		2.686	65421	0.85	7619	VV			Unknown	
3		3.366	26442	0.34	1089	VV			Unknown	
4		3.880	9274	0.12	977	VV			Unknown	
5		3.996	5414	0.07	873	VV			Unknown	
6		4.153	495	0.01	91	VB			Unknown	
7		4.461	68571	0.90	7078	BV			Unknown	
8		4.806	26058	0.34	3625	VV			Unknown	
9		5.360	7488265	96.78	628273	VB			Unknown	
10		6.113	12209	0.16	880	BB			Unknown	
11		6.646	4336	0.06	586	BV			Unknown	
12		6.949	17785	0.23	1901	VV			Unknown	
13		7.297	417	0.01	54	VB			Unknown	
14		7.879	288	0.00	41	BB			Unknown	
15		8.098	196	0.00	27	BB			Unknown	
16		8.356	181	0.00	25	BB			Unknown	
17		9.157	369	0.00	37	BB			Unknown	

Develosil C-30
$\mathrm{H}_{2} 0 / \mathrm{CH}_{3} \mathrm{CN}: 17 / 83$ ($0.1 \% \mathrm{TFA}$)
Flow: $3.2 \mathrm{~mL} / \mathrm{min}$
$\mathrm{v}=267 \mathrm{~nm}$

	Name	Retention Time (min)	$\begin{gathered} \text { Area } \\ \left(\mu V^{x} \sec \right) \end{gathered}$	\% Area	Height ($\mu \mathrm{V}$)	Int Type	Amount	Units	Peak Type	Peak Codes
1		1.683	17	0.01	8	BB			Unknown	119
2		2.416	270483	97.89	30294	BB			Unknown	
3		3.888	670	0.24	70	BV			Unknown	
4		4.269	702	0.25	96	W			Unknown	
5		4.422	382	0.14	66	W			Unknown	
6		4.541	277	0.10	28	W			Unknown	119
7		4.758	113	0.04	38	W			Unknown	119 \|38
8		4.844	690	0.25	54	W			Unknown	
9		5.247	1611	0.58	223	VB			Unknown	
10		6.566	233	0.08	28	BB			Unknown	
11		6.931	296	0.11	29	BB			Unknown	
12		7.430	30	0.01	9	BB			Unknown	119
13		7.715	759	0.27	74	BB			Unknown	
14		8.750	21	0.01	8	BB			Unknown	119
15		9.116	15	0.01	8	BB			Unknown	119

Develosil C-30
$\mathrm{H}_{2} 0 / \mathrm{MeOH}: 7 / 93$ (0.1% TFA)
Flow: $3.2 \mathrm{~mL} / \mathrm{min}$
$\mathrm{v}=267 \mathrm{~nm}$

Develosil C-30
$\mathrm{H}_{2} 0 / \mathrm{MeOH}: 7 / 93$ (0.1% TFA)
Flow: $3.2 \mathrm{~mL} / \mathrm{min}$
$\mathrm{v}=267 \mathrm{~nm}$

	Name	Retention Time (min)	Area ($\mu \mathrm{V}$ / sec)	\% Area	Height ($\mu \mathrm{V}$)	Int Type	Amount	Units	Peak Type	Peak Codes
1		2.401	710569	99.27	89255	BB			Unknown	
2		3.473	89	0.01	16	BB			Unknown	
3		3.875	1716	0.24	176	BV			Unknown	
4		4.248	927	0.13	107	V			Unknown	
5		4.419	258	0.04	57	V			Unknown	119
6		4.561	175	0.02	30	VB			Unknown	
7		4.752	185	0.03	35	BV			Unknown	
8		4.839	170	0.02	35	VB			Unknown	119
9		5.033	33	0.00	12	BB			Unknown	119
10		5.233	670	0.09	90	BV			Unknown	
11		5.463	80	0.01	15	VB			Unknown	
12		7.673	885	0.12	84	BB			Unknown	
13		9.301	24	0.00	8	BB			Unknown	119

Develosil C-30
$\mathrm{H}_{2} 0 / \mathrm{MeOH}: 7 / 93$ ($0.1 \% \mathrm{TFA}$)
Flow: $3.2 \mathrm{~mL} / \mathrm{min}$
$\mathrm{v}=267 \mathrm{~nm}$

61 "LI——

usd

	Name	Retention Time (min)	Area ($\mu^{\mathrm{V}} \mathrm{V} \sec$)	\% Area	Height ($\mu \mathrm{V}$)	Int Type	Amount	Units	Peak Type	Peak Codes
1		0.293	6357	0.72	383	BV			Unknown	
2		0.773	4641	0.53	339	VV			Unknown	
3		0.916	4283	0.49	372	VV			Unknown	
4		1.071	5506	0.63	361	VV			Unknown	
5		1.339	1619	0.18	332	VV			Unknown	119
6		1.517	7608	0.87	354	VB			Unknown	
7		1.903	202	0.02	57	BB			Unknown	119
8		2.059	62	0.01	14	BB			Unknown	
9		2.396	828709	94.48	111345	BB			Unknown	
10		3.471	126	0.01	26	BB			Unknown	
11		3.890	5093	0.58	319	BV			Unknown	
12		4.265	2959	0.34	251	VV			Unknown	
13		4.413	4145	0.47	306	VV			Unknown	
14		4.753	3034	0.35	183	VV			Unknown	
15		5.242	1050	0.12	129	VV			Unknown	
16		5.451	46	0.01	10	VB			Unknown	119
17		5.888	11	0.00	6	BB			Unknown	119
18		6.930	759	0.09	38	BB			Unknown	119
19		7.725	884	0.10	83	BB			Unknown	
20		8.198	46	0.01	9	BB			Unknown	119
21		8.830	12	0.00	6	BB			Unknown	119

Develosil C-30
$\mathrm{H}_{2} 0 / \mathrm{MeOH}: 7 / 93$ (0.1% TFA)

Flow: $3.2 \mathrm{~mL} / \mathrm{min}$

$\mathrm{v}=267 \mathrm{~nm}$

	Name	Retention Time (min)	Area (μ V"sec)	\% Area	Height ($\mu \mathrm{V}$)	Int Type	Amount	Units	Peak Type	Peak Codes
1		2.411	1054936	95.06	120471	BB			Unknown	
2		3.529	1187	0.11	193	BV			Unknown	
3		3.611	1185	0.11	163	VV			Unknown	
4		3.912	12890	1.15	1089	W			Unknown	
5		4.222	26471	2.36	2472	W			Unknown	
6		4.555	2016	0.18	265	W			Unknown	
7		4.897	8289	0.74	454	W			Unknown	.
8		5.217	3275	0.29	472	VB			Unknown	
9		5.542	778	0.07	114	BB			Unknown	
10		6.284	7870	0.70	1006	B8		*	Unknown	
11	-	7.630	2620	0.23	236	BB			Unknown	

Develosil C-30
$\mathrm{H}_{2} 0 / \mathrm{MeOH}: 7 / 93$ (0.1% TFA)
Flow: $3.2 \mathrm{~mL} / \mathrm{min}$
$\mathrm{v}=267 \mathrm{~nm}$

I

	Name	Retention Time (min)	$\begin{gathered} \text { Area } \\ \left(\mu V^{\prime} \sec \right) \end{gathered}$	\% Area	Height ($\mu \mathrm{V}$)	Int Type	Amount	Units	Peak Type	Peak Codes
1		2.139	37	0.01	10	BB			Unknown	119
2		2.405	499472	99.26	59774	BB			Unknown	
3		3.473	111	0.02	20	BB			Unknown	
4		3.870	1275	0.25	140	BV			Unknown	
5		4.253	644	0.13	82	VB			Unknown	
6		4.429	223	0.04	43	BV			Unknown	
7		4.558	139	0.03	24	VB			Unknown	
8		4.748	220	0.04	32	BB			Unknown	
9		5.229	455	0.09	58	BB			Unknown	
10		5.763	13	0.00	6	BB			Unknown	119
11		7.666	616	0.12	57	BB			Unknown	
12		9.899	15	0.00	7	BB			Unknown	119

Develosil C-30
$\mathrm{H}_{2} 0 / \mathrm{MeOH}: 7 / 93$ (0.1% TFA)
Flow: $3.2 \mathrm{~mL} / \mathrm{min}$
$\mathrm{v}=267 \mathrm{~nm}$

E*LTT—

wdd

ESI POS,

	Name	Retention Time (min)	$\begin{gathered} \text { Area } \\ \left(\mu V^{\prime} \sec \right) \end{gathered}$	\% Area	Height ($\mu \mathrm{V}$)	Int Type	Amount	Units	Peak Type	Peak Codes
1		2.139	37	0.01	10	BB			Unknown	119
2		2.405	499472	99.26	59774	BB			Unknown	
3		3.473	111	0.02	20	BB			Unknown	
4		3.870	1275	0.25	140	BV			Unknown	
5		4.253	644	0.13	82	VB			Unknown	
6		4.429	223	0.04	43	BV			Unknown	
7		4.558	139	0.03	24	VB			Unknown	
8		4.748	220	0.04	32	BB			Unknown	
9		5.229	455	0.09	58	BB			Unknown	
10		5.763	13	0.00	6	BB			Unknown	119
11		7.666	616	0.12	57	BB			Unknown	
12		9.899	15	0.00	7	BB			Unknown	119

Develosil C-30
$\mathrm{H}_{2} 0 / \mathrm{MeOH}: 7 / 93$ (0.1% TFA)
Flow: $3.2 \mathrm{~mL} / \mathrm{min}$
$\mathrm{v}=267 \mathrm{~nm}$

E*LTT—

wdd

