An Approach to Skeletal Diversity Using "Functional Group Pairing" of Multifunctional Scaffolds

Supporting Information

Eamon Comer, Erin Rohan, Li Deng, and John A. Porco, Jr*.

Department of Chemistry and Center for Chemical Methodology and Library Development (CMLDBU), Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (USA) and Department of Chemistry, Brandeis University Waltham, MA 02454-9110 (USA)

2. Stereoselective generation of multifunctional scaffolds-------------------------------- S2
3. Select NMR spectra for multifunctional scaffolds --
4. Select chiral HPLC analyses of multifunctional scaffolds ----------------------------- S12
5. X-ray crystal structure analysis of malonate 4g--15 S15
6. Functional group pairing of multifunctional scaffolds -------------------------------------18
7. Select NMR spectra for functional group pairing products----------------------------- S26
8. X-ray crystal structure analysis for Pauson-Khand product 17---------------------- S56

1. General Experimental Information:

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ spectra were recorded at 400 MHz and 100.0 MHz respectively at ambient temperature with CDCl_{3} as solvent unless otherwise stated. Chemical shifts are reported in parts per million relative to $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}, \delta 7.26 ;{ }^{13} \mathrm{C}, \delta 77.0\right)$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dt}=$ doublet of triplets, $\mathrm{dq}=$ doublet of quartets, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constant, and integration. Coupling constants are reported as values in hertz (Hz). All ${ }^{13} \mathrm{C}$ NMR spectra were recorded with complete proton decoupling. Infrared spectra were recorded on a Nicolet Nexus 670 FTIR spectrophotometer. Optical rotations were recorded on an AUTOPOL III digital polarimeter at 589 nm , and are reported as $[\alpha]_{\mathrm{D}}{ }^{20}$ (concentration in grams $/ 100 \mathrm{~mL}$ solvent). High-resolution mass spectra were obtained in the Boston University Mass Spectrometry Laboratory using a Finnegan MAT-90 spectrometer. Analytical and preparative HPLC were performed on a Waters FractionLynx System with a Waters 600 HPLC pump, MicroMass ZQ 2000 mass spectrometer, Waters 996 diode array, and a Sedere Sedex 75 ELS detector. Analytical thin layer chromatography was performed using Whatman Reagent 0.25 mm silica gel $60-$ A plates. Flash chromatography was carried out using an Isco CombiFlash system. Methylene chloride, THF, Diethyl ether, and toluene were purified and dried by passing through two packed columns of neutral alumina (Innovative Technologies, MA). Microwave reactions were performed using the DiscoverTM Explorer System (CEM Corp., Matthews, NC). A GeneVac HT-4 or EZ-2 (Genevac Inc.), was used for concentration and drying of solutions in vials or test tubes. The ArthurTM Suite Reaction Planner (Symyx Technologies, Inc.) was used for experimental procedure planning. Chiral high pressure liquid chromatography (HPLC) analyses were performed on compounds $\mathbf{4 a}, \mathbf{4 b}$ and $\mathbf{4 d}$ on a Hewlett-Packard 1100 Series instrument equipped with a quaternary pump using a Daicel Chiralcel OJ or OD Column ($250 \times 4.6 \mathrm{~mm}$) with UV detection monitored at 220 nm or 215 nm . Chiral HPLC analyses on all other compounds was performed on a Waters 717 plus autosampler instrument equipped with a Waters binary 1525 pump, using a Daicel Chiralcel OD-H Column. UV detection was monitored at 214 nm and at 254 nm .

2. Stereoselective generation of multifunctional scaffolds

(E)-o-Allyl- β-nitrostyrene 3b. To a solution of trans-2-bromo- β-nitrostyrene ${ }^{1}$ (3c) (877 $\mathrm{mg}, 3.84 \mathrm{mmol})$ in THF (10 mL) was added allyltributyltin ($1.6 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium(0) ($400 \mathrm{mg}, 0.4 \mathrm{mmol}$) under argon. The reaction was heated under microwave conditions at $140^{\circ} \mathrm{C}$ (300 watts) for 30 min . The reaction was concentrated and then dissolved in acetonitrile. Hexanes were then used to extract the tin-containing byproducts and the reaction was concentrated under vacuum. Chromatography over SiO_{2} (10% EtOAc in pet. ether) provided nitromalonate $3 \mathbf{b}$ (674 $\mathrm{mg}, 93 \%$) as a yellow oil. This material had properties in good agreement with that reported in the literature. ${ }^{2}$

1-(3-Methoxyprop-1-ynyl)-2-((E)-2-nitrovinyl)benzene 3d. To a solution of trans-2-bromo- β-nitrostyrene ${ }^{1}$ (3 c) $(200 \mathrm{mg}, 0.9 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ was added N, N diisopropylamine (1 mL). Argon was bubbled through this solution for 15 min . To the reaction was added tetrakis(triphenylphosphine)palladium(0) ($30 \mathrm{mg}, 0.03 \mathrm{mmol}$), copper (I) iodide ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$) and methyl propargyl ether ($96 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$). The reaction was irradiated under microwave conditions at $100^{\circ} \mathrm{C}$ (300 watts) for 40 min . The reaction was concentrated under vacuum. Chromatography over SiO_{2} ($10 \% \mathrm{EtOAc}$ in pet. ether) provided $3 \mathbf{d}(130 \mathrm{mg}, 70 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}$, $J=13.8,1 \mathrm{H}), 7.71(\mathrm{~d}, J=13.8,1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H})$, 3.51 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 138.5, 137.1, 133.9, 131.7, 131.7, 129.3, 127.6, 124.9, 92.9, 83.5, 60.6, 58.2; IR (thin film) $v_{\max } 2931,2824,1520,1341,1100 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{3} 218.0817$, found 218.0795.

4a

Methyl 2-acetyl-2-((S)-2-nitro-1-phenylethyl)pent-4-ynoate 4a: To a solution of trans- β-nitrostyrene ${ }^{3}(15 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF $(0.1$ mL) was added ketoester $\mathbf{2 a}^{4}(30 \mathrm{mg}, 0.2 \mathrm{mmol})$. The solution was stirred at $-20^{\circ} \mathrm{C}$ for 1 h . To this solution was added catalyst $5 \mathbf{c}^{5}(10$ $\mathrm{mol} \%$). The reaction mixture was stirred at $-20{ }^{\circ} \mathrm{C}$ for 16 h then filtered through a plug of silica gel for removal of the catalyst using diethyl ether as eluant. The filtrate was concentrated in vacuo to afford a crude mixture of two compounds which are diastereomeric at the ester-bearing stereocenter. Chromatography over $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc}$ in pet. ether) provided the major and minor adducts of $\mathbf{4 a}(22 \mathrm{mg}, 73 \%)$ in a ratio of $2.6 / 1$. The major diastereoisomer was isolated in 99% ee (as determined by HPLC analysis [Daicel chiralcel OD, Hexanes:IPA, $90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}($ major $)=13.5 \mathrm{~min}, \mathrm{t}($ minor $)=10.7 \mathrm{~min}])$ as a white
(1) Mampreian, D. M.; Hoveyda, A. H. Org. Lett. 2004, 6, 2829.
(2) Knight, J.; Parsons, P. J. J. Chem. Soc. Perkin Trans 1 1989, 5, 979.
(3) Commercially available from Aldrich.
(4) Prepared according to the procedure of; Cruciani, P.; Stammler, R.; Corinne, A.; Malacria, M. J. Org. Chem. 1996, 61, 2699.
(5) Prepared according to the procedure of; Wang, H. Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 32, 9906.
solid mp 132-134 ${ }^{\circ} \mathrm{C}$ (from EtOAc/Hexane). The minor diastereoisomer was isolated in 88\% ee as determined by HPLC analysis [Daicel Chiralcel OD, Hexanes:IPA, 90:10, 1.0 $\mathrm{mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}($ major $)=13.0 \mathrm{~min}, \mathrm{t}($ minor $)=10.3 \mathrm{~min}$] as a white solid. m.p. 88$90^{\circ} \mathrm{C}$ (from EtOAc/Hexane).
Major diastereoisomer; ${ }^{1} \mathrm{H}$ NMR (400 MHz CDCl 3): $\delta 7.25(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~m}, 2 \mathrm{H}), 5.19$ (ddd, $J=0.6, J=3.5, J=13.7,1 \mathrm{H}), 5.04(\mathrm{dd}, J=11.4, J=13.6,1 \mathrm{H}), 4.46(\mathrm{dd}, J=3.3, J$ $=11.5,1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{ddd}, J=10.2, J=18.0, J=20.5,2 \mathrm{H}), 2.16(\mathrm{t}, J=2.8$, $1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.1,169.5,135.1,129.2,129.1$, $128.9,78.7,76.8,74.0,65.2,53.3,46.4,28.3,22.1$; IR (thin film) $v_{\text {max }} 3290,2924,1718$, 1652, 1554, 1217, $1089 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-2.8^{\circ}\left(\mathrm{c}=0.8, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (CI/ NH_{3}) $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na} 326.1004$, found 326.1014.
Minor diastereoisomer: ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 7.25(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{dd}, J=$ $3.3, J=13.7,1 H,), 4.83(\mathrm{dd}, J=11.3, J=13.6,1 \mathrm{H}), 4.39(\mathrm{dd}, J=3.2, J=11.3,1 \mathrm{H}), 3.79$ (s, 3H), 2.48 (ddd, $J=2.7, J=17.8, J=13.9,1 \mathrm{H}), 2.65(\mathrm{dd}, J=2.7, J=17.8,1 \mathrm{H}$), 2.31 (dd, $J=2.7, J=17.8,1 \mathrm{H}$,), $2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.0,170.2$, 135.1, 129.2, 128.9, 128.9, 77.8, 77.6, 74.1, 65.2, 53.4, 45.0, 27.1, 23.4 IR (thin film) $v_{\max } 3289,2923,1718,1554,1218,1090 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=6.7^{\circ}\left(\mathrm{c}=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na} 326.1004$, found 326.1019.

Dimethyl phenylethyl)malonate 4b: To a solution of trans- β nitrostyrene ${ }^{3}(15 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF $(0.1 \mathrm{~mL})$ was added dimethyl 2-(but-2'-yn-1'-yl)malonate (5) ${ }^{6}$ ($37 \mathrm{mg}, 0.2 \mathrm{mmol}$). The solution was stirred at $-20^{\circ} \mathrm{C}$ for 1 h . To the solution was added catalyst $\mathbf{5 a}^{7}(3.1 \mathrm{mg}, 10 \mathrm{~mol} \%)$. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 48 h and then filtered through a plug of silica gel for the removal of the catalyst using diethyl ether as eluant. The filtrate was concentrated in vacuo. Chromatography over $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc}$ in pet. ether) provided 4b ($28 \mathrm{mg}, 85 \%$) in 90% ee (as determined by HPLC analysis [Daicel Chiralcel OJ, Hexanes:IPA, $90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}, \mathrm{t}($ major $)=20.7 \mathrm{~min}, \mathrm{t}($ minor $)=24.7 \mathrm{~min}])$ as a white solid. m.p. $76-78^{\circ} \mathrm{C}$ (from EtOAc/Hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30$ $(\mathrm{m}, 3 \mathrm{H}) 7.18(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{dd}, J=3.2,13.7,1 \mathrm{H}), 5.03(\mathrm{dd}, J=11.4,13.7,1 \mathrm{H}), 4.50(\mathrm{dd}$, $J=3.2,11.4,1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{dq}, J=2.5,17.2,1 \mathrm{H}), 2.35(\mathrm{dq}, J=$ $2.6,17.2,1 \mathrm{H}), 1.86(\mathrm{t}, \mathrm{J}=2.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,165.6,131.2$, $125.2,125.1,125.0,77.3,74.0,69.1,56.3,49.5,49.4,41.8,20.5,0.0$; IR (thin film) $v_{\max }$ $2956,1737,1555,1216,1088 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=-14.2^{\circ}\left(\mathrm{c}=0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right)$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{6} 334.1291$, found 334.1298.
(6) Prepared according to the procedure of; Zhao, L.; Lu, X.; Xu W. J. Org. Chem. 2001, 70, 4059.
(7) Li, H., Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105.

4c

Dimethyl 2-((S)-2-nitro-1-phenylethyl)-2-(prop-2-ynyl)malonate 4c: To a solution of trans- β-nitrostyrene ${ }^{[3]}(30 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF (0.2 mL) was added dimethyl propargylmalonate ${ }^{[8]} \mathbf{2 d}(68 \mathrm{mg}$, 0.4 mmol). The solution was stirred at $-40{ }^{\circ} \mathrm{C}$ for 3 h . To this solution was added catalyst $5 \mathrm{c}^{[5]}(9.8 \mathrm{mg}, 10 \mathrm{~mol} \%)$. The reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 3 d and then filtered through a plug of silica gel for the removal of the catalyst using diethyl ether as eluant. The filtrate was concentrated in vacuo. Chromatography over $\mathrm{SiO}_{2}(20 \% \mathrm{EtOAc}$ in pet. ether) provided nitromalonate 4c ($29 \mathrm{mg}, 45 \%$) in 92% ee (as determined by HPLC analysis [Daicel Chiralcel OD-H, Hexanes:IPA, 98:2, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 214 \mathrm{~nm}, \mathrm{t}$ $($ major $)=16.8 \mathrm{~min}, \mathrm{t}($ minor $)=14.2 \mathrm{~min}])$ as a white waxy solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~m}, 3 \mathrm{H}) 7.19(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{dd}, J=3.1, J=13.7,1 \mathrm{H}), 5.02(\mathrm{dd}, J=11.3$, $J=13.7,1 \mathrm{H}), 4.52(\mathrm{dd}, J=3.1, J=11.3,1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{dd}, J=2.7$, $J=17.4,1 \mathrm{H}), 2.39(\mathrm{dd}, J=2.7, J=17.4,1 \mathrm{H}) 2.23(\mathrm{t}, J=2.7,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 169.2,169.2,134.8,129.2,129.0,128.9,78.3,77.8,73.6,59.8,53.5,53.4$, $45.6,24.2$; IR (thin film) $v_{\max } 3290,2956,1737,1556,1216,1089 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=3.2^{\circ}(\mathrm{c}$ $=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{6} 320.1134$, found 320.1159.

4d
(S)-dimethyl 2-allyl-2-(2-nitro-1-phenylethyl)malonate 4d: To a solution of trans- β-nitrostyrene ${ }^{3}(15 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF $(0.2 \mathrm{~mL})$ was added dimethyl allylmalonate ${ }^{3} \mathbf{2 e}(34 \mathrm{mg}, 0.2 \mathrm{mmol})$. The solution was cooled to $-20^{\circ} \mathrm{C}$ for 3 h . To this solution was added catalyst $5 \mathbf{c}^{5}(5 \mathrm{mg}, 10 \mathrm{~mol} \%)$. The reaction mixture was cooled at $30^{\circ} \mathrm{C}$ for 5 d and then then filtered through a plug of silica gel for the removal of the catalyst using diethyl ether as eluant. The filtrate was concentrated in vacuo. Chromatography over SiO_{2} ($15 \% \mathrm{EtOAc}$ in pet. ether) provided nitromalonate $\mathbf{4 d}(14 \mathrm{mg}, 44 \%)$ in 90% ee (as determined by HPLC analysis [Daicel Chiralcel OD, Hexanes:IPA, 98:2, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 214 \mathrm{~nm}, \mathrm{t}$ (major) $=14.6 \mathrm{~min}, \mathrm{t}$ $(\operatorname{minor})=7.7 \mathrm{~min}]$ as a yellow oil.) This material had properties in good agreement with those reported in the literature for $(\pm) 4 \mathbf{d}^{9} .[\alpha]_{\mathrm{D}}{ }^{23}=36.4^{\circ}\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Dimethyl 2-((S)-1-(2-allylphenyl)-2-nitroethyl)-2-(prop-2ynyl)malonate 4e: To a solution of (E)-o-allyl- β-nitrostyrene ($\mathbf{3 b}$) ($380 \mathrm{mg}, 2.0 \mathrm{mmol}$) in THF (2 mL) was added dimethyl propargylmalonate ${ }^{3}(600 \mu \mathrm{~L}, 4.0 \mathrm{mmol})$. The solution was stirred at $-20{ }^{\circ} \mathrm{C}$ for 1 h . To this was added catalyst $5 \mathrm{c}(100 \mathrm{mg}, 10$ $\mathrm{mol} \%)$. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 7 d and then then filtered through a plug of silica gel for the removal of the catalyst using diethyl ether as eluant. The filtrate was concentrated in vacuo. Chromatography over $\mathrm{SiO}_{2}(20 \% \mathrm{EtOAc}$ in pet. ether) provided $\mathbf{4 e}$ ($254 \mathrm{mg}, 35 \%$) in 95% ee (as determined by HPLC analysis [Daicel Chiralcel OD-H,

[^0]Hexanes:IPA, $90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{t}($ major $)=6.1 \mathrm{~min}, \mathrm{t}($ minor $)=8.7 \mathrm{~min}])$ as a white solid. mp $84-86{ }^{\circ} \mathrm{C}$ (from EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25$ $(\mathrm{m}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=3.0,13.2,1 \mathrm{H}), 5.15(\mathrm{~m}$, $1 \mathrm{H}), 5.12(\mathrm{t}, J=1.4,1 \mathrm{H}), 4.97(\mathrm{dd}, J=10.8,13.1,1 \mathrm{H}), 4.86(\mathrm{dd}, J=3.0,10.9,1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{dd}, J=2.8,17.3,1 \mathrm{H}$), $2.38(\mathrm{dd}, J=2.7,17.3$, $1 \mathrm{H}), 2.16(\mathrm{t}, J=2.7,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,169.4,141.0,137.1$, 133.1, 130.5, 128.6, 126.9, 126.6, 117.0, 79.0, 78.9, 73.3, 60.8, 53.5, 53.4, 40.3, 36.4, 23.9; IR (thin film) $v_{\max } 3288,2953,1737,1556,1211 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=17.0^{\circ}(\mathrm{c}=0.4$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{Na} 382.1267$, found 382.1264.

Dimethyl 2-allyl-2-((S)-1-(2-allylphenyl)-2-nitroethyl)malonate 4f: To a solution of (E)-o-allyl- β-nitrostyrene ($2 \mathbf{b}$) $(238 \mathrm{mg}, 1.3$ mmol) in THF (1.3 mL) was added dimethyl allylmalonate ${ }^{3}$ (600 $\mu \mathrm{L}, 4.0 \mathrm{mmol}$). The solution was stirred at $-20^{\circ} \mathrm{C}$ for 2 h . To this was added catalyst $5 \mathrm{c}(100 \mathrm{mg}, 10 \mathrm{~mol} \%)$. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 15 d and then filtered through a plug of silica gel for the removal of the catalyst using diethyl ether as eluant. The filtrate was concentrated in vacuo. Chromatography over SiO_{2} (20% EtOAc in pet. ether) provided 4 f ($248 \mathrm{mg}, 55 \%$) in 92% ee (as determined by HPLC analysis [Daicel chiralcel OD-H, Hexanes:IPA, $99: 1,1.0 \mathrm{~mL} / \mathrm{min}, ~ \lambda$ $214 \mathrm{~nm}, \mathrm{t}($ major $)=18.0 \mathrm{~min}, \mathrm{t}($ minor $)=7.2 \mathrm{~min}])$ as a white solid. $\mathrm{m} . \mathrm{p} .81-83^{\circ} \mathrm{C}($ from EtOAc/Hexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{~m}, 2 \mathrm{H}) 7.17(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~m}, 1 \mathrm{H})$, $5.91(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}),, 5.12(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~m}, 2 \mathrm{H}), 4.70$ $(\mathrm{t}, J=7.0,1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=7.2, J=15.9,1 \mathrm{H})$, 2.47 (dd, $J=6.1, J=14.1,1 \mathrm{H}), 2.26(\mathrm{dd}, J=8.2, J=14.1,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 170.6,170.3,140.4,137.0,133.4,133.0,131.0,128.4,127.0,126.5,119.3$, $117.1,79.3,62.4,52.9,52.9,42.2,39.3,36.7$; IR (thin film) $v_{\max } 2955,1737,1649,1555$, $1208,1087 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}^{23}=23.2^{\circ}\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na} 384.1423$, found 384.1417 .

Dimethyl 2-((R)-1-(2-bromophenyl)-2-nitroethyl)-2-(prop-2ynyl)malonate 4g: To a solution of (E)-2-bromo- β-nitrostyrene $(3 \mathrm{c})^{1}$ ($395 \mathrm{mg}, 1.73 \mathrm{mmol}$) in THF (1.7 mL) was added dimethyl propargylmalonate ${ }^{8}$ ($589 \mathrm{mg}, 3.46 \mathrm{mmol}$). The solution was stirred at $-20{ }^{\circ} \mathrm{C}$ for 2 h . To the solution was added catalyst $5 \mathrm{c}(85 \mathrm{mg}, 10$ $\mathrm{mol} \%$). The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 5 d and then filtered through a plug of silica gel for the removal of the catalyst using diethyl ether as eluant. The filtrate was concentrated in vacuo. Chromatography over SiO_{2} (20% EtOAc in pet. ether) provided $\mathbf{4 g}$ ($598 \mathrm{mg}, 87 \%$) in 97\% ee (as determined by HPLC analysis [Daicel Chiralcel OD-H, Hexanes:IPA, 95:05, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{t}($ major $)=18.2 \mathrm{~min}, \mathrm{t}(\operatorname{minor})=13.6 \mathrm{~min}])$ as a white solid. m.p. $58-60{ }^{\circ} \mathrm{C}$ (from Methylene chloride/2,2,4-Trimethylpentane); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~d}, J=7.9,1 \mathrm{H}), 7.27(\mathrm{t}, J=7.3,1 \mathrm{H}), 7.14(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{dd}, J=1.9, J=$ $12.3,1 \mathrm{H}$,), $5.07(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{t}, J=2.3,1 \mathrm{H}) ; \delta$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,169.2,134.7,134.2,130.2,128.6,128.3,127.4$, $78.9,78.1,72.9,60.9,53.6,53.4,44.9,23.9$; IR (thin film) $v_{\max } 3291,2955,1736,1650$, $1556,1211,1087 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=13.9^{\circ}\left(\mathrm{c}=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6} \mathrm{Br} 398.0239$, found 398.0259.

4h

Dimethyl 2-allyl-2-((S)-1-(2-(3-methoxyprop-1-ynyl)phenyl)-2-nitroethyl)malonate 4h: To a solution of 1-(3-methoxyprop-1-ynyl)-2-((E)-2-nitrovinyl)benzene 3d ($180 \mathrm{mg}, 0.83 \mathrm{mmol}$) in THF (0.8 mL) was added dimethyl allylmalonate ${ }^{3}$ 2d ($400 \mu 1,2.0 \mathrm{mmol}$). The solution was stirred at $-20^{\circ} \mathrm{C}$ for 2 h . To this was added catalyst 5 c (40 $\mathrm{mg}, 10 \mathrm{~mol} \%$). The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 5 d and then filtered through a plug of silica gel for the removal of the catalyst using diethyl ether as an eluant. The filtrate was concentrated in vacuo. Chromatography over $\mathrm{SiO}_{2}(20 \%$ EtOAc / pet. ether) provided $4 \mathrm{~h}(133 \mathrm{mg}, 41 \%)$ in 96% ee (as determined by HPLC analysis [Daicel Chiralcel OD-H, Hexanes:IPA, $90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{t}($ major $)=13.6 \mathrm{~min}, \mathrm{t}($ minor $)=4.9 \mathrm{~min}])$ as a slightly yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 5.86$ (tdd, $J=17.5, J=10.4, J=7.3, J=7.3,1 \mathrm{H}), 5.02(\mathrm{~m}, 5 \mathrm{H}), 4.41(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(100 \mathrm{MHz}$, d6-acetone) $\delta 170.0$, 169.7, 137.6, 133.6, 133.1, 129.4, 128.4, 127.1, 125.3, 118.5, 91.0, 84.4, 78.6, 62.3, 60.0, 57.1, $52.5,52.4,44.8,39.1$; IR (thin film) $v_{\max } 3074,2988,2829,1733,1556,1437,1218$, $1098 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{23}=10.7^{\circ}\left(\mathrm{c}=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{7} 390.1553$, found 390.1556 .

3. Select NMR spectra for multifunctional scaffolds

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for dimethyl 2-(but-2-ynyl)-2-((S)-2-nitro-1phenylethyl)malonate $\mathbf{4 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for dimethyl 2-((S)-2-nitro-1-phenylethyl)-2-(prop-2ynyl)malonate 4c

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for dimethyl 2-((S)-1-(2-allylphenyl)-2-nitroethyl)-2-(prop-2ynyl)malonate 4 e

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR for dimethyl 2-allyl-2-((S)-1-(2-allylphenyl)-2-nitroethyl)malonate $\mathbf{4 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for dimethyl 2-allyl-2-((S)-1-(2-(3-methoxyprop-1-ynyl)phenyl)-2-nitroethyl)malonate 4 h .

4. Select chiral HPLC analyses of multifunctional scaffolds

	RT (min)	Peak Type	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)	Baseline Start (min)
1	6.152	Unknown	1687305	50.22	92946	58.14	BV	52	5.917	6.800	5.917
2	8.653	Unknown	1672504	49.78	66924	41.86	VV	80	8.250	9.583	7.283

Chiral HPLC analysis for racemic Michael Adduct 4e
Column: Daicel Chiralcel OD-H
Conditions: Hexanes:IPA, 90:10, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{t}=6.2 \mathrm{~min}, \mathrm{t}=8.7 \mathrm{~min}$

	R (min)	Peak Type	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)	Baseline Start (min)
1	6.135	Unknown	4495688	97.41	222149	97.35	VB	83	5.917	7.317	5.467
2	8.674	Unknown	119493	2.59	6041	2.65	bb	38	8.383	9.033	8.383

Chiral HPLC trace of Michael Adduct 7e obtained using 5c as catalyst
Column: Daicel Chiralcel OD-H
Conditions: Hexanes:IPA, $90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{t}($ major $)=6.1 \mathrm{~min}, \mathrm{t}($ minor $)=$ 8.7 min

	RT (min)	Peak Type	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	13.157	Unknown	31297625	50.23	721832	61.05	BB	139	12.600	14.933
2	21.209	Unknown	31005017	49.77	460481	38.95	BB	196	20.450	23.733

Chiral HPLC analyses for racemic Michael Adduct 4g

Column: Daicel Chiralcel OD-H

Conditions: Hexanes:IPA, $95: 05,1.0 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{t}=21.2 \mathrm{~min}, \mathrm{t}=13.2 \mathrm{~min}$

	RT (min)	Peak Type	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	13.623	Unknown	228784	1.33	5858	3.60	BB	103	13.133	14.867
2	18.223	Unknown	16984867	98.67	156775	96.40	BB	383	17.633	24.033

Chiral HPLC analyses for Michael Adduct 4g obtained using 5c as catalyst Column: Daicel Chiralcel OD-H
Conditions: Hexanes:IPA, $95: 05,1.0 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{t}$ (major) $=18.2 \mathrm{~min}, \mathrm{t}$ (minor) $=13.6 \mathrm{~min}$

	R (min)	Peak Type	Area $(\mu \mathrm{V} * \mathrm{sec})$	$\%$ Area	Height $(\mu \mathrm{V})$	\% Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	4.905	Unknown n	29312921	48.33	2152679	72.84	VV	49	4.683	5.517
2	14.085	Unknown n	31338222	51.67	802826	27.16	BB	141	13.250	15.600

Chiral HPLC analyses for racemic Michael Adduct 4h
Column: Daicel Chiralcel OD-H
Conditions: Hexanes:IPA, $90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{t}=13.6 \mathrm{~min}, \mathrm{t}=4.9 \mathrm{~min}$

	RT (min)	Peak Type	Area $(\mu \mathrm{V}$ *sec)	\% Area	Height $(\mu \mathrm{V})$	\% Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	4.900	Unknown	1132136	1.87	84040	5.37	VV	42	4.633	5.333
2	13.558	Unknown	59275671	98.13	1480331	94.63	BB	189	12.867	16.033

Chiral HPLC analyses for Michael Adduct 4h obtained using 5c as catalyst Column: Daicel Chiralcel OD-H
Conditions: Hexanes:IPA, $90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{t}$ (major) $=13.6 \mathrm{~min}, \mathrm{t}$ (minor) $=4.9 \mathrm{~min}$

5. X-ray crystal structure analysis of malonate $\mathbf{4 g}$

Crystals of compound $\mathbf{4 g}$ suitable for x-ray analysis were obtained by slow evaporation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ isooctane. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC \# 627519). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk.

Table 1. Crystal data and structure refinement for $\mathbf{4 g}$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
$4 g$
C16 H16 Br N O6
398.21

173(2) K
$0.71073 \AA$
Monoclinic
P2(1)
$a=8.4518(6) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=7.1699(6) \AA \quad \beta=97.485(4)^{\circ}$.
$\mathrm{c}=14.2192(11) \AA \quad \gamma=90^{\circ}$.
854.32(11) Å3

2
$1.548 \mathrm{Mg} / \mathrm{m}^{3}$
$2.437 \mathrm{~mm}^{-1}$
404
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}^{3}$
1.44 to 33.14°.

Index ranges	$-12<=\mathrm{h}<=13,-11<=\mathrm{k}<=11,-21<=\mathrm{l}<=21$
Reflections collected	28101
Independent reflections	$6350[\mathrm{R}(\mathrm{int})=0.0350]$
Completeness to theta $=33.14^{\circ}$	99.8%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6414 and 0.4423
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$6350 / 1 / 282$
Goodness-of-fit on F2	0.987
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0256, \mathrm{wR} 2=0.0556$
R indices (all data)	$\mathrm{R} 1=0.0326, \mathrm{wR} 2=0.0572$
Absolute structure parameter	$0.002(4)$
Largest diff. peak and hole	0.434 and $-0.296 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$
for $\mathbf{4 g} . U(e q)$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Br}(1)$	$5275(1)$	$284(1)$	$7535(1)$	$28(1)$
$\mathrm{O}(1)$	$187(3)$	$2012(2)$	$5166(1)$	$67(1)$
$\mathrm{O}(2)$	$1621(2)$	$433(2)$	$6210(1)$	$45(1)$
$\mathrm{O}(3)$	$4839(1)$	$3758(2)$	$9026(1)$	$27(1)$
$\mathrm{O}(4)$	$5030(1)$	$6674(2)$	$8509(1)$	$30(1)$
$\mathrm{O}(5)$	$1011(2)$	$2529(2)$	$8717(1)$	$38(1)$
$\mathrm{O}(6)$	$1706(1)$	$5068(2)$	$9581(1)$	$24(1)$
$\mathrm{N}(1)$	$976(2)$	$1863(2)$	$5929(1)$	$28(1)$
$\mathrm{C}(1)$	$2572(2)$	$4945(2)$	$8076(1)$	$17(1)$
$\mathrm{C}(2)$	$2640(2)$	$3540(2)$	$7238(1)$	$18(1)$
$\mathrm{C}(3)$	$1077(2)$	$3548(2)$	$6572(1)$	$23(1)$
$\mathrm{C}(4)$	$4087(2)$	$3779(2)$	$6715(1)$	$18(1)$
$\mathrm{C}(5)$	$4225(2)$	$5301(3)$	$6114(1)$	$24(1)$
$\mathrm{C}(6)$	$5548(2)$	$5540(3)$	$5645(1)$	$28(1)$
$\mathrm{C}(7)$	$6769(2)$	$4232(2)$	$5749(1)$	$28(1)$
$\mathrm{C}(8)$	$6651(2)$	$2702(2)$	$6323(1)$	$25(1)$
$\mathrm{C}(9)$	$5328(2)$	$2486(2)$	$6798(1)$	$20(1)$

$\mathrm{C}(10)$	$4280(1)$	$5261(3)$	$8553(1)$	$19(1)$
$\mathrm{C}(11)$	$6463(2)$	$3899(3)$	$9481(2)$	$41(1)$
$\mathrm{C}(12)$	$1654(2)$	$4013(2)$	$8808(1)$	$21(1)$
$\mathrm{C}(13)$	$1073(2)$	$4225(3)$	$10382(1)$	$31(1)$
$\mathrm{C}(14)$	$1846(2)$	$6890(2)$	$7809(1)$	$23(1)$
$\mathrm{C}(15)$	$95(2)$	$6892(2)$	$7635(1)$	$28(1)$
$\mathrm{C}(16)$	$-1311(2)$	$6895(3)$	$7526(1)$	$39(1)$

6. Functional group pairing of multifunctional scaffolds

6
(S)-3-But-2-ynyl-2-oxo-4-phenyl-pyrrolidine-3-carboxylic acid methyl ester 6: To a solution of nitro malonate $\mathbf{4 b}(79 \mathrm{mg}$, $0.24 \mathrm{mmol})$ in THF (1 mL) and acetic acid (1 mL) was added zinc powder ($570 \mathrm{mg}, 8.8 \mathrm{mmol}$) in small portions at room temperature. The reaction mixture was stirred for 2 h at room temperature and then filtered through Celite washing with THF. The solution was concentrated in vacuo and then redissolved in methylene chloride. A solution of saturated aqueous sodium carbonate (1 mL) was added and the mixture was stirred for 14 h . The mixture was extracted with methylene chloride and the organic layer was washed with brine, dried over sodium sulfate, and concentrated in vacuo to afford a $11.9 / 1$ mixture of diastereomers. Chromatography over $\mathrm{SiO}_{2}(50 \% \mathrm{EtOAc}$ in pet. ether) provided $6(59 \mathrm{mg}$, 92%) as a mixture of diastereomers in the form of a clear film. (Major isomer only) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.31(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=7.4,1 \mathrm{H}),, 3.85(\mathrm{~m}, 4 \mathrm{H})$, $3.76(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{t}, J=2.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 170.7, 167.4, 133.3, 125.0, 124.9, 124.2, 74.5, 70.7, 55.9, 49.6, 44.1, 42.0, 17.0, 0.0; IR (thin film) $v_{\max }$ 2957, 2914, 1737, 1701, $1255 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3} 272.1287$, found 272.1272. $[\alpha]_{\mathrm{D}}{ }^{23}=42.1^{\circ}\left(\mathrm{c}=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

23
(3R,4S)-3-(but-2-ynyl)-3-(hydroxymethyl)-4-phenylpyrrolidin-2-one 23: To a solution of lactam $6(50 \mathrm{mg}$, 0.087 mmol) in THF (1.2 mL) was added lithium tetrahydroborate ($20 \mathrm{mg}, 0.9 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 4 h at room temperature and then quenched with 2 M HCl . The solution was extracted with ethyl acetate and the organic layer was washed with brine, dried over sodium sulfate, and concentrated in vacuo. Chromatography over $\mathrm{SiO}_{2}(70 \% \mathrm{EtOAc}$ in pet. ether) provided $23(32 \mathrm{mg}, 71 \%)$ as a white film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.38$7.26(\mathrm{~m}, 5 \mathrm{H}), 6.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.91(\mathrm{dt}, J=9.18, J=9.14, J=2.55,1 \mathrm{H}) 3.82-3.78(\mathrm{~m}$, $2 \mathrm{H}), 3.64-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.72$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.7,132.9,125.4,125.0,124.0,74.4,71.1$, $61.5,48.4,42.5,41.0,16.4,0.0$; IR (thin film) $v_{\max } 3284,2920,1695,1044 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}, 244.1338$ found 244.1355. $[\alpha]_{\mathrm{D}}{ }^{23}=122.2^{\circ}(\mathrm{c}=$ $0.18, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

7
(S)-6-Phenyl-4H,6H-cyclopenta[c]isoxazole-5,5-dicarboxylic acid dimethyl ester 7: To a solution of nitro malonate $4 \mathrm{c}(30 \mathrm{mg}$, 0.094 mmol) in toluene (1 mL) was added di-tert -butyldicarbonate $(62 \mathrm{mg}, 0.28 \mathrm{mmol})$ and 4-dimethylaminopyridine ($1 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ at room temperature. The reaction mixture was stirred at room temperature for 48 h . The mixture was concentrated in vacuo to afford a crude material. Chromatography over $\mathrm{SiO}_{2}(35 \% \mathrm{EtOAc}$ in pet. ether) provided $7(21 \mathrm{mg}, 74 \%)$ as a white solid, m.p. 115$116{ }^{\circ} \mathrm{C}$ (from EtOAc/Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 3 \mathrm{H})$,
$7.18(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=1.4, J=16.5,1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H})$, $3.14(\mathrm{dd}, J=1.3, J=16.6,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 172.0, 171.1, 168.8, 150.5, 136.2, 129.1, 128.6, 128.2, 121.1, 73.0, 53.5, 52.6, 48.7, 29.7; IR (thin film) $v_{\max } 2952,1740,1565 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{6} 302.1028$, found 302.1029. $[\alpha]_{\mathrm{D}}{ }^{23}=-$ $40.7^{\circ}\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

8, 9
(3aS,6S) and (3aR,6S)-6-Phenyl-3a,4-dihydro-3H,6H-cyclopenta[c]isoxazole-5,5-dicarboxylic acid dimethyl ester 8 and 9: To a solution of nitro malonate $\mathbf{4 d}(200 \mathrm{mg}, 0.62 \mathrm{mmol})$ in toluene (6 mL) was added di-tert-butyldicarbonate $(400 \mathrm{mg}, 1.83$ mmol) and 4 -dimethylaminopyridine ($8 \mathrm{mg}, 0.06 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred at room temperature for 48 h . The mixture was concentrated in vacuo to afford a crude $1.1 / 1$ mixture of diastereomers (${ }^{1} \mathrm{H}$ NMR). Chromatography over $\mathrm{SiO}_{2}(50 \% \mathrm{EtOAc}$ in pet. ether) provided the major diastereoisomer 8 ($96 \mathrm{mg}, 51 \%$) as a clear solid, m.p. $98-100^{\circ} \mathrm{C}$, and the minor diastereomer $9(64 \mathrm{mg}, 34 \%)$ as a clear oil.
Major diastereomer $8(\alpha-\mathrm{H}):{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~m}, 5 \mathrm{H}), 5.01(\mathrm{~d}, J=$ $1.2,1 \mathrm{H}), 4.64(\mathrm{dd}, J=8.2, J=9.7,1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}$, $3 \mathrm{H}), 2.69(\mathrm{dd}, J=11.3, J=13.6,1 \mathrm{H}), 2.55(\mathrm{dd}, J=8.3, J=13.6,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $171.6,170.7,168.7,135.6,130.1,128.4,128.2,75.4,70.5,53.7,52.5$, $52.2,47.0,35.4 ; v_{\max } 2928,2858,1728,1274,1204 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{5}, 304.1173$, found 304.1161. $[\alpha]_{\mathrm{D}}{ }^{23}=-113.8^{\circ}\left(\mathrm{c}=0.88 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
Minor diastereomer $9(\beta-\mathrm{H})$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~m}, 5 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H})$, $4.67(\mathrm{dd}, J=7.7, J=9.6,1 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=7.7, J=12.1,1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.03(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=11.1, J=12.8,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.1,170.9,169.9,136.9,128.9,128.5,127.9,75.4,71.7,55.6,53.4,52.4$, 46.1, 36.7 ; IR (thin film) $v_{\max } 2955,1732,1285,1212 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{Na}, 326.1002$, found 326.1004. $[\alpha]_{\mathrm{D}}^{23}=5.5^{\circ}\left(\mathrm{c}=1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The relative stereochemistry of $\mathbf{8}$ and $\mathbf{9}$ was assigned based on the stereochemistry of $\mathbf{4 d}$ and comparison of our spectral data to literature data for the (\pm) compounds for which $\mathrm{x}-$ ray analysis was obtained. ${ }^{9}$

10

Nitromalonate 10: To a solution of nitrodiene $4 \mathbf{f}(150 \mathrm{mg}, 0.415$ mmol) in methylene chloride (2 mL) was added Grubbs 2nd generation catalyst ($40 \mathrm{mg}, 0.04 \mathrm{mmol}$). The solution was heated by microwave irradiation at $50{ }^{\circ} \mathrm{C}$ (150 watts) for 5 min . The reaction mixture was concentrated in vacuo and chromatographed over SiO_{2} (20% EtOAc in pet. ether) to provided $10(135 \mathrm{mg}, 98 \%)$ as a sticky white solid, m.p. $92-94{ }^{\circ} \mathrm{C}$ (from Methylene chloride/2,2,4Trimethylpentane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19(\mathrm{~m}, 3 \mathrm{H})$, 6.89 (dd, $J=4.2, J=8.1,1 H$), 5.92 (dddd, $J=1.4, J=3.5, J=4.9, J$ $=11.8,1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=3.4, J=14.4,1 \mathrm{H}), 5.09(\mathrm{dd}, J=11.4, J=14.4$, $1 \mathrm{H}), 4.80(\mathrm{dd}, J=3.4, J=11.4,1 \mathrm{H}), 3.96(\mathrm{~d}, J=19.6,1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.38(\mathrm{dd}, J=3.8, \mathrm{~J}=19.9,1 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5$, 169.7, 139.7, 135.2, 134.8, 130.7, 128.5, 127.4, 125.0, 121.6, 76.3, 60.4, 53.3, 52.9, 40.5,
$38.5,30.0$; IR (thin film) $v_{\max } 3025,2952,1732,1561,1278,1200 \mathrm{~cm}^{-1} ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right)$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{6} 334.1291$, found 334.1290. $[\alpha]_{\mathrm{D}}{ }^{23}=93.2^{\circ}\left(\mathrm{c}=1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;

11

Lactam 11: To a solution of nitro malonate $\mathbf{1 0}(32 \mathrm{mg}, 0.096 \mathrm{mmol})$ in THF (0.4 mL) and acetic acid (0.4 mL) was added zinc powder (230 $\mathrm{mg}, 3.6 \mathrm{mmol}$) in small portions at room temperature. The reaction mixture was stirred for 14 h at room temperature and then filtered through Celite washing with methylene chloride. The solution was concentrated in vacuo and then redissolved in methylene chloride. To the solution was added saturated sodium carbonate (1 mL) and the mixture was stirred overnight. The mixture was extracted with methylene chloride and the organic layer was washed with brine, dried over sodium sulfate and concentrated in vacuo to afford a mixture of diastereomers as a yellow oil. Chromatography over SiO_{2} ($50 \% \mathrm{EtOAc}$ in pet. ether) provided $\mathbf{1 1}(12 \mathrm{mg}$, 46%) as a mixture of diastereomers (1.51/1) in the form of a yellow oil. ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}$, major isomer), $6.61(\mathrm{~s}, 1 \mathrm{H}$, minor isomer), $5.90(\mathrm{~m}, 1 \mathrm{H}$, major isomer), $5.74(\mathrm{~m}, 2 \mathrm{H}$, major and minor isomers), 5.57 ($\mathrm{m}, 1 \mathrm{H}$, minor isomer), $4.50(\mathrm{~d}, J=6.3,1 \mathrm{H}$, minor isomer), 4.28 (dd, $J=$ $10.7, J=8.6,1 \mathrm{H}$, major isomer), 4.18 (dd, $J=10.8, J=7.3,1 \mathrm{H}$, major isomer), 4.00 (dd, $J=10.4, J=6.3,1 \mathrm{H}$, minor isomer), $3.78(\mathrm{~s}, 3 \mathrm{H}$, major isomer), $7.78(\mathrm{~m}, 1 \mathrm{H}$, major or minor isomer), $3.69(\mathrm{~m}, 2 \mathrm{H}$, major and minor isomers), $3.53(\mathrm{~s}, 3 \mathrm{H}$, minor isomer), 3.45 ($\mathrm{m}, 1 \mathrm{H}$, major or minor isomers), 3.29 (dd, $J=18.1, J=7.1,1 \mathrm{H}$, major or minor isomers), 3.20 (dd, $J=14.5, J=8.4,1 \mathrm{H}$, major or minor isomers), 3.07 (dd, $J=12.9, J=$ $7.6,1 \mathrm{H}$, major or minor isomers), $2.53(\mathrm{~m}, 2 \mathrm{H}$, major and minor isomers), $1.58(\mathrm{~m}, 1 \mathrm{H}$, major or minor isomer); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major and minor isomers) 174.6, $173.2,170.5,169.0,142.7,139.4,137.9,133.5,133.2,131.9,130.8,129.5,128.6,127.9$, 127.9, 127.7, 126.3, 126.1, 125.7, 125.1, 64.6, 58.3, 53.2, 52.2, 49.6, 44.8, 43.6, 42.9, $36.5,33.6,33.0,26.6$; IR (thin film) $v_{\max } 3227,3018,2913,1705,1204 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{3} 272.1287$, found 272.1277. $[\alpha]_{\mathrm{D}}{ }^{23}=183.9^{\circ}(\mathrm{c}=$ $0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

12 $4.4,1 \mathrm{H}), 5.20(\mathrm{dd}, J=14.5, J=11.4,1 \mathrm{H}), 5.07(\mathrm{dd}, J=14.5, J=3.2,1 \mathrm{H}), 5.00(\mathrm{~d}, J$ $=17.5,1 \mathrm{H}), 4.88(\mathrm{~d}, J=10.9,1 \mathrm{H}), 4.75(\mathrm{dd}, J=11.4, J=3.2,1 \mathrm{H}), 4.11(\mathrm{dd}, J=20.0, J=$ $4.3,1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dd}, J=20.7, J=4.9,1 \mathrm{H}), 2.69(\mathrm{~d}, J=14.8,1 \mathrm{H})$, $2.35(\mathrm{dd}, J=14.9, J=1.1,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,170.0,141.6$, 139.1, 135.1, 135.0, 131.9, 130.6, 128.6, 127.6, 124.6, 110.2, 76.2, 60.1, 53.0, 53.0, 40.8, 38.5, 28.0; IR (thin film) $v_{\max } 2948,1732,1553,1282,1220 \mathrm{~cm}^{-1}$; HRMS (CI/ NH_{3})
$[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{Na} 382.1265$, found 382.1267. $[\alpha]_{\mathrm{D}}{ }^{23}=41.7^{\circ}(\mathrm{c}=0.43$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

13

Nitromalonate 13: To a solution of enyne $\mathbf{4 e}(44 \mathrm{mg}$, 0.12 mmol) in methylene chloride (2 mL) was added Grubbs $1^{\text {st }}$ generation catalyst ($10 \mathrm{mg}, 0.01 \mathrm{mmol}$) under an atmosphere of ethylene gas. The reaction was heated by microwave irradiation at $60^{\circ} \mathrm{C}(150 \mathrm{~W})$ for 30 min . The reaction mixture was concentrated in vacuo to afford a crude sample of intermediate $\mathbf{1 2}$ as a dark brown oil which was dissolved in toluene (3 mL) under argon. To this solution was added N -phenylmaleimide ($50 \mathrm{mg}, 0.3$ mmol). The reaction was heated by microwave irradiation (300W, $160^{\circ} \mathrm{C}, 40 \mathrm{~min}$.). Chromatography over SiO_{2} ($50 \% \mathrm{EtOAc}$ in pet. ether) provided 13 ($64 \mathrm{mg}, 98 \%$) as a $15 / 1$ mixture of diastereomers; white solid, m.p. $109-111^{\circ} \mathrm{C}$ (from Methylene chloride $/ 2,2,4$-Trimethylpentane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.41$ (m, $3 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=10.9,1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.25-5.13$ $(\mathrm{m}, 2 \mathrm{H}), 4.55(\mathrm{dd}, J=10.1, J=3.8,1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $3.64-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=10.1, J=3.8,1 \mathrm{H}), 3.34-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 2 \mathrm{H})$, $2.52(\mathrm{~d}, J=14.4,1 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.8,177.3$, $170.3,169.5,139.9,139.5,133.9,132.8,131.9,129.4,128.9,128.3,127.9,127.1,126.7$, 124.7, 76.4, $62.7,53.1,53.0,47.9,40.5,40.4,39.0,38.0,36.5,25.5$; IR (thin film) $v_{\max }$ 2959, 2842, 1713, 1546, 1386, $1204 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{8} 533.1935$, found 533.1924. $[\alpha]_{\mathrm{D}}{ }^{23}=41.8^{\circ}\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

15

Nitromalonate 15: To a solution of enyne $\mathbf{4 h}(8 \mathrm{mg}$, 0.021 mmol) in methylene chloride (0.6 mL) was added Grubbs $1^{\text {st }}$ generation catalyst $(2 \mathrm{mg}, 0.002$ mmol) under an atmosphere of ethylene gas. The reaction was heated by microwave irradiation at $50^{\circ} \mathrm{C}$, (150 watts) for 45 min . The reaction mixture was concentrated in vacuo. Chromatography over SiO_{2} ($50 \% \mathrm{EtOAc}$ in pet. ether) provided intermediate 14 $(7.5 \mathrm{mg}, 94 \%)$ as a dark yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz $\left.\mathrm{CDCl}_{3}\right)$ 7.29-7.09 (m, 4H), $6.15(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 5.26(\mathrm{~s}$, $1 \mathrm{H}), 5.20(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.99$ (br s, 1H), 3.70 (br s, 2H), 3.63 (s, 3H), 3.26 (s, 3H), 2.56 (br s, 1H), 2.07 (br s, 1H) . The crude intermediate was dissolved in toluene (3 mL) under argon. To this solution was added N-phenylmaleimide ($50 \mathrm{mg}, 0.3 \mathrm{mmol}$). The reaction was heated by microwave irradiation at $160^{\circ} \mathrm{C}(300 \mathrm{~W})$ for 20 min . The reaction mixture was concentrated in vacuo and chromatographed on $\mathrm{SiO}_{2}(50 \%$ EtOAc in pet. ether) to provide $15(9.4 \mathrm{mg}, 86 \%)$ as a white solid, m.p. $105-107^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.50-$ $7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{dd}, J=7.1,1.7,1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.4$, $1 \mathrm{H}), 5.03-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=17.0,1 \mathrm{H}), 4.49(\mathrm{t}, J=7.5,1 \mathrm{H}), 4.22(\mathrm{~d}, J=17.2$, $1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{dd}, J=13.5,3.9,1 \mathrm{H})$, $2.06(\mathrm{~m}, 1 \mathrm{H})$; NOED ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Irradiation at $\delta 2.07$ (diastereotopic proton H_{b}): 7% enhancement at proton H_{d}, Irradiation at $\delta 2.56$ (diastereotopic proton
H_{b}): 5\% enhancement at proton $\mathrm{Ha},{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,168.1,153.9$, $150.9,136.7,133.7,133.3,132.8,131.4,130.5,129.4,129.2,129.0,128.3,125.3,125.3$, $75.7,70.3,59.2,57.8,53.9,53.2,51.8,48.1,45.9,33.8$; IR (thin film) $v_{\max } 2959,1713$, 1553, 1413, 1266, $1223 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{9} 565.1935$, found 565.1935. $[\alpha]_{D}^{23}=97.4^{\circ}\left(\mathrm{c}=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

16

Lactam 16: To a solution of nitro malonate 15 (20 mg , $0.036 \mathrm{mmol})$ in THF $(0.4 \mathrm{~mL})$ and acetic acid $(0.4 \mathrm{~mL})$ was added zinc powder ($86 \mathrm{mg}, 1.3 \mathrm{mmol}$) in small portions at room temperature. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 3 h , then filtered through Celite washing with THF. The solution was concentrated in vacuo and then redissolved in methylene chloride. A solution of saturated sodium carbonate $(1 \mathrm{~mL})$ was added and the reaction mixture was stirred overnight. The mixture was extracted with methylene chloride and the organic layer was washed with brine, dried over sodium sulfate and concentrated in vacuo to afford a crude mixture of diastereomers. Chromatography over $\mathrm{SiO}_{2}(50 \% \mathrm{EtOAc}$ in pet. ether) provided $16(8 \mathrm{mg}, 45 \%)$ as a $5 / 1$ mixture of diastereomers (${ }^{1} \mathrm{H}$ NMR) as a slightly yellow oil. (Major isomer only) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48-$ $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=6.8,2.1,1 \mathrm{H}), 6.24(\mathrm{~s}$, $1 \mathrm{H}), 4.69(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=16.8,1 \mathrm{H}), 4.21(\mathrm{dd}, J=16.6,2.3,1 \mathrm{H}), 4.13(\mathrm{t}, J=8.7$, $1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}, J=9.4,1 \mathrm{H}), 3.29(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{dd}$, $J=15.0,6.0,1 \mathrm{H}), 2.47(\mathrm{dd}, J=15.1,4.6,1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9$, $152.6,151.4,136.0,135.7,133.2,132.2,131.5,130.3,129.3,129.3,128.6,128.3,127.9$, $126.0,125.5,70.6,59.2,55.4,53.5,53.1,49.6,46.3,44.4,32.4$; IR (thin film) $v_{\max } 3239$, 2940, 2701, 1425, 1270, 1235, $1076 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Na} 525.1750$, found 525.1763. $[\alpha]_{\mathrm{D}}{ }^{23}=16.7^{\circ}\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

24

Lactam alcohol 24. To a solution of lactam 16 (11 mg, $0.022 \mathrm{mmol})$ in THF (1.5 mL) was added lithium tetrahydroborate $(2 \mathrm{mg}, 0.092 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 6 h at $0^{\circ} \mathrm{C}$ and was then quenched by addition of 2 M HCl . The solution was extracted with EtOAc and the organic layer was washed with brine, dried over sodium sulfate and concentrated in vacuo. Chromatography over SiO_{2} ($10 \% \mathrm{EtOH}$ in EtOAc) provided lactam alcohol 24 $(5 \mathrm{mg}, 48 \%)$ as a white film. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.60-7.53 (m, 2H), 7.48-7.44 (m, 2H), 7.37-7.33 (m, 3H), 7.26-7.24 (m, 1H), 7.13-7.10 (m, 1H), $6.15(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=16.8,1 \mathrm{H})$, $4.22(\mathrm{~d}, J=16.6,1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=10.6,1 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{t}, J$ $=9.7,1 \mathrm{H}), 3.43(\mathrm{~d}, J=11.0,1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.15(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{dd}, J=15.5$, $5.2,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,151.9,138.1,135.3,132.3,131.6,131.5$, $130.1,129.4,129.3,129.2,128.4,128.2,127.9,126.2,70.7,68.5,59.2,54.2,49.0,46.9$,
45.8, 43.9, 29.9; IR (thin film) $v_{\max } 3332,2924,1710,1427,1091 \mathrm{~cm}^{-1} ; \mathrm{HRMS}\left(\mathrm{CI} / \mathrm{NH}_{3}\right)$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{5}$, found. $[\alpha]_{\mathrm{D}}^{23}=32.8^{\circ}\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

17

Nitromalonate 17: Dicobalt octacarbonyl ($94 \mathrm{mg}, 0.27 \mathrm{mmol}$) was weighed in a glove box. To the solid catalyst was added enyne $4 \mathbf{e}(82 \mathrm{mg}, 0.23 \mathrm{mmol})$ in methylene chloride $(1 \mathrm{~mL})$ under an atmosphere of argon. The reaction stirred at room temperature for 30 min . upon which all the starting material had fully converted to a cobalt complex (monitored by TLC). The reaction was heated by microwave irradiation at $80^{\circ} \mathrm{C}(150$ $\mathrm{W})$ for 15 min . The reaction mixture was concentrated in vacuo and chromatographed over $\mathrm{SiO}_{2}(90 \%$ pet. ether in EtOAc to 40% pet. ether in EtOAc) to provide 17 ($59 \mathrm{mg}, 67 \%$) as a white solid m.p. 234-236 ${ }^{\circ} \mathrm{C}$ (from Methylene chloride/2,2,4-Trimethylpentane). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5$, $1 \mathrm{H}), 4.99(\mathrm{dd}, J=13.0,2.3,1 \mathrm{H}), 4.68(\mathrm{t}, J=12.0,1 \mathrm{H}), 4.21(\mathrm{~d}, J=10.6,1 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=13.5,1 \mathrm{H}), 3.01(\mathrm{~d}, J=17.3,1 \mathrm{H}), 2.88(\mathrm{dd}$, $J=13.8, J=4.8,1 \mathrm{H}), 2.82(\mathrm{~d}, J=17.4,1 \mathrm{H}), 2.07(\mathrm{dd}, J=16.5,4.7,1 \mathrm{H}), 1.97(\mathrm{dd}, J=$ 16.8, 1.1, 1H); NOED ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): Irradiation at $\delta 4.21$ (methine proton β to nitro group): 4% enhancement at vinyl proton at 7.54 ppm , Irradiation at $\delta 7.54 \mathrm{ppm}$ 5% enhancement at methine proton β to nitro group at $4.21 \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 204.1,172.7,170.7,159.8,138.1,137.5,136.2,133.9,129.3,128.7,128.3,80.4$, $62.1,54.0,53.7,41.8,40.5,38.3,37.9,26.8$; IR (thin film) $v_{\max } 2955,1729,1706,1557$, $1268 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{7} 388.1396$, found 388.1376. $[\alpha]_{\mathrm{D}}{ }^{23}=49.2^{\circ}\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

19

Nitromalonate 19. To a solution of 17 ($11 \mathrm{mg}, 0.028 \mathrm{mmol}$) and triethylamine $(0.4 \mu \mathrm{~L}, 0.003 \mathrm{mmol})$ in toluene $(0.6 \mathrm{~mL})$ was added thiophenol $(9 \mu \mathrm{~L}, 0.08 \mathrm{mmol})$ at room temperature. The reaction was monitored by TLC analysis which showed complete consumption of the starting material after 40 min . The reaction mixture was concentrated in vacuo. Chromatography over SiO_{2} (20\% EtOAc in pet. ether) provided 19 ($10 \mathrm{mg}, 71 \%$) as a white solid, m.p. $158-160^{\circ} \mathrm{C}$ (from Methylene chloride $/ 2,2,4$-Trimethylpentane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.00$ $(\mathrm{m}, 1 \mathrm{H}), 6.84-6.82(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{dd}, J=19.0,8.5,1 \mathrm{H})$, 2.25-2.07 (m, 3H), $0.92(\mathrm{dd}, J=14.3,8.4,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.39$, $170.19,169.74,138.55,135.08,134.44,134.19$, 133.47, 129.55, 128.81, 128.56, 128.00, 126.56, 77.92, 58.65, 53.31 (2 ester carbons, see HMQC page S39), 52.27, 49.38, 41.41, $39.79,39.08,36.03,30.31 ; v_{\max } 2955,2923,1733,1558 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{7} \mathrm{NaS}$ 520.1406, found 520.1509. $[\alpha]_{\mathrm{D}}{ }^{23}=101.4^{\circ}\left(\mathrm{c}=0.11, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Nitromalonate 21. To a solution of nitro malonate $\mathbf{4 e}(40 \mathrm{mg}, 0.11 \mathrm{mmol})$ in toluene $(1.1 \mathrm{~mL})$ was added $\mathrm{AuCl}(\mathrm{PPh})_{3}(30 \mathrm{mg}, 0.4 \mathrm{mmol})$ at room

21 temperature. To the resulting mixture was added AgOTf (20 mg , 0.5 mmol) and the reaction was heated at $50^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was concentrated in vacuo. Chromatography over $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc}$ in pet. ether) provided $21(23 \mathrm{mg}, 58 \%)$ as a white film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.08-$ $7.06(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=10.8,1 \mathrm{H}), 5.96-5.77$ $(\mathrm{m}, 2 \mathrm{H}), 5.19(\mathrm{dd}, J=12.8,2.9,1 \mathrm{H}), 4.96(\mathrm{dt}, J=11.2,11.0,5.7$, $1 \mathrm{H}), 4.73$ (dd, $J=12.8,11.2,1 \mathrm{H}), 4.42(\mathrm{dd}, J=11.1,2.9,1 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,170.3,140.6,134.4,132.9,131.2,130.3,128.3,128.2$, $128.0,126.3,123.1,80.2,60.0,53.2,53.1,42.1,31.0,27.9 ;$ HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{Na} 382.1267$, found 382.1247. $[\alpha]_{\mathrm{D}}{ }^{23}=210.1^{\circ}\left(\mathrm{c}=0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

22

Lactam 22. To a solution of nitro malonate $21(18 \mathrm{mg}, 0.05 \mathrm{mmol})$ in THF (0.3 mL) and acetic acid (0.3 mL) was added zinc powder (120 $\mathrm{mg}, 1.8 \mathrm{mmol}$) in small portions at room temperature. The reaction mixture was stirred for 4 h at room temperature, then filtered through Celite washing with THF. The solution was concentrated in vacuo and then redissolved in methanol (0.8 mL). $6 \mathrm{M} \mathrm{NaOH}(0.7 \mathrm{~mL})$ was added and the reaction mixture was stirred for 20 min at room temperature. The mixture was extracted with methylene chloride and the organic layer was washed with brine, dried over sodium sulfate, and concentrated in vacuo. Chromatography over $\mathrm{SiO}_{2}(80 \% \mathrm{EtOAc}$ in pet. ether) provided $22(9 \mathrm{mg}, 60 \%)$ as a white film. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.13(\mathrm{~m}$, $2 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=11.3,1 \mathrm{H}), 5.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.83-5.71(\mathrm{~m}, 2 \mathrm{H}), 5.50-$ $5.33(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=10.50, J=9.27,1 \mathrm{H}), 3.31-$ $3.27(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{q}, J=12.0,1 \mathrm{H}), 2.76(\mathrm{dd}, J=13.93, J=10.21,1 \mathrm{H}), 2.50(\mathrm{dd}, J=$ $14.0, J=6.4,1 \mathrm{H}) 2.40-2.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.7,172.2,138.8$, 133.6, 132.5, 130.5, 130.4, 127.9, 127.4, 127.3, 126.9, 124.1, 58.3, 52.6, 47.4, 43.7, 28.3, 27.4; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3}$ 298.1443, found 298.1448. $[\alpha]_{\mathrm{D}}{ }^{23}=$ $155.8^{\circ}\left(\mathrm{c}=0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(\pm) $\mathbf{2 5}$
(\pm) Lactam alcohol 25. The (\pm) analogue of lactam $22(22 \mathrm{mg}, 0.067$ mmol) was prepared using the procedure reported for 22 with the exception that (\pm) $\mathbf{4 e}$ was prepared using DABCO as catalyst. This compound was dissolved in THF (1 mL) and lithium tetrahydroborate $(6 \mathrm{mg}, 0.267 \mathrm{mmol})$ was added at room temperature. The reaction mixture was stirred for 6 h at room temperature and then quenched through the addition of 2 M HCl . The solution was extracted with EtOAc and the organic layer was washed with brine, dried over sodium sulfate, and concentrated in vacuo. Chromatography over $\mathrm{SiO}_{2}(90 \%$ EtOAc / pet. ether) provided lactam alcohol $25(18 \mathrm{mg}, 70 \%)$ as an off white film. ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{dd}, J=7.6,1.6,1 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=$ $7.1,1.8,1 \mathrm{H}), 6.27(\mathrm{~d}, J=11.2,1 \mathrm{H}), 5.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.77(\mathrm{dt}, J=11.5,11.4,5.0,1 \mathrm{H})$, $5.70(\mathrm{dt}, J=11.2,11.0,4.4,1 \mathrm{H}), 5.46-5.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.08-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=$ $10.5,1 \mathrm{H}), 3.77(\mathrm{~d}, J=10.6,1 \mathrm{H}), 3.33(\mathrm{t}, J=9.8,1 \mathrm{H}), 3.26(\mathrm{t}, J=8.3,1 \mathrm{H}), 3.02(\mathrm{dd}, J=$ $24.5,12.0,1 \mathrm{H}), 2.57-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=13.1,6.5,1 \mathrm{H}), 2.11-$ $2.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.3,139.2,134.8,131.6,130.3,130.3$, $130.2,127.5,127.5,127.4,124.4,66.8,60.7,48.0,42.0,28.2,28.1$; IR (thin film) $v_{\max }$ $\mathrm{cm}^{-1} 3440,2923,2852,1677,1258$; HRMS $\left(\mathrm{CI} / \mathrm{NH}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}$ 270.1494, found 270.1494.

7. Select NMR spectra for functional group pairing products

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for (S)-3-but-2-ynyl-2-oxo-4-phenyl-pyrrolidine-3-carboxylic acid methyl ester 6 (major and minor diastereomers).

- The stereochemistry of the quaternary carbon of $\mathbf{6}$ was assigned based on nOe data of the corresponding alcohol 23 in $\mathrm{d}_{6}-\mathrm{MeOH}$.
- The chemical shifts of methine and methylene protons of 23 were established through HMQC and GCOSY analysis.

23
Figure A, Chem 3D representation of $\mathbf{2 3}$ showing observed nOe
NOESY spectrum of alcohol $23\left(\mathrm{~d}_{6}-\mathrm{MeOH}\right)$.

NOESY spectrum (expansion plot) for alcohol $23\left(\mathrm{~d}_{6}-\mathrm{MeOH}\right)$.

HMQC spectrum (expansion plot) for alcohol $23\left(\mathrm{~d}_{6}-\mathrm{MeOH}\right)$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for nitromalonate 10.

$$
\begin{array}{ll|l|l|l}
\hline \hline 1 & \mid & 1 & 1 & 1 \\
& 6.0 & 0.0
\end{array}
$$

:-236-main

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for lactam 11 (major and minor diastereomers).

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for nitromalonate 13.

- HMQC and GCOSY analyses facilitated assignment of methine protons $\mathrm{H}_{\mathrm{C}}, \mathrm{H}_{\mathrm{I}}$ and H_{F}.

Figure B, Chem 3D representation for 13 showing observed nOes

- The NOESY spectrum shows an nOe from H_{C} to $H_{I} . H_{C}$ is on α face which means that Hi is also on the α face. There is also an nOe from H_{I} to H_{F} which shows that H_{F} and therefore H_{K} are also on the α face.

NOESY spectrum for tetracycle 13 in d_{6}-benzene.

HMQC spectrum for tetracycle 13 in d_{6}-benzene.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of tetracycle 15

ppm (t1)

Figure C, Chem 3D representation of 15 showing observed nOes

- HMQC and GCOSY analyses of 15 facilitated the assignment of peaks corresponding to protons H_{D} (2 protons), H_{B} (2 protons) and H_{A}.
- From 1D nOe analysis of tricycle 15; Proton H_{B} at $\delta 2.07 \mathrm{ppm}$ has an nOe with H_{D}, thus this proton is on the same face as H_{D} which is the β face. Proton H_{B} at δ 2.56 must be on the opposite α face. This proton has an nOe with H_{A}, thus H_{A} is on the α face.

1D nOe analysis of tricycle 15.

GCOSY spectrum of tricycle $\mathbf{1 5}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for tetracycle 16 (Major and minor diastereomers).

Figure D, Chem 3D representation for $\mathbf{2 4}$ showing observed nOe

- The stereochemistry of the quaternary carbon of lactam 16 was assigned based on NOESY data of the corresponding alcohol 24 in a 50% mixture of d_{6}-acetone in CDCl_{3}.
- HMQC and GCOSY analyses of 24 facilitated the assignment of peaks.
- An nOe was observed between the methine proton H_{F} on the lactam ring of 24 and one of the methylene protons H_{I} of the primary alcohol which is only possible with the cis fused lactam configuration.

NOESY spectrum of tetracycle 24 in $50 \% \mathrm{~d}_{6}$-acetone in CDCl_{3}.

GCOSY spectrum of tetracycle 24 in $50 \% \mathrm{~d}_{6}$-acetone in CDCl_{3} with $\mathrm{D}_{2} \mathrm{O}$ added.

HMQC spectrum of tetracycle 24 in $50 \% \mathrm{~d}_{6}$-acetone in CDCl_{3}.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of tricycle 17.

1D nOe analysis of tricycle 17.

Figure E, Chem 3D representation for $\mathbf{1 7}$ showing observed nOes

- The above nOes demonstrate that the solution phase conformation of $\mathbf{1 7}$ is similar to the x-ray structure shown in the main text (figure 2).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of tricycle 19 in CDCl_{3}.

HMQC spectrum of tricycle 19 in d6-acetone.

Figure F, Chem 3D representation for $\mathbf{1 9}$ showing observed nOes

- HMBC analysis of 19 in d_{6}-acetone shows that H_{E} and H_{F} couple to three aromatic carbons. Thus H_{E} and H_{F} are benzylic hydrogens.
- HMBC analysis indicates that the malonate quaternary carbon couples with H_{J} and H_{K}.
- Protons H_{A} and H_{B} are identified from their chemical shifts thus the remaining diastereotopic protons are H_{H} and H_{G}.
- GCOSY establishes H_{I}, as this proton couples with $H_{G} . H_{D}$ is a singlet at 4.21 ppm, which suggests that the remaining high field methine proton is H_{N}.
- The stereochemistry of proton H_{I} was established as α from x-ray analysis of $\mathbf{1 7}$.
- NOESY analysis of $\mathbf{1 9}$ shows a strong nOe from H_{D} to H_{C}. Thus H_{D} is in the β face as in Figure F.
- NOESY analysis of 19 (50/50 mixture of $\mathrm{CDCl}_{3} / \mathrm{d}_{6}$-benzene) shows an nOe from H_{D} to an aromatic proton which must belong to the SPh group. NOESY analysis also shows an nOe from H_{N} to the same aromatic proton established as a SPh group suggesting that H_{N} is on the α-face as shown in Figure F.

NOESY spectrum of tricycle 19 in d6-acetone.

NOESY spectrum of tricycle 19 in a $50 / 50$ mixture of CDCl_{3} and d6-benzene.

NOESY spectrum (expanded plot) of tricycle 19 in a $50 / 50$ mixture of CDCl_{3} and d6-benzene.

HMQC spectrum of 21.

GCOSY spectrum of 21.

GCOSY spectrum of $\mathbf{2 1}$ shows the connectivity and correlation of protons to each other. Proton \mathbf{D} couples with proton \mathbf{E} which couples with protons \mathbf{L} and \mathbf{N}. Proton \mathbf{L} couples with protons \mathbf{F} which couples with protons \mathbf{H}. Proton \mathbf{H} couples with protons \mathbf{M}.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, HMQC and GCOSY spectra for 22.

NOESY spectrum for 22.

The stereochemistry of $\mathbf{2 2}$ was assigned as the cis fused lactam based on examination of the minimum-energy conformers for the cis and trans fused ring system derived from a conformational search $\left(\mathrm{MMFF}^{10}\right)$ of $\mathbf{2 5}$ and nOe analysis of $\mathbf{2 5}$.

Trans-fused lactam 25

nOe $\quad \mathrm{CH}_{2} \mathrm{OH}$
to
Cis-fused lactam 25

Figure G. Minimum-energy conformers for the cis and trans fused ring system derived from a conformational search $\left(\mathrm{MMFF}^{10}\right)$ of 25

25

- Peaks corresponding to the methylene protons of the primary alcohol of 25 were easily identified using GCOSY and HMQC analyses.
- An nOe was observed between the methylene protons of the primary alcohol and an aromatic proton.
- Examination of the minimum conformations (calculated using MMFF) (Figure G) show that this nOe should only be observable for cis fused lactam 25.
- Additionally, proton H_{I}, previously assigned as α, also has a weak nOe to the same aromatic proton.

[^1]NOESY spectrum for 25.

NOESY spectrum for 25 (expansion plot).

HMQC spectrum for 25.

GCOSY spectrum for 25.

5. X-ray crystal structure analysis for Pauson-Khand product 17.

Crystals of compound $\mathbf{1 7}$ suitable for x-ray analysis were obtained by slow evaporation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ isooctane. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC \#627520). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk.

Table 3. Crystal data and structure refinement for 17.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient

C20 H21 N O7
387.38

173(2) K
$0.71073 \AA$
Orthorhombic
P2(1)2(1)2(1)
$\mathrm{a}=8.8302(5) \AA$
$\alpha=90^{\circ}$.
$\mathrm{b}=13.5528(8) \AA$
$\beta=90^{\circ}$.
c $=14.9410(8) \AA$
$\gamma=90^{\circ}$.
1788.05(17) \AA^{3}

$\mathrm{F}(000)$	816
Crystal size	$0.60 \times 0.55 \times 0.50 \mathrm{~mm}^{3}$
Theta range for data collection	2.03 to 36.32°.
Index ranges	$-13<=\mathrm{h}<=13,-21<=\mathrm{k}<=21,-24<=\mathrm{l}<=23$
Reflections collected	19695
Independent reflections	$4578[\mathrm{R}(\mathrm{int})=0.0247]$
Completeness to theta $=36.32^{\circ}$	95.1%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9472 and 0.9371
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$4578 / 0 / 337$
Goodness-of-fit on F^{2}	1.111
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0367, \mathrm{wR} 2=0.0920$
R indices (all data)	$\mathrm{R} 1=0.0415, \mathrm{wR} 2=0.0950$
Absolute structure parameter	$1.2(5)$
Largest diff. peak and hole	0.367 and -0.376 e. $\AA^{-}-3$

Table 4. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$
for 23. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U ij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$-2226(1)$	$9320(1)$	$2410(1)$	$28(1)$
$\mathrm{O}(2)$	$-2414(1)$	$10955(1)$	$2261(1)$	$23(1)$
$\mathrm{O}(3)$	$-2499(1)$	$10733(1)$	$345(1)$	$25(1)$
$\mathrm{O}(4)$	$-352(1)$	$11607(1)$	$385(1)$	$25(1)$
$\mathrm{O}(5)$	$1216(1)$	$7265(1)$	$1034(1)$	$25(1)$
$\mathrm{O}(6)$	$3109(1)$	$12018(1)$	$1844(1)$	$29(1)$
$\mathrm{O}(7)$	$2759(1)$	$11933(1)$	$3268(1)$	$35(1)$
$\mathrm{N}(1)$	$2344(1)$	$11812(1)$	$2498(1)$	$19(1)$
$\mathrm{C}(1)$	$-619(1)$	$10154(1)$	$1334(1)$	$14(1)$
$\mathrm{C}(2)$	$-549(1)$	$9131(1)$	$856(1)$	$18(1)$
$\mathrm{C}(3)$	$964(1)$	$8915(1)$	$465(1)$	$16(1)$

C(4)	$1924(1)$	$9523(1)$	$45(1)$	$19(1)$
C(5)	$3530(1)$	$9202(1)$	$179(1)$	$20(1)$
C(6)	$4087(1)$	$9752(1)$	$1041(1)$	$20(1)$
C(7)	$3325(1)$	$9400(1)$	$1893(1)$	$16(1)$
C(8)	$4122(1)$	$8712(1)$	$2408(1)$	$20(1)$
C(9)	$3531(1)$	$8305(1)$	$3183(1)$	$22(1)$
C(10)	$2097(1)$	$8578(1)$	$3463(1)$	$21(1)$
C(11)	$1296(1)$	$9270(1)$	$2975(1)$	$17(1)$
C(12)	$1869(1)$	$9689(1)$	$2189(1)$	$13(1)$
C(13)	$950(1)$	$10487(1)$	$1728(1)$	$13(1)$
C(14)	$1768(1)$	$7982(1)$	$677(1)$	$18(1)$
C(15)	$3377(1)$	$8091(1)$	$336(1)$	$20(1)$
C(16)	$795(1)$	$11392(1)$	$2341(1)$	$17(1)$
C(17)	$-1848(1)$	$10077(1)$	$2060(1)$	$16(1)$
C(18)	$-3586(1)$	$10962(1)$	$2940(1)$	$27(1)$
C(19)	$-1114(1)$	$10931(1)$	$646(1)$	$16(1)$
C(20)	$-3090(2)$	$11409(1)$	$-317(1)$	$33(1)$

[^0]: (8) Commercially available from Fluka.
 (9) Tu, Z.; Jang, Y.; Lin, C.; Liu, J.-T.; Hsu, J.; Sastry, M. N. V.; Yao, C.-F. Tetrahedron 2005, 61, 10541.

[^1]: ${ }^{10}$ Conformational searches (Merck Molecular Mechanics Fourse Field) were performed using Spartan '04 Windows (Wavefunction, Irvine, CA).

