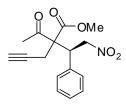
An Approach to Skeletal Diversity Using "Functional Group Pairing" of Multifunctional Scaffolds

Supporting Information

Eamon Comer, Erin Rohan, Li Deng, and John A. Porco, Jr*.

Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (USA) and Department of Chemistry, Brandeis University Waltham, MA 02454-9110 (USA)

1. General Experimental Information	S 1
2. Stereoselective generation of multifunctional scaffolds	· S2
3. Select NMR spectra for multifunctional scaffolds	-S7
4. Select chiral HPLC analyses of multifunctional scaffolds	S12
5. X-ray crystal structure analysis of malonate 4g	S15
6. Functional group pairing of multifunctional scaffolds	S18
7. Select NMR spectra for functional group pairing products	S26
8. X-ray crystal structure analysis for Pauson-Khand product 17	S56


1. General Experimental Information:

¹H NMR and ¹³C spectra were recorded at 400 MHz and 100.0 MHz respectively at ambient temperature with CDCl₃ as solvent unless otherwise stated. Chemical shifts are reported in parts per million relative to CDCl₃ (¹H, δ 7.26; ¹³C, δ 77.0). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dt = doublet of triplets, dq = doublet of quartets, m = multiplet, br = broad), coupling constant, and integration. Coupling constants are reported as values in hertz (Hz). All ¹³C NMR spectra were recorded with complete proton decoupling. Infrared spectra were recorded on a Nicolet Nexus 670 FTIR spectrophotometer. Optical rotations were recorded on an AUTOPOL III digital polarimeter at 589 nm, and are reported as $\left[\alpha\right]_{D}^{20}$ (concentration in grams/100 mL solvent). High-resolution mass spectra were obtained in the Boston University Mass Spectrometry Laboratory using a Finnegan MAT-90 spectrometer. Analytical and preparative HPLC were performed on a Waters FractionLynx System with a Waters 600 HPLC pump, MicroMass ZQ 2000 mass spectrometer, Waters 996 diode array, and a Sedere Sedex 75 ELS detector. Analytical thin layer chromatography was performed using Whatman Reagent 0.25 mm silica gel 60-A plates. Flash chromatography was carried out using an Isco CombiFlash system. Methylene chloride. THF, Diethyl ether, and toluene were purified and dried by passing through two packed columns of neutral alumina (Innovative Technologies, MA). Microwave reactions were performed using the DiscoverTM Explorer System (CEM Corp., Matthews, NC). A GeneVac HT-4 or EZ-2 (Genevac Inc.), was used for concentration and drying of solutions in vials or test tubes. The ArthurTM Suite Reaction Planner (Symyx Technologies, Inc.) was used for experimental procedure planning. Chiral high pressure liquid chromatography (HPLC) analyses were performed on compounds 4a, 4b and 4d on a Hewlett-Packard 1100 Series instrument equipped with a quaternary pump using a Daicel Chiralcel OJ or OD Column (250 x 4.6 mm) with UV detection monitored at 220 nm or 215 nm. Chiral HPLC analyses on all other compounds was performed on a Waters 717 plus autosampler instrument equipped with a Waters binary 1525 pump, using a Daicel Chiralcel OD-H Column, UV detection was monitored at 214 nm and at 254 nm.

2. Stereoselective generation of multifunctional scaffolds

(*E*)-*o*-Allyl- β -nitrostyrene 3b. To a solution of *trans*-2-bromo- β -nitrostyrene¹ (3c) (877 mg, 3.84 mmol) in THF (10 mL) was added allyltributyltin (1.6 mL, 5.0 mmol) and tetrakis(triphenylphosphine)palladium(0) (400 mg, 0.4 mmol) under argon. The reaction was heated under microwave conditions at 140°C (300 watts) for 30 min. The reaction was concentrated and then dissolved in acetonitrile. Hexanes were then used to extract the tin-containing byproducts and the reaction was concentrated under vacuum. Chromatography over SiO₂ (10% EtOAc in pet. ether) provided nitromalonate 3b (674 mg, 93%) as a yellow oil. This material had properties in good agreement with that reported in the literature.²

1-(3-Methoxyprop-1-ynyl)-2-((*E***)-2-nitrovinyl)benzene 3d**. To a solution of *trans-*2bromo-β-nitrostyrene¹ (**3c**) (200 mg, 0.9 mmol) in THF (3 mL) was added *N*,*N*diisopropylamine (1 mL). Argon was bubbled through this solution for 15 min. To the reaction was added tetrakis(triphenylphosphine)palladium(0) (30 mg, 0.03 mmol), copper (I) iodide (10 mg, 0.05 mmol) and methyl propargyl ether (96 µL, 1.1 mmol). The reaction was irradiated under microwave conditions at 100°C (300 watts) for 40 min. The reaction was concentrated under vacuum. Chromatography over SiO₂ (10% EtOAc in pet. ether) provided **3d** (130 mg, 70%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 13.8, 1H), 7.71 (d, J = 13.8, 1H), 7.59-7.56 (m, 2H), 7.46-7.37 (m, 2H), 4.41 (s, 2H), 3.51 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): 138.5, 137.1, 133.9, 131.7, 131.7, 129.3, 127.6, 124.9, 92.9, 83.5, 60.6, 58.2; IR (thin film) v_{max} 2931, 2824, 1520, 1341, 1100 cm⁻¹; HRMS (CI/NH₃) [M+H]⁺ calcd for C₁₂H₁₂NO₃ 218.0817, found 218.0795.

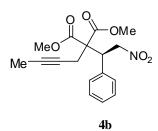
Methyl 2-acetyl-2-((*S*)-2-nitro-1-phenylethyl)pent-4-ynoate 4a: To a solution of *trans*- β -nitrostyrene³ (15 mg, 0.1 mmol) in THF (0.1 mL) was added ketoester 2a⁴ (30 mg, 0.2 mmol). The solution was stirred at -20 °C for 1 h. To this solution was added catalyst 5c⁵ (10 mol%). The reaction mixture was stirred at -20 °C for 16 h then filtered through a plug of silica gel for removal of the catalyst using diethyl ether as eluant. The filtrate was concentrated *in vacuo* to

4a diethyl ether as eluant. The filtrate was concentrated *in vacuo* to afford a crude mixture of two compounds which are diastereomeric at the ester-bearing stereocenter. Chromatography over SiO₂ (10% EtOAc in pet. ether) provided the major and minor adducts of 4a (22 mg, 73%) in a ratio of 2.6/1. The major diastereoisomer was isolated in 99% ee (as determined by HPLC analysis [Daicel chiralcel OD, Hexanes:IPA, 90:10, 1.0 mL/min, λ 220 nm, t (major) = 13.5 min, t (minor) = 10.7 min]) as a white

⁽¹⁾ Mampreian, D. M.; Hoveyda, A. H. Org. Lett. 2004, 6, 2829.

⁽²⁾ Knight, J.; Parsons, P. J. J. Chem. Soc. Perkin Trans 1 1989, 5, 979.

⁽³⁾ Commercially available from Aldrich.

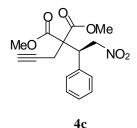

⁽⁴⁾ Prepared according to the procedure of; Cruciani, P.; Stammler, R.; Corinne, A.; Malacria, M. J. Org. Chem. **1996**, *61*, 2699.

⁽⁵⁾ Prepared according to the procedure of; Wang, H. Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 32, 9906.

solid mp 132-134 °C (from EtOAc/Hexane). The minor diastereoisomer was isolated in 88% ee as determined by HPLC analysis [Daicel Chiralcel OD, Hexanes:IPA, 90:10, 1.0 mL/min, λ 220 nm, t (major) = 13.0 min, t (minor) = 10.3 min] as a white solid. m.p. 88-90°C (from EtOAc/Hexane).

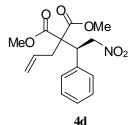
Major diastereoisomer; ¹H NMR (400 MHz CDCl₃): δ 7.25 (m, 3H), 7.16 (m, 2H), 5.19 (ddd, J = 0.6, J = 3.5, J = 13.7, 1H), 5.04 (dd, J = 11.4, J = 13.6, 1H), 4.46 (dd, J = 3.3, J = 11.5, 1H), 3.62 (s, 3H), 2.78 (ddd, J = 10.2, J = 18.0, J = 20.5, 2H), 2.16 (t, J = 2.8, 1H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 203.1, 169.5, 135.1, 129.2, 129.1, 128.9, 78.7, 76.8, 74.0, 65.2, 53.3, 46.4, 28.3, 22.1; IR (thin film) v_{max} 3290, 2924, 1718, 1652, 1554, 1217, 1089 cm⁻¹; $[\alpha]_D^{23} = -2.8^\circ$ (c = 0.8, CH₂Cl₂). HRMS (CI/NH₃) [M+Na]⁺ calcd for C₁₆H₁₇NO₅Na 326.1004, found 326.1014.

Minor diastereoisomer: ¹H NMR (400 MHz) δ 7.25 (m, 3H), 7.09 (m, 2H), 5.02 (dd, J = 3.3, J = 13.7, 1H,), 4.83 (dd, J = 11.3, J = 13.6, 1H), 4.39 (dd, J = 3.2, J = 11.3, 1H), 3.79 (s, 3H), 2.48 (ddd, J = 2.7, J = 17.8, J = 13.9, 1H), 2.65 (dd, J = 2.7, J = 17.8, 1H,), 2.31 (dd, J = 2.7, J = 17.8, 1H,), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.0, 170.2, 135.1, 129.2, 128.9, 128.9, 77.8, 77.6, 74.1, 65.2, 53.4, 45.0, 27.1, 23.4 IR (thin film) v_{max} 3289, 2923, 1718, 1554, 1218, 1090 cm⁻¹; $[\alpha]_D^{23} = 6.7^{\circ}$ (c = 0.2, CH₂Cl₂). HRMS (CI/NH₃) [M+Na]⁺ calcd for C₁₆H₁₇NO₅Na 326.1004, found 326.1019.

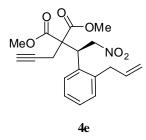


Dimethyl 2-(but-2-ynyl)-2-((S)-2-nitro-1phenylethyl)malonate 4b: To a solution of *trans-* β nitrostyrene³ (15 mg, 0.1 mmol) in THF (0.1 mL) was added dimethyl 2-(but-2'-yn-1'-yl)malonate (**5**)⁶ (37 mg, 0.2 mmol). The solution was stirred at -20 °C for 1 h. To the solution was added catalyst **5a**⁷ (3.1 mg, 10 mol %). The reaction mixture was stirred at -20 °C for 48 h and then filtered through a plug of

silica gel for the removal of the catalyst using diethyl ether as eluant. The filtrate was concentrated *in vacuo*. Chromatography over SiO₂ (10% EtOAc in pet. ether) provided **4b** (28 mg, 85%) in 90% ee (as determined by HPLC analysis [Daicel Chiralcel OJ, Hexanes:IPA, 90:10, 1.0 mL/min, λ 220 nm, t (major) = 20.7 min, t (minor) = 24.7 min]) as a white solid. m.p. 76-78°C (from EtOAc/Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.30 (m, 3H) 7.18 (m, 2H), 5.31 (dd, *J* = 3.2, 13.7, 1H), 5.03 (dd, *J* = 11.4, 13.7, 1H), 4.50 (dd, *J* = 3.2, 11.4, 1H), 3.79 (s, 3H), 3.76 (s, 3H), 2.74 (dq, *J* = 2.5, 17.2, 1H), 2.35 (dq, *J* = 2.6, 17.2, 1H), 1.86 (t, *J* = 2.6, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 165.6, 131.2, 125.2, 125.1, 125.0, 77.3, 74.0, 69.1, 56.3, 49.5, 49.4, 41.8, 20.5, 0.0 ; IR (thin film) v_{max} 2956, 1737, 1555, 1216, 1088 cm⁻¹; [α]_D²³ = -14.2° (c = 0.7, CH₂Cl₂). HRMS (CI/NH₃) [M+Na]⁺ calcd for C₁₇H₂₀NO₆ 334.1291, found 334.1298.


⁽⁶⁾ Prepared according to the procedure of; Zhao, L.; Lu, X.; Xu W. J. Org. Chem. 2001, 70, 4059.

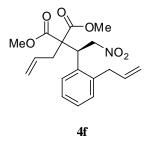
⁽⁷⁾ Li, H., Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105.


Dimethyl 2-((S)-2-nitro-1-phenylethyl)-2-(prop-2-ynyl)malonate 4c: To a solution of *trans*- β -nitrostyrene^[3] (30 mg, 0.2 mmol) in THF (0.2 mL) was added dimethyl propargylmalonate^[8] **2d** (68 mg, 0.4 mmol). The solution was stirred at -40 °C for 3 h. To this solution was added catalyst **5c**^[5] (9.8 mg, 10 mol%). The reaction mixture was stirred at -40 °C for 3 d and then filtered through a plug of silica gel for the removal of the catalyst using diethyl ether as

eluant. The filtrate was concentrated *in vacuo*. Chromatography over SiO₂ (20% EtOAc in pet. ether) provided nitromalonate **4c** (29 mg, 45%) in 92% ee (as determined by HPLC analysis [Daicel Chiralcel OD-H, Hexanes:IPA, 98:2, 1.0 mL/min, λ 214 nm, t (major) = 16.8 min, t (minor) = 14.2 min]) as a white waxy solid. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (m, 3H) 7.19 (m, 2H), 5.30 (dd, J = 3.1, J = 13.7, 1H), 5.02 (dd, J = 11.3, J = 13.7, 1H), 4.52 (dd, J = 3.1, J = 11.3, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 2.79 (dd, J = 2.7, J = 17.4, 1H), 2.39 (dd, J=2.7, J=17.4, 1H) 2.23 (t, J = 2.7, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 169.2, 169.2, 134.8, 129.2, 129.0, 128.9, 78.3, 77.8, 73.6, 59.8, 53.5, 53.4, 45.6, 24.2 ; IR (thin film) ν_{max} 3290, 2956, 1737, 1556, 1216, 1089 cm⁻¹; [α]_D²³ = 3.2° (c = 0.8, CH₂Cl₂); HRMS (CI/NH₃) [M+H]⁺ calcd for C₁₆H₁₈NO₆ 320.1134, found 320.1159.

(S)-dimethyl 2-allyl-2-(2-nitro-1-phenylethyl)malonate 4d: To a solution of *trans*- β -nitrostyrene³ (15 mg, 0.1 mmol) in THF (0.2 mL) was added dimethyl allylmalonate³ 2e (34 mg, 0.2 mmol). The solution was cooled to -20 °C for 3 h. To this solution was added catalyst 5c⁵ (5 mg, 10 mol%). The reaction mixture was cooled at - 30 °C for 5 d and then then filtered through a plug of silica gel for the removal of the catalyst using diethyl ether as eluant. The filtrate

was concentrated *in vacuo*. Chromatography over SiO₂ (15% EtOAc in pet. ether) provided nitromalonate **4d** (14 mg, 44%) in 90% ee (as determined by HPLC analysis [Daicel Chiralcel OD, Hexanes:IPA, 98:2, 1.0 mL/min, λ 214 nm, t (major) = 14.6 min, t (minor) = 7.7 min] as a yellow oil.) This material had properties in good agreement with those reported in the literature for (±) **4d**⁹. [α]_D²³ = 36.4° (c = 0.3, CH₂Cl₂).


Dimethyl 2-((*S*)-1-(2-allylphenyl)-2-nitroethyl)-2-(prop-2ynyl)malonate 4e: To a solution of (*E*)-*o*-allyl- β -nitrostyrene (3b) (380 mg, 2.0 mmol) in THF (2 mL) was added dimethyl propargylmalonate³ (600 μ L, 4.0 mmol). The solution was stirred at -20 °C for 1 h. To this was added catalyst 5c (100 mg, 10 mol%). The reaction mixture was stirred at -20 °C for 7 d and then then filtered through a plug of silica gel for the removal of the catalyst using diethyl ether as eluant. The filtrate was

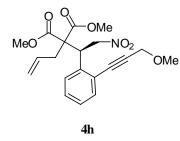
concentrated *in vacuo*. Chromatography over SiO₂ (20% EtOAc in pet. ether) provided **4e** (254 mg, 35%) in 95% ee (as determined by HPLC analysis [Daicel Chiralcel OD-H,

⁽⁸⁾ Commercially available from Fluka.

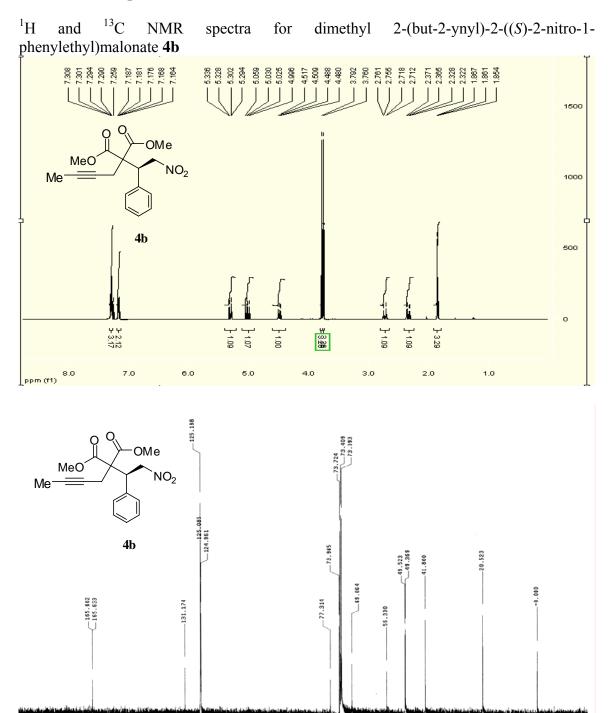

⁽⁹⁾ Tu, Z.; Jang, Y.; Lin, C.; Liu, J.-T.; Hsu, J.; Sastry, M. N. V.; Yao, C.-F. Tetrahedron 2005, 61, 10541.

Hexanes:IPA, 90:10, 1.0 mL/min, λ 254 nm, t (major) = 6.1 min, t (minor) = 8.7 min]) as a white solid. mp 84-86 °C (from EtOAc/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (m, 2H), 7.16 (m, 1H), 6.93 (m, 1H), 5.92 (m, 1H), 5.32 (dd, *J* = 3.0, 13.2, 1H), 5.15 (m, 1H), 5.12 (t, *J* = 1.4, 1H), 4.97 (dd, *J* = 10.8, 13.1, 1H), 4.86 (dd, *J* = 3.0, 10.9, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 3.66 (m, 2H), 2.82 (dd, *J* = 2.8, 17.3, 1H,), 2.38 (dd, *J* = 2.7, 17.3, 1H), 2.16 (t, *J* = 2.7, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 169.4, 141.0, 137.1, 133.1, 130.5, 128.6, 126.9, 126.6, 117.0, 79.0, 78.9, 73.3, 60.8, 53.5, 53.4, 40.3, 36.4, 23.9; IR (thin film) v_{max} 3288, 2953, 1737, 1556, 1211cm⁻¹; [α]_D²³ = 17.0° (c = 0.4, CH₂Cl₂). HRMS (CI/NH₃) [M+Na]⁺ calcd for C₁₉H₂₁NO₆Na 382.1267, found 382.1264.

Dimethyl 2-allyl-2-((S)-1-(2-allylphenyl)-2-nitroethyl)malonate 4f: To a solution of (*E*)-*o*-allyl- β -nitrostyrene (**2b**) (238 mg, 1.3 mmol) in THF (1.3 mL) was added dimethyl allylmalonate³ (600 μ L, 4.0 mmol). The solution was stirred at -20 °C for 2 h. To this was added catalyst **5c** (100 mg, 10 mol%). The reaction mixture was stirred at -20 °C for 15 d and then filtered through a plug of silica gel for the removal of the catalyst using diethyl ether as eluant. The filtrate was concentrated *in vacuo*. Chromatography


over SiO₂ (20% EtOAc in pet. ether) provided **4f** (248 mg, 55%) in 92% ee (as determined by HPLC analysis [Daicel chiralcel OD-H, Hexanes:IPA, 99:1, 1.0 mL/min, λ 214 nm, t (major) = 18.0 min, t (minor) = 7.2 min]) as a white solid. m.p. 81-83 °C (from EtOAc/Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (m, 2H) 7.17 (m, 1H), 6.97 (m, 1H), 5.91 (m, 1H), 5.74 (m, 1H), 5.16 (m, 1H,), 5.12 (m, 1H), 5.03 (m, 2H), 4.98 (m, 2H), 4.70 (t, *J* = 7.0, 1H), 3.81 (s, 3H), 3.72 (s, 3H), 3.62 (m, 1H), 3.49 (dd, *J* = 7.2, *J* = 15.9, 1H), 2.47 (dd, *J* = 6.1, *J* = 14.1, 1H), 2.26 (dd, *J* = 8.2, *J* = 14.1, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.3, 140.4, 137.0, 133.4, 133.0, 131.0, 128.4, 127.0, 126.5, 119.3, 117.1, 79.3, 62.4, 52.9, 52.9, 42.2, 39.3, 36.7; IR (thin film) v_{max} 2955, 1737, 1649, 1555, 1208, 1087cm⁻¹; [α]_D²³ = 23.2° (c = 0.3, CH₂Cl₂); HRMS (CI/NH₃) [M+Na]⁺ calcd for C₁₉H₂₃NO₆Na 384.1423, found 384.1417.

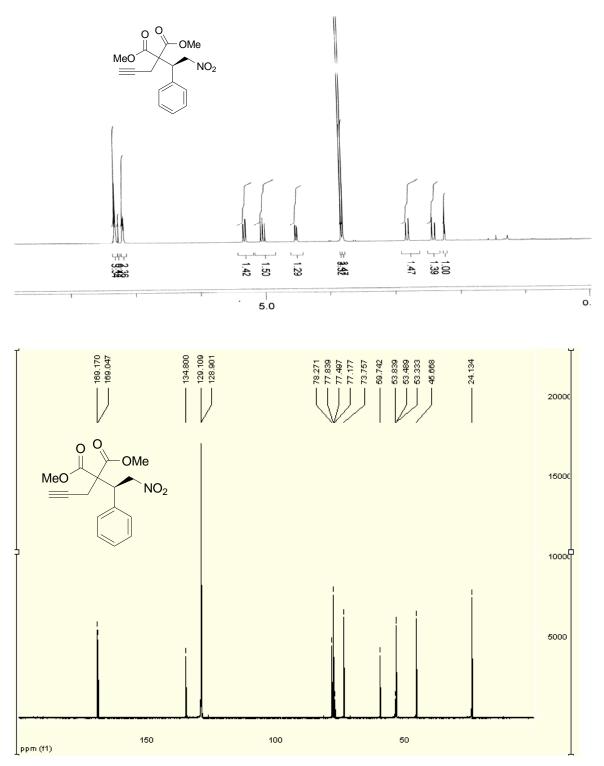
Dimethyl 2-((*R*)-1-(2-bromophenyl)-2-nitroethyl)-2-(prop-2ynyl)malonate 4g: To a solution of (*E*)-2-bromo- β -nitrostyrene (3c)¹ (395 mg, 1.73 mmol) in THF (1.7 mL) was added dimethyl propargylmalonate⁸ (589 mg, 3.46 mmol). The solution was stirred at -20 °C for 2 h. To the solution was added catalyst 5c (85 mg, 10 mol%). The reaction mixture was stirred at -20 °C for 5 d and then filtered through a plug of silica gel for the removal of the catalyst using diethyl ether as eluant. The filtrate was concentrated *in vacuo*.

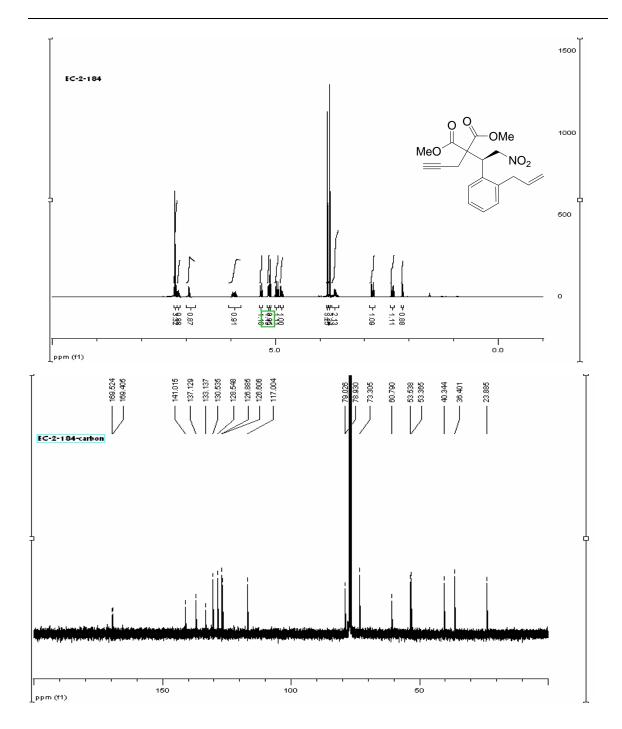

Chromatography over SiO₂ (20% EtOAc in pet. ether) provided **4g** (598 mg, 87%) in 97% ee (as determined by HPLC analysis [Daicel Chiralcel OD-H, Hexanes:IPA, 95:05, 1.0 mL/min, λ 254 nm, t (major) = 18.2 min, t (minor) = 13.6 min]) as a white solid. m.p. 58-60 °C (from Methylene chloride/2,2,4-Trimethylpentane); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.9, 1H), 7.27 (t, *J* = 7.3, 1H,), 7.14 (m, 2H), 5.19 (dd, *J* = 1.9, *J* = 12.3, 1H,), 5.07 (m, 2H), 3.78 (s, 3H), 3.77 (s, 3H), 2.73 (m, 2H), 2.08 (t, *J* = 2.3, 1H); δ

¹³C NMR (100 MHz, CDCl₃) δ 169.2, 169.2, 134.7, 134.2, 130.2, 128.6, 128.3, 127.4, 78.9, 78.1, 72.9, 60.9, 53.6, 53.4, 44.9, 23.9; IR (thin film) ν_{max} 3291, 2955, 1736, 1650, 1556, 1211, 1087 cm⁻¹; [α]_D²³ = 13.9° (c = 0.8, CH₂Cl₂); HRMS (CI/NH₃) [M+H]⁺ calcd for C₁₆H₁₇NO₆Br 398.0239, found 398.0259.

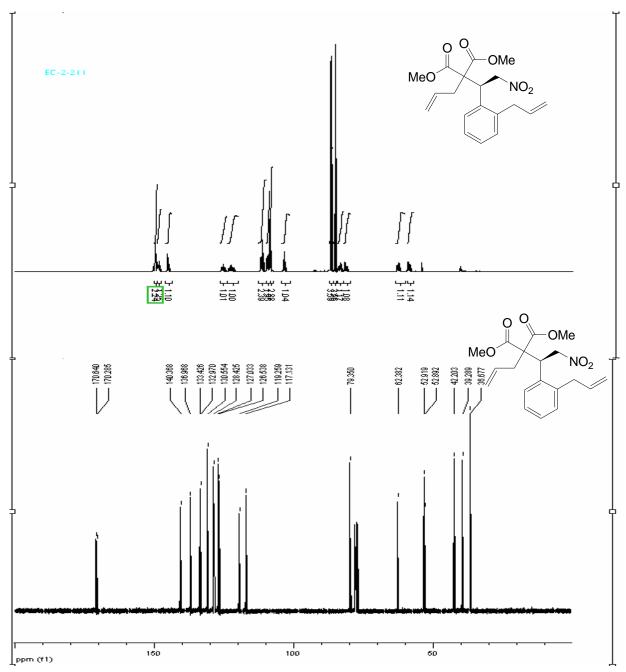
Dimethyl 2-allyl-2-((*S*)-1-(2-(3-methoxyprop-1ynyl)phenyl)-2-nitroethyl)malonate 4h: To a solution of 1-(3-methoxyprop-1-ynyl)-2-((*E*)-2-nitrovinyl)benzene 3d (180 mg, 0.83 mmol) in THF (0.8 mL) was added dimethyl allylmalonate³ 2d (400 μ l, 2.0 mmol). The solution was stirred at -20 °C for 2 h. To this was added catalyst 5c (40 mg, 10 mol%).The reaction mixture was stirred at -20 °C for 5 d and then filtered through a plug of silica gel for the

removal of the catalyst using diethyl ether as an eluant. The filtrate was concentrated *in vacuo*. Chromatography over SiO₂ (20% EtOAc / pet. ether) provided **4h** (133 mg, 41%) in 96% ee (as determined by HPLC analysis [Daicel Chiralcel OD-H, Hexanes:IPA, 90:10, 1.0 mL/min, λ 254 nm, t (major) = 13.6 min, t (minor) = 4.9 min]) as a slightly yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (m, 1H), 7.27 (m, 2H), 7.27 (m, 1H), 5.86 (tdd, J = 17.5, J = 10.4, J = 7.3, J = 7.3, 1H), 5.02 (m, 5H), 4.41 (s, 3H), 3.82 (s, 3H), 3.74 (s, 3H), 3.53 (s, 3H), 2.48 (m, 2H); ¹³CNMR (100 MHz, d6-acetone) δ 170.0, 169.7, 137.6, 133.6, 133.1, 129.4, 128.4, 127.1, 125.3, 118.5, 91.0, 84.4, 78.6, 62.3, 60.0, 57.1, 52.5, 52.4, 44.8, 39.1; IR (thin film) v_{max} 3074, 2988, 2829, 1733, 1556, 1437, 1218, 1098 cm⁻¹; [α]_D²³ = 10.7° (c = 0.9, CH₂Cl₂); HRMS (CI/NH₃) [M+H]⁺ calcd for C₂₀H₂₄NO₇ 390.1553, found 390.1556.

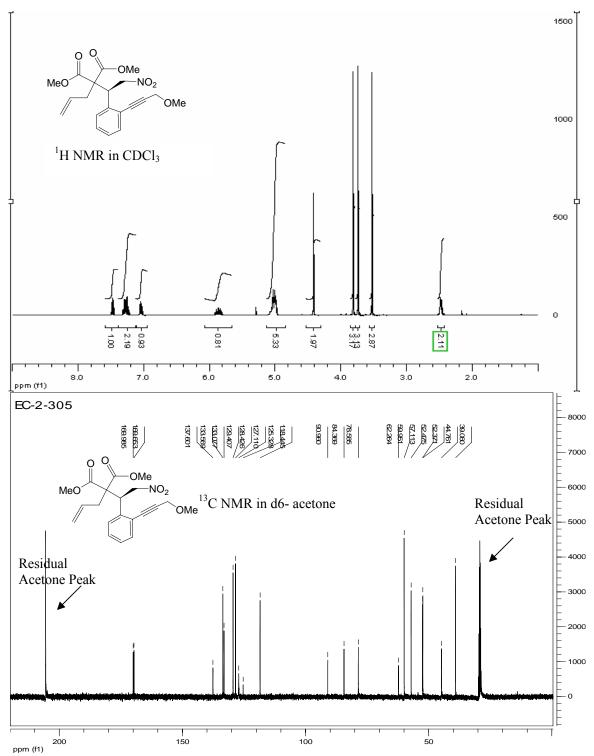


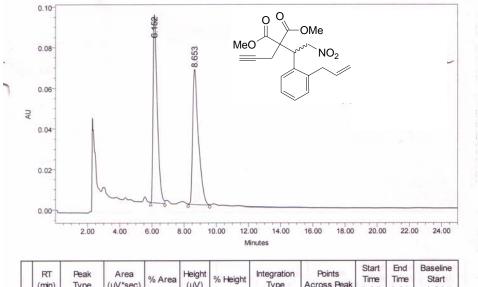

3. Select NMR spectra for multifunctional scaffolds

Ó

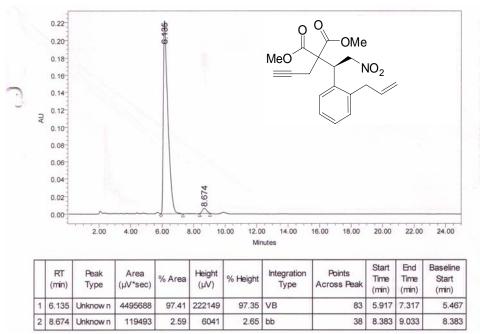

ppm

¹H and ¹³C NMR spectra for dimethyl 2-((S)-2-nitro-1-phenylethyl)-2-(prop-2-ynyl)malonate 4c

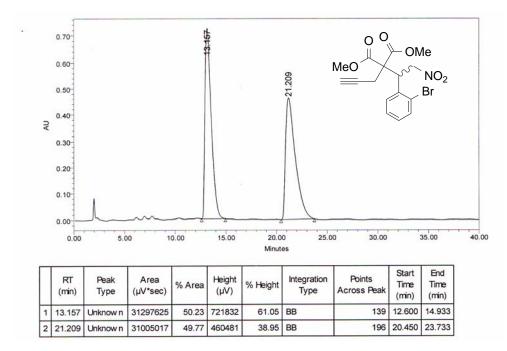



¹H and ¹³C NMR spectra for dimethyl 2-((S)-1-(2-allylphenyl)-2-nitroethyl)-2-(prop-2-ynyl)malonate 4e

¹H and ¹³C NMR for dimethyl 2-allyl-2-((*S*)-1-(2-allylphenyl)-2-nitroethyl)malonate **4f**


¹H and ¹³C NMR spectra for dimethyl 2-allyl-2-((S)-1-(2-(3-methoxyprop-1-ynyl)phenyl)-2-nitroethyl)malonate **4h**.

4. Select chiral HPLC analyses of multifunctional scaffolds

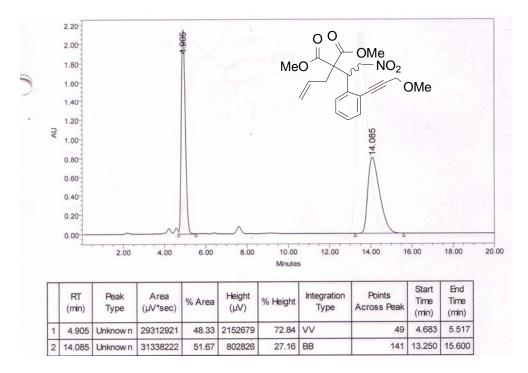

	RT (min)	Peak Type	Area (µV*sec)	% Area	Height (µV)	% Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)	Baseline Start (min)
1	6.152	Unknow n	1687305	50.22	92946	58.14	BV	52	5.917	6.800	5.917
2	8.653	Unknow n	1672504	49.78	66924	41.86	VV	80	8.250	9.583	7.283

Chiral HPLC analysis for racemic Michael Adduct **4e** Column: Daicel Chiralcel OD-H Conditions: Hexanes:IPA, 90:10, 1.0 mL/min, λ 254 nm, t = 6.2 min, t = 8.7 min

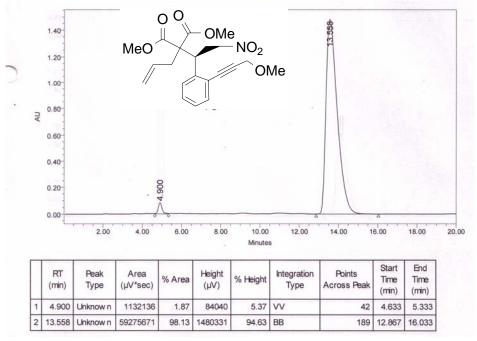
Chiral HPLC trace of Michael Adduct **7e** obtained using **5c** as catalyst Column: Daicel Chiralcel OD-H


Conditions: Hexanes: IPA, 90:10, 1.0 mL/min, λ 254 nm, t (major) = 6.1 min, t (minor) = 8.7 min

Chiral HPLC analyses for racemic Michael Adduct ${\bf 4g}$

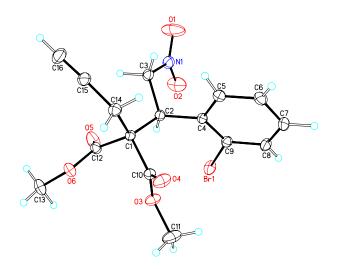

Column: Daicel Chiralcel OD-H

Conditions: Hexanes: IPA, 95:05, 1.0 mL/min, λ 254 nm, t = 21.2 min, t = 13.2 min


Chiral HPLC analyses for Michael Adduct 4g obtained using 5c as catalyst Column: Daicel Chiralcel OD-H

Conditions: Hexanes:IPA, 95:05, 1.0 mL/min, λ 254 nm, t (major) = 18.2 min, t (minor) = 13.6 min

Chiral HPLC analyses for racemic Michael Adduct **4h** Column: Daicel Chiralcel OD-H


Conditions: Hexanes: IPA, 90:10, 1.0 mL/min, λ 254 nm, t = 13.6 min, t = 4.9 min

Chiral HPLC analyses for Michael Adduct **4h** obtained using **5c** as catalyst Column: Daicel Chiralcel OD-H

Conditions: Hexanes:IPA, 90:10, 1.0 mL/min, λ 254 nm, t (major) = 13.6 min, t (minor) = 4.9 min

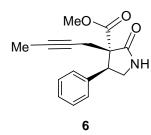
5. X-ray crystal structure analysis of malonate 4g

Crystals of compound **4g** suitable for x-ray analysis were obtained by slow evaporation from CH₂Cl₂/isooctane. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC # 627519). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk.

Table 1. Crystal data and structure refinement for 4g.

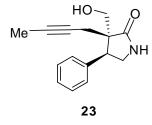
4g	
C16 H16 Br N O6	
398.21	
173(2) K	
0.71073 Å	
Monoclinic	
P2(1)	
a = 8.4518(6) Å	<i>α</i> = 90°.
b = 7.1699(6) Å	β= 97.485(4)°.
c = 14.2192(11) Å	$\gamma = 90^{\circ}$.
854.32(11) Å3	
2	
1.548 Mg/m^3	
2.437 mm ⁻¹	
404	
$0.40 \ge 0.30 \ge 0.20 \text{ mm}^3$	
1.44 to 33.14°.	
	C16 H16 Br N O6 398.21 173(2) K 0.71073 Å Monoclinic P2(1) a = 8.4518(6) Å b = 7.1699(6) Å c = 14.2192(11) Å 854.32(11) Å3 2 1.548 Mg/m ³ 2.437 mm ⁻¹ 404 0.40 x 0.30 x 0.20 mm ³

Index ranges	-12<=h<=13, -11<=k<=11, -21<=l<=21
Reflections collected	28101
Independent reflections	6350 [R(int) = 0.0350]
Completeness to theta = 33.14°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6414 and 0.4423
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6350 / 1 / 282
Goodness-of-fit on F2	0.987
Final R indices [I>2sigma(I)]	R1 = 0.0256, wR2 = 0.0556
R indices (all data)	R1 = 0.0326, $wR2 = 0.0572$
Absolute structure parameter	0.002(4)
Largest diff. peak and hole	0.434 and -0.296 e.Å ⁻³

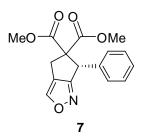

Table 2. Atomic coordinates ($x\;10^4)$ and equivalent isotropic displacement parameters (Å $^2x\;10^3)$

for 4g. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
Br(1)	5275(1)	284(1)	7535(1)	28(1)
O(1)	187(3)	2012(2)	5166(1)	67(1)
O(2)	1621(2)	433(2)	6210(1)	45(1)
O(3)	4839(1)	3758(2)	9026(1)	27(1)
O(4)	5030(1)	6674(2)	8509(1)	30(1)
O(5)	1011(2)	2529(2)	8717(1)	38(1)
O(6)	1706(1)	5068(2)	9581(1)	24(1)
N(1)	976(2)	1863(2)	5929(1)	28(1)
C(1)	2572(2)	4945(2)	8076(1)	17(1)
C(2)	2640(2)	3540(2)	7238(1)	18(1)
C(3)	1077(2)	3548(2)	6572(1)	23(1)
C(4)	4087(2)	3779(2)	6715(1)	18(1)
C(5)	4225(2)	5301(3)	6114(1)	24(1)
C(6)	5548(2)	5540(3)	5645(1)	28(1)
C(7)	6769(2)	4232(2)	5749(1)	28(1)
C(8)	6651(2)	2702(2)	6323(1)	25(1)
C(9)	5328(2)	2486(2)	6798(1)	20(1)


C(10)	4280(1)	5261(3)	8553(1)	19(1)
C(11)	6463(2)	3899(3)	9481(2)	41(1)
C(12)	1654(2)	4013(2)	8808(1)	21(1)
C(13)	1073(2)	4225(3)	10382(1)	31(1)
C(14)	1846(2)	6890(2)	7809(1)	23(1)
C(15)	95(2)	6892(2)	7635(1)	28(1)
C(16)	-1311(2)	6895(3)	7526(1)	39(1)

6. Functional group pairing of multifunctional scaffolds


(S)-3-But-2-ynyl-2-oxo-4-phenyl-pyrrolidine-3-carboxylic acid methyl ester 6: To a solution of nitro malonate 4b (79 mg, 0.24 mmol) in THF (1 mL) and acetic acid (1 mL) was added zinc powder (570 mg, 8.8 mmol) in small portions at room temperature. The reaction mixture was stirred for 2 h at room temperature and then filtered through Celite washing with THF. The solution was concentrated *in vacuo* and then redissolved in methylene chloride. A solution of saturated aqueous sodium

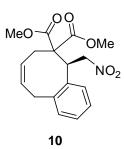
carbonate (1 mL) was added and the mixture was stirred for 14 h. The mixture was extracted with methylene chloride and the organic layer was washed with brine, dried over sodium sulfate, and concentrated *in vacuo* to afford a 11.9/1 mixture of diastereomers. Chromatography over SiO₂ (50% EtOAc in pet. ether) provided **6** (59 mg, 92%) as a mixture of diastereomers in the form of a clear film. (Major isomer only) ¹H NMR (400 MHz, CDCl₃) 7.31 (m, 5H), 7.05 (s, 1H), 4.36 (t, J = 7.4, 1H,), 3.85 (m, 4H), 3.76 (m, 1H), 2.43 (m, 2H), 1.73 (t, J = 2.6, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 167.4, 133.3, 125.0, 124.9, 124.2, 74.5, 70.7, 55.9, 49.6, 44.1, 42.0, 17.0, 0.0; IR (thin film) v_{max} 2957, 2914, 1737, 1701, 1255 cm⁻¹; HRMS (CI/NH₃) [M+H]⁺ calcd for C₁₇H₁₈NO₃ 272.1287, found 272.1272. [α]_D²³ = 42.1° (c = 1.1, CH₂Cl₂).

(3*R*,4*S*)-3-(but-2-ynyl)-3-(hydroxymethyl)-4phenylpyrrolidin-2-one 23: To a solution of lactam 6 (50 mg, 0.087 mmol) in THF (1.2 mL) was added lithium tetrahydroborate (20 mg, 0.9 mmol) at room temperature. The reaction mixture was stirred for 4 h at room temperature and then quenched with 2M HCl. The solution was extracted with ethyl acetate and the organic layer was washed with brine, dried over

sodium sulfate, and concentrated *in vacuo*. Chromatography over SiO₂ (70% EtOAc in pet. ether) provided **23** (32 mg, 71%) as a white film. ¹H NMR (400 MHz, CDCl₃) 7.38-7.26 (m, 5H), 6.20 (br s, 1H), 3.91 (dt, J = 9.18, J = 9.14, J = 2.55, 1H) 3.82-3.78 (m, 2H), 3.64-3.58 (m, 2H), 3.00 (br s, 1H), 2.31-2.26 (m, 1H), 1.94-1.88 (m, 1H), 1.74-1.72 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 132.9, 125.4, 125.0, 124.0, 74.4, 71.1, 61.5, 48.4, 42.5, 41.0, 16.4, 0.0; IR (thin film) v_{max} 3284, 2920, 1695, 1044 cm⁻¹; HRMS (CI/NH₃) [M+H]⁺ calcd for C₁₅H₁₈NO₂, 244.1338 found 244.1355. [α]_D²³ = 122.2° (c = 0.18, CH₂Cl₂).

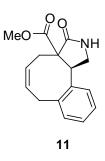
(S)-6-Phenyl-4H,6H-cyclopenta[c]isoxazole-5,5-dicarboxylic acid dimethyl ester 7: To a solution of nitro malonate 4c (30 mg, 0.094 mmol) in toluene (1 mL) was added *di*-tert -butyldicarbonate (62 mg, 0.28 mmol) and 4-dimethylaminopyridine (1 mg, 0.01 mmol) at room temperature. The reaction mixture was stirred at room temperature for 48 h. The mixture was concentrated *in vacuo* to afford a crude material. Chromatography over SiO₂ (35% EtOAc in pet. ether) provided 7 (21 mg, 74%) as a white solid, m.p. 115-

116 °C (from EtOAc/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (m, 1H), 7.26 (m, 3H),

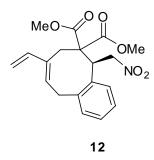

7.18 (m, 2H), 5.32 (s, 1H), 3.80 (s, 3H), 3.72 (dd, J = 1.4, J = 16.5, 1H), 3.20 (s, 3H), 3.14 (dd, J = 1.3, J = 16.6, 1H); ¹³C NMR 172.0, 171.1, 168.8, 150.5, 136.2, 129.1, 128.6, 128.2, 121.1, 73.0, 53.5, 52.6, 48.7, 29.7; IR (thin film) v_{max} 2952, 1740, 1565 cm⁻¹; HRMS (CI/NH₃) [M+H]⁺ calcd for C₁₆H₁₆NO₆ 302.1028, found 302.1029. [α]_D²³ = -40.7° (c = 0.3, CH₂Cl₂).

(3aS,6S) and (3aR,6S)-6-Phenyl-3a,4-dihydro-3H,6Hcyclopenta[c]isoxazole-5,5-dicarboxylic acid dimethyl ester 8 and 9: To a solution of nitro malonate 4d (200 mg, 0.62 mmol) in toluene (6 mL) was added *di-tert*-butyldicarbonate (400 mg, 1.83 mmol) and 4-dimethylaminopyridine (8 mg, 0.06 mmol) at room temperature. The reaction mixture was stirred at room temperature for 48 h. The mixture was concentrated *in vacuo* to afford a crude

8, **9** 1.1 / 1 mixture of diastereomers (¹H NMR). Chromatography over SiO₂ (50% EtOAc in pet. ether) provided the major diastereoisomer **8** (96 mg, 51%) as a clear solid, m.p. 98-100 °C, and the minor diastereomer **9** (64 mg, 34%) as a clear oil. Major diastereomer **8** (α–H): ¹H NMR (400 MHz, CDCl₃) δ 7.26 (m, 5H), 5.01 (d, J = 1.2, 1H), 4.64 (dd, J = 8.2, J = 9.7, 1H), 4.09 (m, 1H), 3.86 (m, 1H), 3.80 (s, 3H), 3.10 (s, 3H), 2.69 (dd, J = 11.3, J = 13.6, 1H), 2.55 (dd, J = 8.3, J = 13.6, 1H); ¹³C NMR (100 MHz, CDCl₃) 171.6, 170.7, 168.7, 135.6, 130.1, 128.4, 128.2, 75.4, 70.5, 53.7, 52.5, 52.2, 47.0, 35.4; v_{max} 2928, 2858, 1728, 1274, 1204 cm⁻¹; HRMS (CI/NH₃) [M+H]⁺ calcd for C₁₆H₁₈NO₅, 304.1173, found 304.1161. [α]_D²³ = -113.8 ° (c = 0.88 CH₂Cl₂). Minor diastereomer **9** (β–H): ¹H NMR (400 MHz, CDCl₃) δ 7.24 (m, 5H), 5.00 (s, 1H), 4.67 (dd, J = 7.7, J = 9.6, 1H), 4.58 (m, 1H), 3.90 (dd, J = 7.7, J = 12.1, 1H), 3.79 (s, 3H), 3.03 (s, 3H), 2.86 (m, 1H), 1.80 (dd, J = 11.1, J = 12.8, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 170.9, 169.9, 136.9, 128.9, 128.5, 127.9, 75.4, 71.7, 55.6, 53.4, 52.4, 46.1, 36.7 ; IR (thin film) v_{max} 2955, 1732, 1285, 1212 cm⁻¹; HRMS (CI/NH₃) [M+Na]⁺ calcd for C₁₆H₁₇NO₅Na, 326.1002, found 326.1004. [α]_D²³ = 5.5° (c = 1.4, CH₂Cl₂).

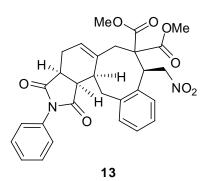

The relative stereochemistry of **8** and **9** was assigned based on the stereochemistry of **4d** and comparison of our spectral data to literature data for the (\pm) compounds for which x-ray analysis was obtained.⁹

Nitromalonate 10: To a solution of nitrodiene **4f** (150 mg, 0.415 mmol) in methylene chloride (2 mL) was added Grubbs 2nd generation catalyst (40 mg, 0.04 mmol). The solution was heated by microwave irradiation at 50 °C (150 watts) for 5 min. The reaction mixture was concentrated *in vacuo* and chromatographed over SiO₂ (20% EtOAc in pet. ether) to provided **10** (135 mg, 98%) as a sticky white solid, m.p. 92-94 °C (from Methylene chloride/2,2,4-Trimethylpentane). ¹H NMR (400 MHz, CDCl₃) δ 7.19 (m, 3H), 6.89 (dd, J = 4.2, J = 8.1, 1H), 5.92 (dddd, J = 1.4, J = 3.5, J = 4.9, J

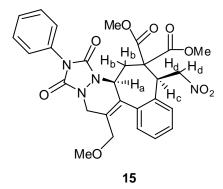

= 11.8, 1H), 5.35 (m, 1H), 5.22 (dd, J = 3.4, J = 14.4, 1H), 5.09 (dd, J = 11.4, J = 14.4, 1H), 4.80 (dd, J = 3.4, J = 11.4, 1H), 3.96 (d, J = 19.6, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 3.38 (dd, J = 3.8, J = 19.9, 1H), 2.25 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 169.7, 139.7, 135.2, 134.8, 130.7, 128.5, 127.4, 125.0, 121.6, 76.3, 60.4, 53.3, 52.9, 40.5, 127.4, 125.0, 121.6, 76.3, 60.4, 53.3, 52.9, 40.5, 127.4, 125.0, 121.6, 76.3, 60.4, 53.3, 52.9, 40.5, 128.5, 127.4, 125.0, 121.6, 76.3, 60.4, 53.3, 52.9, 40.5, 128.5, 127.4, 125.0, 121.6, 76.3, 60.4, 53.3, 52.9, 40.5, 128.5, 127.4, 125.0, 121.6, 76.3, 60.4, 53.3, 52.9, 40.5, 128.5, 127.4, 125.0, 121.6, 76.3, 60.4, 53.3, 52.9, 40.5, 128.5,

38.5, 30.0; IR (thin film) v_{max} 3025, 2952, 1732, 1561, 1278, 1200 cm⁻¹; HRMS (CI/NH₃) [M+H]⁺ calcd for C₁₇H₂₀NO₆ 334.1291, found 334.1290. [α]_D²³ = 93.2° (c = 1.2, CH₂Cl₂);

Lactam 11: To a solution of nitro malonate **10** (32 mg, 0.096 mmol) in THF (0.4 mL) and acetic acid (0.4 mL) was added zinc powder (230 mg, 3.6 mmol) in small portions at room temperature. The reaction mixture was stirred for 14 h at room temperature and then filtered through Celite washing with methylene chloride. The solution was concentrated *in vacuo* and then redissolved in methylene chloride. To the solution was added saturated sodium carbonate (1 mL) and the mixture was stirred overnight. The mixture was extracted with methylene chloride and the organic laver was washed with brine, dried

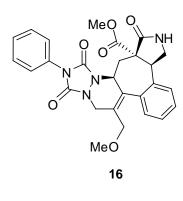

over sodium sulfate and concentrated *in vacuo* to afford a mixture of diastereomers as a vellow oil. Chromatography over SiO₂ (50% EtOAc in pet. ether) provided **11** (12 mg, 46%) as a mixture of diastereomers (1.51/1) in the form of a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 1H), 7.26 (m, 4H), 7.18 (m, 3H), 6.67 (s, 1H, major isomer), 6.61 (s, 1H, minor isomer), 5.90 (m, 1H, major isomer), 5.74 (m, 2H, major and minor isomers), 5.57 (m, 1H, minor isomer), 4.50 (d, J = 6.3, 1H, minor isomer), 4.28 (dd, J =10.7, J = 8.6, 1H, major isomer), 4.18 (dd, J = 10.8, J = 7.3, 1H, major isomer), 4.00 (dd, J = 10.4, J = 6.3, 1H, minor isomer), 3.78 (s, 3H, major isomer), 7.78 (m, 1H, major or minor isomer), 3.69 (m, 2H, major and minor isomers), 3.53 (s, 3H, minor isomer), 3.45 (m, 1H, major or minor isomers), 3.29 (dd, J = 18.1, J = 7.1, 1H, major or minor isomers), 3.20 (dd, J = 14.5, J = 8.4, 1H, major or minor isomers), 3.07 (dd, J = 12.9, J =7.6, 1H, major or minor isomers), 2.53 (m, 2H, major and minor isomers), 1.58 (m, 1H, major or minor isomer); ¹³C NMR (100 MHz, CDCl₃) (major and minor isomers) 174.6, 173.2, 170.5, 169.0, 142.7, 139.4, 137.9, 133.5, 133.2, 131.9, 130.8, 129.5, 128.6, 127.9, 127.9, 127.7, 126.3, 126.1, 125.7, 125.1, 64.6, 58.3, 53.2, 52.2, 49.6, 44.8, 43.6, 42.9, 36.5, 33.6, 33.0, 26.6; IR (thin film) v_{max} 3227, 3018, 2913, 1705, 1204 cm⁻¹; HRMS (CI/NH₃) [M+H]⁺ calcd for C₁₆H₁₈NO₃ 272.1287, found 272.1277.[α]_D²³ = 183.9° (c = 0.7, CH₂Cl₂).

Diene 12: To a solution of enyne **4e** (75 mg, 0.21 mmol) in methylene chloride (3 mL) was added Grubbs 1st generation catalyst (20 mg, 0.02 mmol) under an atmosphere of ethylene gas. The reaction was heated by microwave irradiation at 60°C (150W) for 30 min. The reaction mixture was concentrated *in vacuo* and chromatography over SiO₂ (20% EtOAc in pet. ether) provided diene **12** (71 mg, 95%) as a white solid, m.p. 128-130 °C(from EtOAc/Hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.19 (m, 3H), 6.93-6.91 (m, 1H), 6.28 (dd, J = 17.4, J = 11.0, 1H), 6.00 (t,

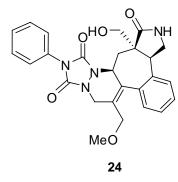

J = 4.4, 1H), 5.20 (dd, J = 14.5, J = 11.4, 1H), 5.20 (dd, J = 14.5, J = 3.2, 1H), 5.00 (d, J = 17.5, 1H), 4.88 (d, J = 10.9, 1H), 4.75 (dd, J = 11.4, J = 3.2, 1H), 4.11 (dd, J = 20.0, J = 4.3, 1H), 3.77 (s, 3H), 3.64 (s, 3H), 3.52 (dd, J = 20.7, J = 4.9, 1H), 2.69 (d, J = 14.8, 1H), 2.35 (dd, J = 14.9, J = 1.1, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 170.0, 141.6, 139.1, 135.1, 135.0, 131.9, 130.6, 128.6, 127.6, 124.6, 110.2, 76.2, 60.1, 53.0, 53.0, 40.8, 38.5, 28.0; IR (thin film) v_{max} 2948, 1732, 1553, 1282, 1220 cm⁻¹; HRMS (CI/NH₃)

 $[M+Na]^+$ calcd for $C_{19}H_{21}NO_6Na$ 382.1265, found 382.1267. $[\alpha]_D^{23} = 41.7^{\circ}$ (c = 0.43, CH₂Cl₂).

Nitromalonate 13: To a solution of enyne **4e** (44 mg, 0.12 mmol) in methylene chloride (2 mL) was added Grubbs 1st generation catalyst (10 mg, 0.01 mmol) under an atmosphere of ethylene gas. The reaction was heated by microwave irradiation at 60°C (150W) for 30 min. The reaction mixture was concentrated *in vacuo* to afford a crude sample of intermediate **12** as a dark brown oil which was dissolved in toluene (3 mL) under argon. To this solution was heated by microwave irradiation was heated by microwave irradiation of the solution was heated by microwave irradiation at 60°C (150W) for 30 min.

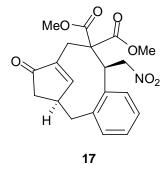

(300W, 160°C, 40 min.). Chromatography over SiO₂ (50% EtOAc in pet. ether) provided **13** (64 mg, 98%) as a 15/1 mixture of diastereomers; white solid, m.p. 109-111°C (from Methylene chloride/2,2,4-Trimethylpentane). ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.41 (m, 3H), 7.38-7.35 (m, 1H), 7.21-7.14 (m, 4H), 6.91 (d, *J* = 10.9, 1H), 5.60 (s, 1H), 5.25-5.13 (m, 2H), 4.55 (dd, *J* = 10.1, *J* = 3.8, 1H), 3.86-3.78 (m, 1H), 3.76 (s, 3H), 3.71 (s, 3H), 3.64-3.55 (m, 1H), 3.40 (dd, *J* = 10.1, *J* = 3.8, 1H), 3.34-3.00 (m, 2H), 2.68-2.59 (m, 2H), 2.52 (d, *J* = 14.4, 1H), 2.33-2.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.8, 177.3, 170.3, 169.5, 139.9, 139.5, 133.9, 132.8, 131.9, 129.4, 128.9, 128.3, 127.9, 127.1, 126.7, 124.7, 76.4, 62.7, 53.1, 53.0, 47.9, 40.5, 40.4, 39.0, 38.0, 36.5, 25.5 ; IR (thin film) v_{max} 2959, 2842, 1713, 1546, 1386, 1204 cm⁻¹; HRMS (CI/NH₃) [M+H]⁺ calcd for C₂₉H₂₉N₂O₈ 533.1935, found 533.1924. [α]_D²³ = 41.8° (c = 0.6, CH₂Cl₂).

Nitromalonate 15: To a solution of enyne **4h** (8 mg, 0.021 mmol) in methylene chloride (0.6 mL) was added Grubbs 1^{st} generation catalyst (2 mg, 0.002 mmol) under an atmosphere of ethylene gas. The reaction was heated by microwave irradiation at 50°C, (150 watts) for 45 min. The reaction mixture was concentrated *in vacuo*. Chromatography over SiO₂ (50% EtOAc in pet. ether) provided intermediate **14** (7.5 mg, 94%) as a dark yellow oil. ¹H NMR (400 MHz CDCl₃) 7.29-7.09 (m, 4H), 6.15 (br m, 1H), 5.26 (s,

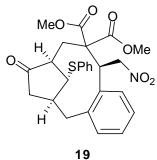

1H), 5.20 (br m, 1H), 5.10 (s, 1H), 5.02 (br s, 1H), 4.27 (br s, 1H), 4.10 (br s, 1H), 3.99 (br s, 1H), 3.70 (br s, 2H), 3.63 (s, 3H), 3.26 (s, 3H), 2.56 (br s, 1H), 2.07 (br s, 1H). The crude intermediate was dissolved in toluene (3 mL) under argon. To this solution was added *N*-phenylmaleimide (50 mg, 0.3 mmol). The reaction was heated by microwave irradiation at 160°C (300 W) for 20 min. The reaction mixture was concentrated *in vacuo* and chromatographed on SiO₂ (50% EtOAc in pet. ether) to provide **15** (9.4 mg, 86%) as a white solid, m.p. 105-107°C. ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.57 (m, 2H), 7.50-7.39 (m, 2H), 7.37 (m, 1H), 7.28 (m, 3H), 7.06 (dd, *J* = 7.1, 1.7, 1H), 5.11 (d, *J* = 10.4, 1H), 5.03-5.01 (m, 2H), 4.69 (d, *J* = 17.0, 1H), 4.49 (t, *J* = 7.5, 1H), 4.22 (d, *J* = 17.2, 1H), 3.93 (s, 2H), 3.78 (s, 3H), 3.55 (s, 3H), 3.29 (s, 3H), 3.04 (dd, *J* = 13.5, 3.9, 1H), 2.06 (m, 1H); NOED ¹H NMR (400 MHz, CDCl₃): Irradiation at δ 2.07 (diastereotopic proton H_b): 7% enhancement at proton H_d, Irradiation at δ 2.56 (diastereotopic proton

H_b): 5% enhancement at proton Ha, ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 168.1, 153.9, 150.9, 136.7, 133.7, 133.3, 132.8, 131.4, 130.5, 129.4, 129.2, 129.0, 128.3, 125.3, 125.3, 75.7, 70.3, 59.2, 57.8, 53.9, 53.2, 51.8, 48.1, 45.9, 33.8; IR (thin film) v_{max} 2959, 1713, 1553, 1413, 1266, 1223 cm⁻¹; HRMS (CI/NH₃) [M+H]⁺ calcd for C₂₈H₂₉N₄O₉ 565.1935, found 565.1935. [α]_D²³ = 97.4° (c = 0.9, CH₂Cl₂).

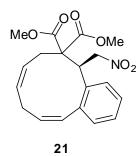
Lactam 16: To a solution of nitro malonate **15** (20 mg, 0.036 mmol) in THF (0.4 mL) and acetic acid (0.4 mL) was added zinc powder (86 mg, 1.3 mmol) in small portions at room temperature. The reaction mixture was stirred at 90 °C for 3 h, then filtered through Celite washing with THF. The solution was concentrated *in vacuo* and then redissolved in methylene chloride. A solution of saturated sodium carbonate (1 mL) was added and the reaction mixture was stirred overnight. The mixture was extracted with methylene chloride and the organic layer was washed with brine, dried over sodium sulfate and concentrated *in vacuo* to afford a


crude mixture of diastereomers. Chromatography over SiO₂ (50% EtOAc in pet. ether) provided **16** (8 mg, 45%) as a 5/1 mixture of diastereomers (¹H NMR) as a slightly yellow oil. (Major isomer only) ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.54 (m, 2H), 7.48-7.44 (m, 2H), 7.38-7.33 (m, 3H), 7.27-7.25 (m, 1H), 7.11 (dd, *J* = 6.8, 2.1, 1H), 6.24 (s, 1H), 4.69 (m, 1H), 4.54 (d, *J* = 16.8, 1H), 4.21 (dd, *J* = 16.6, 2.3, 1H), 4.13 (t, *J* = 8.7, 1H), 3.87 (s, 2H), 3.77 (s, 3H), 3.65 (t, *J* = 9.4, 1H), 3.29 (m, 1H), 3.26 (s, 3H), 3.11 (dd, *J* = 15.0, 6.0, 1H), 2.47 (dd, *J* = 15.1, 4.6, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 152.6, 151.4, 136.0, 135.7, 133.2, 132.2, 131.5, 130.3, 129.3, 129.3, 128.6, 128.3, 127.9, 126.0, 125.5, 70.6, 59.2, 55.4, 53.5, 53.1, 49.6, 46.3, 44.4, 32.4 ; IR (thin film) v_{max} 3239, 2940, 2701, 1425, 1270, 1235, 1076 cm⁻¹; HRMS (CI/NH₃) [M+Na]⁺ calcd for C₂₇H₂₆N₄O₆Na 525.1750, found 525.1763. [α]_D²³ = 16.7° (c = 0.3, CH₂Cl₂).

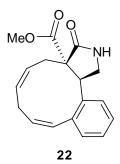
Lactam alcohol 24. To a solution of lactam **16** (11 mg, 0.022 mmol) in THF (1.5 mL) was added lithium tetrahydroborate (2 mg, 0.092 mmol) at 0°C. The reaction mixture was stirred for 6 h at 0°C and was then quenched by addition of 2M HCl. The solution was extracted with EtOAc and the organic layer was washed with brine, dried over sodium sulfate and concentrated *in vacuo*. Chromatography over SiO₂ (10% EtOH in EtOAc) provided lactam alcohol **24** (5 mg, 48%) as a white film. ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.53 (m, 2H), 7.48-7.44 (m, 2H), 7.37-7.33 (m, 3H),


7.26-7.24 (m, 1H), 7.13-7.10 (m, 1H), 6.15 (s, 1H), 4.63 (s, 1H), 4.45 (d, J = 16.8, 1H), 4.22 (d, J = 16.6, 1H), 3.84 (s, 2H), 3.74 (d, J = 10.6, 1H), 3.72-3.67 (m, 2H), 3.61 (t, J = 9.7, 1H), 3.43 (d, J = 11.0, 1H), 3.26 (s, 3H), 3.20-3.15 (m, 2H), 1.64 (dd, J = 15.5, 5.2, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 151.9, 138.1,135.3, 132.3, 131.6, 131.5, 130.1, 129.4, 129.3, 129.2, 128.4, 128.2, 127.9, 126.2, 70.7, 68.5, 59.2, 54.2, 49.0, 46.9,

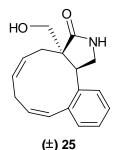
45.8, 43.9, 29.9; IR (thin film) v_{max} 3332, 2924, 1710, 1427, 1091 cm⁻¹; HRMS (CI/NH₃) [M+H]⁺ calcd for C₂₆H₂₇N₄O₅, found. [α]_D²³ = 32.8° (c = 0.3, CH₂Cl₂).


Nitromalonate 17: Dicobalt octacarbonyl (94 mg, 0.27 mmol) was weighed in a glove box. To the solid catalyst was added enyne **4e** (82 mg, 0.23 mmol) in methylene chloride (1 mL) under an atmosphere of argon. The reaction stirred at room temperature for 30 min. upon which all the starting material had fully converted to a cobalt complex (monitored by TLC). The reaction was heated by microwave irradiation at 80°C (150 W) for 15 min. The reaction mixture was concentrated *in vacuo* and chromatographed over SiO₂ (90% pet. ether in EtOAc to 40% pet. ether in EtOAc) to provide **17** (59 mg, 67%) as a

white solid m.p. 234-236 °C (from Methylene chloride/2,2,4-Trimethylpentane). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.32-7.29 (m, 1H), 7.23-7.17 (m, 2H), 6.98 (d, *J* = 7.5, 1H), 4.99 (dd, *J* = 13.0, 2.3, 1H), 4.68 (t, *J* = 12.0, 1H), 4.21 (d, *J* = 10.6, 1H), 3.90 (s, 3H), 3.88 (s, 3H), 3.51 (br s, 1H), 3.09 (d, *J* = 13.5, 1H), 3.01 (d, *J* = 17.3, 1H), 2.88 (dd, *J* = 13.8, *J* = 4.8, 1H), 2.82 (d, *J* = 17.4, 1H), 2.07 (dd, *J* = 16.5, 4.7, 1H), 1.97 (dd, *J* = 16.8, 1.1, 1H); NOED ¹H NMR (400 MHz, CDCl₃): Irradiation at δ 4.21 (methine proton β to nitro group): 4% enhancement at vinyl proton at 7.54 ppm, Irradiation at δ 7.54 ppm 5% enhancement at methine proton β to nitro group at 4.21 ppm, ¹³C NMR (100 MHz, CDCl₃) δ 204.1, 172.7, 170.7, 159.8, 138.1, 137.5, 136.2, 133.9, 129.3, 128.7, 128.3, 80.4, 62.1, 54.0, 53.7, 41.8, 40.5, 38.3, 37.9, 26.8; IR (thin film) v_{max} 2955, 1729, 1706, 1557, 1268 cm⁻¹; HRMS (CI/NH₃) [M+H]⁺ calcd for C₂₀H₂₂NO₇ 388.1396, found 388.1376. [α]_D²³ = 49.2° (c = 0.5, CH₂Cl₂).


Nitromalonate 19. To a solution of **17** (11 mg, 0.028 mmol) and triethylamine (0.4 μ L, 0.003 mmol) in toluene (0.6 mL) was added thiophenol (9 μ L, 0.08 mmol) at room temperature. The reaction was monitored by TLC analysis which showed complete consumption of the starting material after 40 min. The reaction mixture was concentrated *in vacuo*. Chromatography over SiO₂ (20% EtOAc in pet. ether) provided **19** (10 mg, 71%) as a white solid, m.p. 158-160°C (from Methylene chloride/2,2,4-Trimethylpentane). ¹H NMR (400 MHz, CDCl₃)

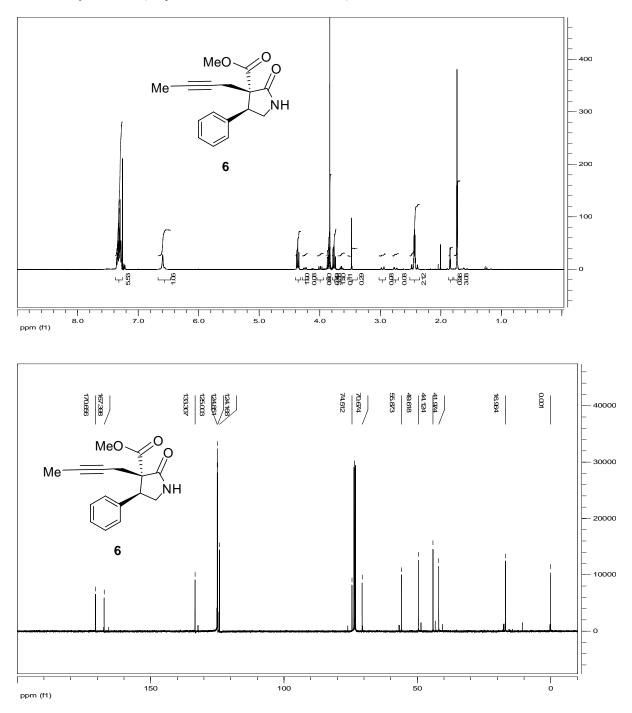
δ 7.45-7.43 (m, 2H), 7.34-7.30 (m, 2H), 7.28-7.25 (m, 1H), 7.19-7.16 (m, 2H), 7.02-7.00 (m, 1H), 6.84-6.82 (m, 1H), 5.19-5.16 (m, 1H), 4.79-4.68 (m, 2H), 4.21 (s, 1H), 3.73 (s, 3H), 3.37 (s, 3H), 3.37-3.33 (m, 1H), 2.86-2.70 (m, 2H), 2.58 (dd, *J* = 19.0, 8.5, 1H), 2.25-2.07 (m, 3H), 0.92 (dd, *J* = 14.3, 8.4, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.39, 170.19, 169.74, 138.55, 135.08, 134.44, 134.19, 133.47, 129.55, 128.81, 128.56, 128.00, 126.56, 77.92, 58.65, 53.31 (2 ester carbons, see HMQC page S39), 52.27, 49.38, 41.41, 39.79, 39.08, 36.03, 30.31; v_{max} 2955, 2923, 1733, 1558 cm⁻¹; HRMS (CI/NH₃) [M+Na]⁺ calcd for C₂₆H₂₇NO₇NaS 520.1406, found 520.1509. [α]_D²³ = 101.4° (c = 0.11, CH₂Cl₂).

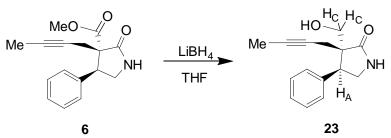

Nitromalonate 21. To a solution of nitro malonate 4e (40 mg, 0.11 mmol) in toluene (1.1 mL) was added AuCl(PPh)₃ (30 mg, 0.4 mmol) at room temperature. To the resulting mixture was added AgOTf (20 mg, 0.5 mmol) and the reaction was heated at 50°C for 14 h. The reaction mixture was concentrated in vacuo. Chromatography over SiO₂ (10% EtOAc in pet. ether) provided 21 (23 mg, 58%) as a white film. ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.25 (m, 2H), 7.08-7.06 (m, 1H), 6.86-6.84 (m, 1H), 6.32 (d, J = 10.8, 1H), 5.96-5.77 (m, 2H), 5.19 (dd, J = 12.8, 2.9, 1H), 4.96 (dt, J = 11.2, 11.0, 5.7, 1.1H), 4.73 (dd, J = 12.8, 11.2, 1H), 4.42 (dd, J = 11.1, 2.9, 1H),

3.90 (s, 3H), 3.79 (s, 3H), 3.03-2.74 (m, 1H), 2.58-2.44 (m, 2H), 2.33-2.27 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 170.3, 140.6, 134.4, 132.9, 131.2, 130.3, 128.3, 128.2, 128.0, 126.3, 123.1, 80.2, 60.0, 53.2, 53.1, 42.1, 31.0, 27.9; HRMS (CI/NH₃) [M+Na]⁺ calcd for C₁₉H₂₁NO₆Na 382.1267, found 382.1247. $[\alpha]_D^{23} = 210.1^{\circ}$ (c = 0.7, CH₂Cl₂).

Lactam 22. To a solution of nitro malonate 21 (18 mg, 0.05 mmol) in THF (0.3 mL) and acetic acid (0.3 mL) was added zinc powder (120 mg, 1.8 mmol) in small portions at room temperature. The reaction mixture was stirred for 4 h at room temperature, then filtered through Celite washing with THF. The solution was concentrated in vacuo and then redissolved in methanol (0.8 mL). 6M NaOH (0.7 mL) was added and the reaction mixture was stirred for 20 min at room temperature. The mixture was extracted with methylene chloride and the organic layer was washed with brine, dried over sodium sulfate,

and concentrated in vacuo. Chromatography over SiO₂ (80% EtOAc in pet. ether) provided 22 (9 mg, 60%) as a white film. ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.13 (m, 2H), 7.07-7.00 (m, 2H), 6.25 (d, J = 11.3, 1H), 5.95 (br s, 1H), 5.83-5.71 (m, 2H), 5.50-5.33 (m, 1H), 4.10-4.00 (m, 1H), 3.77 (s, 3H), 3.40 (dd, J = 10.50, J = 9.27, 1H), 3.31- $3.27 \text{ (m, 1H)}, 3.09 \text{ (q, } J = 12.0, 1\text{H}), 2.76 \text{ (dd, } J = 13.93, J = 10.21, 1\text{H}), 2.50 \text{ (dd, } J = 10.21, 1\text{H}), 2.50 \text{ (dd$ 14.0, J = 6.4, 1H) 2.40-2.34 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 172.2, 138.8, 133.6, 132.5, 130.5, 130.4, 127.9, 127.4, 127.3, 126.9, 124.1, 58.3, 52.6, 47.4, 43.7, 28.3, 27.4; HRMS (CI/NH₃) $[M+H]^+$ calcd for C₁₈H₂₀NO₃ 298.1443, found 298.1448. $[\alpha]_D^{23} =$ 155.8° (c = 0.5 CH₂Cl₂).


(\pm) Lactam alcohol 25. The (\pm) analogue of lactam 22 (22 mg, 0.067 mmol) was prepared using the procedure reported for 22 with the exception that (±) 4e was prepared using DABCO as catalyst. This compound was dissolved in THF (1 mL) and lithium tetrahydroborate (6 mg, 0.267 mmol) was added at room temperature. The reaction mixture was stirred for 6 h at room temperature and then guenched through the addition of 2M HCl. The solution was extracted with EtOAc and the organic layer was washed with brine, dried over sodium sulfate, and concentrated in vacuo. Chromatography over SiO₂ (90%


EtOAc / pet. ether) provided lactam alcohol 25 (18 mg, 70%) as an off white film. 1 H

NMR (400 MHz, CDCl₃) δ 7.80 (dd, J = 7.6, 1.6, 1H), 7.27-7.15 (m, 2H), 7.06 (dd, J = 7.1, 1.8, 1H), 6.27 (d, J = 11.2, 1H), 5.98 (br s, 1H), 5.77 (dt, J = 11.5, 11.4, 5.0, 1H), 5.70 (dt, J = 11.2, 11.0, 4.4, 1H), 5.46-5.40 (br s, 1H), 4.08-3.95 (m, 1H), 3.93 (d, J = 10.5, 1H), 3.77 (d, J = 10.6, 1H), 3.33 (t, J = 9.8, 1H), 3.26 (t, J = 8.3, 1H), 3.02 (dd, J = 24.5, 12.0, 1H), 2.57-2.46 (m, 1H), 2.39-2.26 (m, 1H), 2.16 (dd, J = 13.1, 6.5, 1H), 2.11-2.04 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 179.3, 139.2, 134.8, 131.6,130.3, 130.3, 130.2, 127.5, 127.5, 127.4, 124.4, 66.8, 60.7, 48.0, 42.0, 28.2, 28.1; IR (thin film) v_{max} cm⁻¹ 3440, 2923, 2852, 1677, 1258; HRMS (CI/NH₃) [M+H]⁺ calcd for C₁₇H₂₀NO₂ 270.1494, found 270.1494.

7. Select NMR spectra for functional group pairing products

¹H and ¹³C NMR spectra for (S)-3-but-2-ynyl-2-oxo-4-phenyl-pyrrolidine-3-carboxylic acid methyl ester **6** (major and minor diastereomers).

- The stereochemistry of the quaternary carbon of 6 was assigned based on nOe data of the corresponding alcohol 23 in d₆-MeOH.
- The chemical shifts of methine and methylene protons of 23 were established through HMQC and GCOSY analysis.

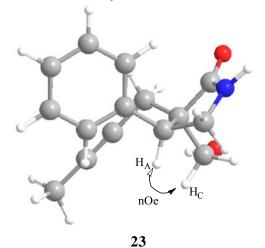
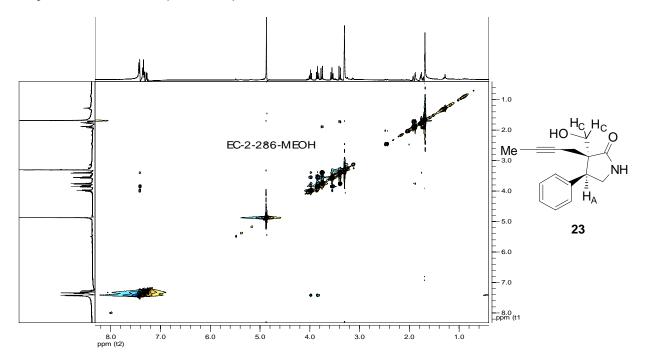
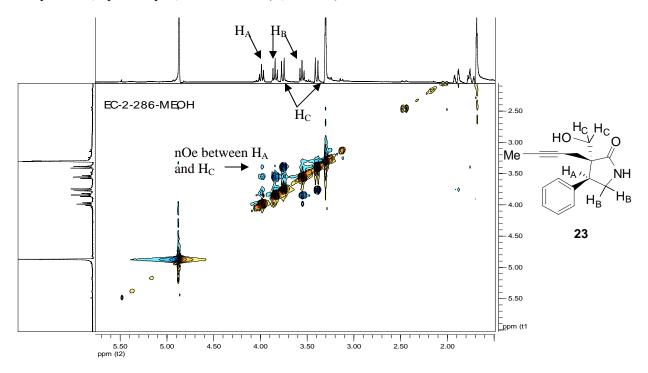
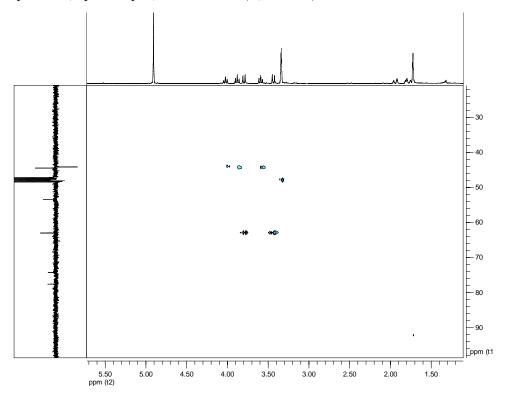
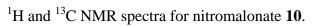
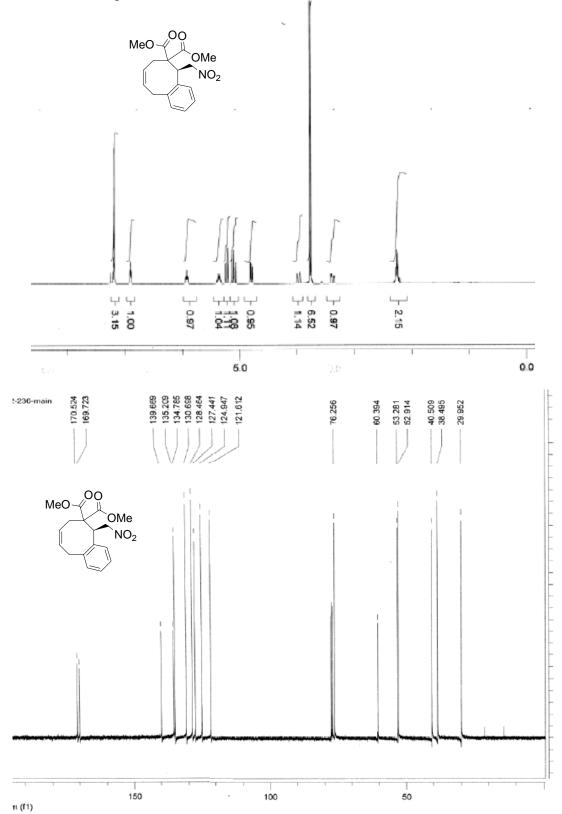




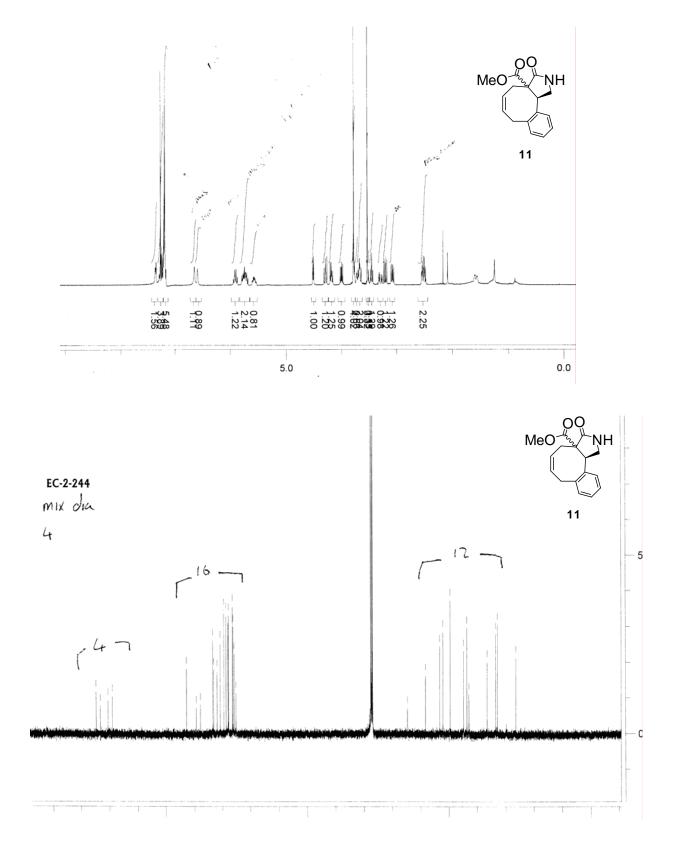
Figure A, Chem 3D representation of **23** showing observed nOe

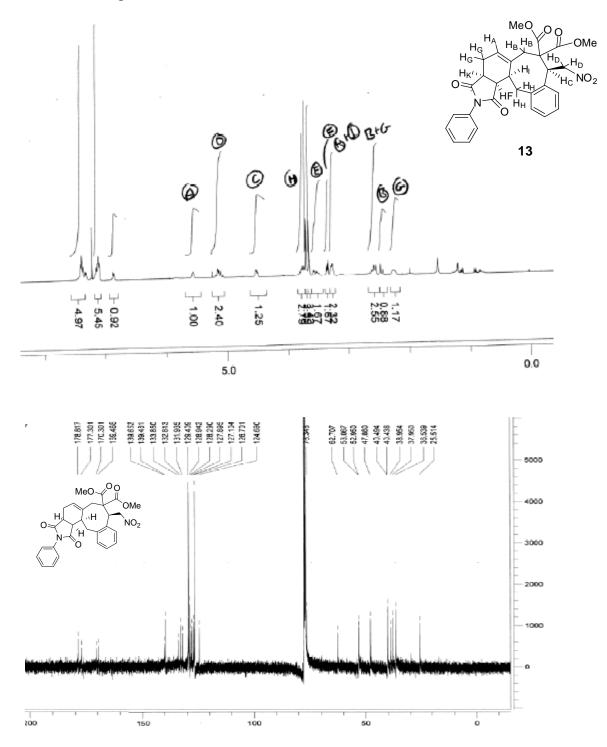

NOESY spectrum of alcohol 23 (d₆-MeOH).





NOESY spectrum (expansion plot) for alcohol 23 (d₆-MeOH).

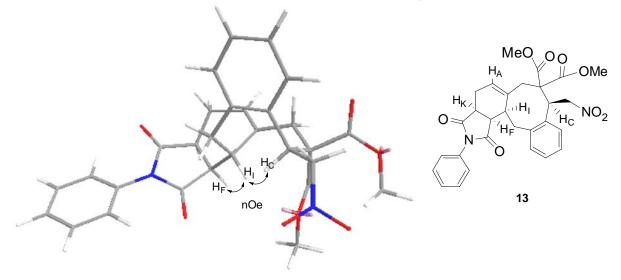
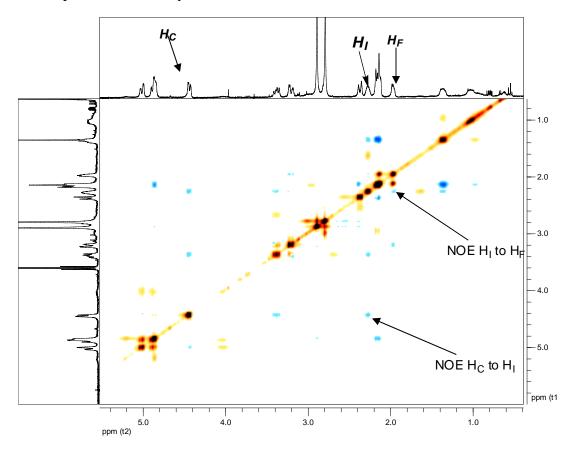
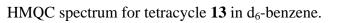

HMQC spectrum (expansion plot) for alcohol 23 (d₆-MeOH).

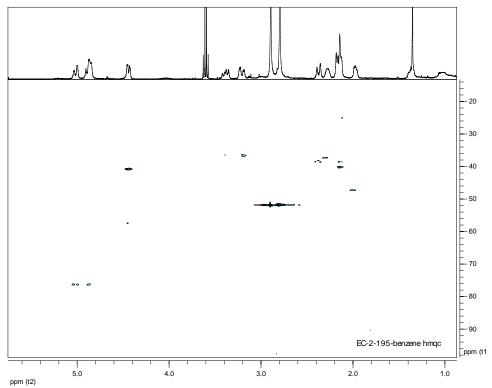


 1 H and 13 C NMR spectra for lactam **11** (major and minor diastereomers).

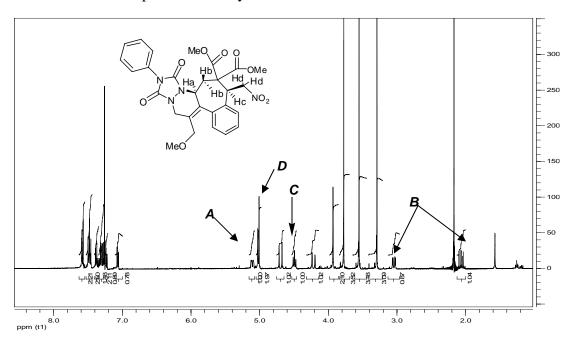
¹H and ¹³C NMR spectra for nitromalonate **13**.

• HMQC and GCOSY analyses facilitated assignment of methine protons H_C, H_I and H_F.

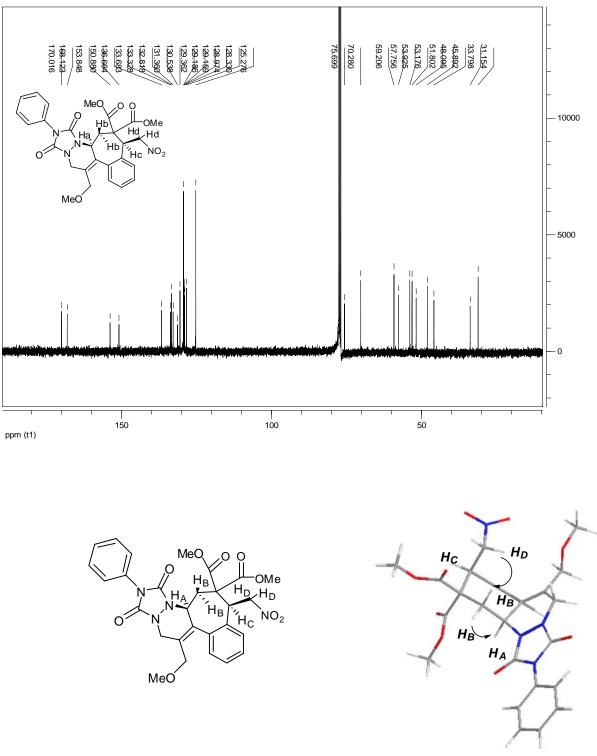
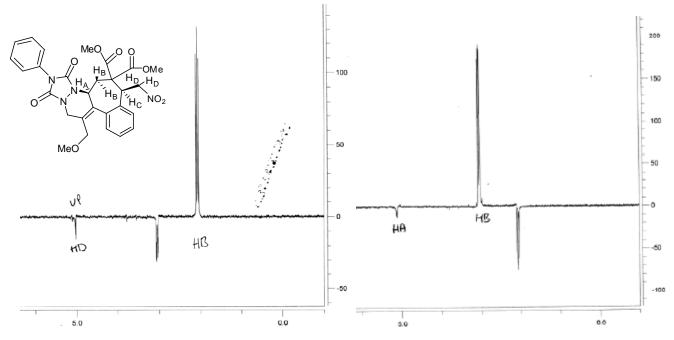
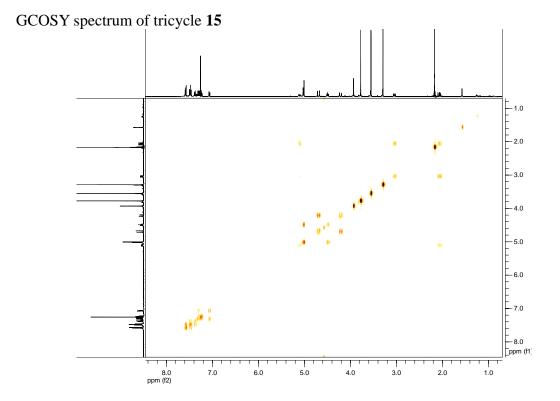




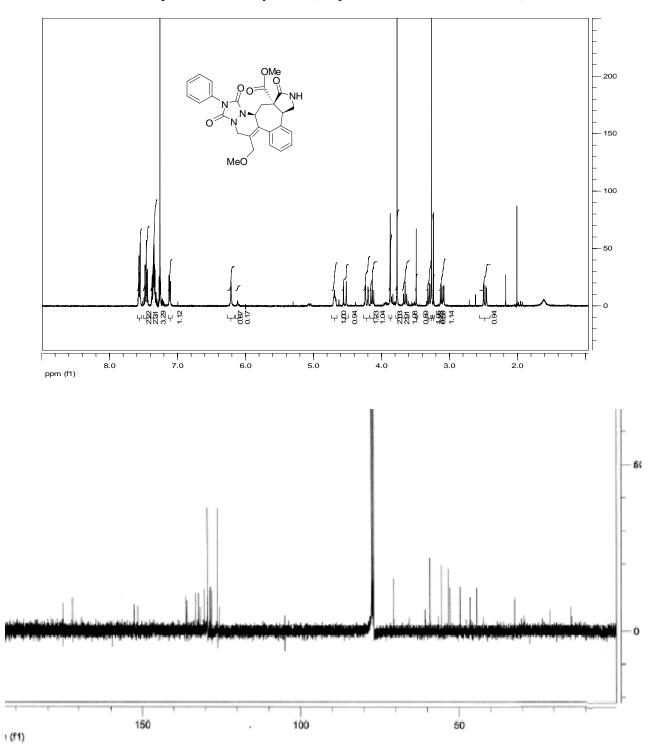

Figure B, Chem 3D representation for **13** showing observed nOes

• The NOESY spectrum shows an nOe from H_C to H_I . H_C is on α face which means that Hi is also on the α face. There is also an nOe from H_I to H_F which shows that H_F and therefore H_K are also on the α face.


NOESY spectrum for tetracycle 13 in d₆-benzene.

¹H and ¹³C NMR spectra of tetracycle **15**

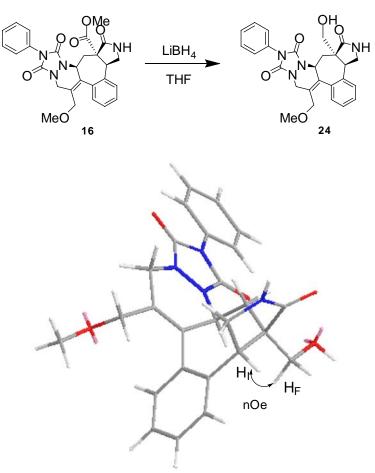
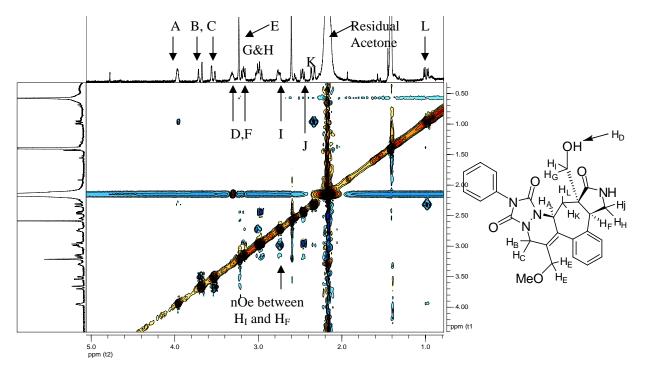




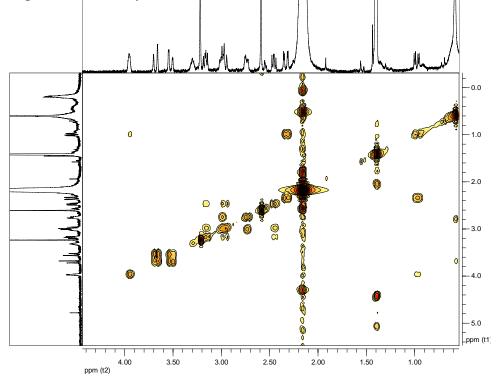

Figure C, Chem 3D representation of 15 showing observed nOes

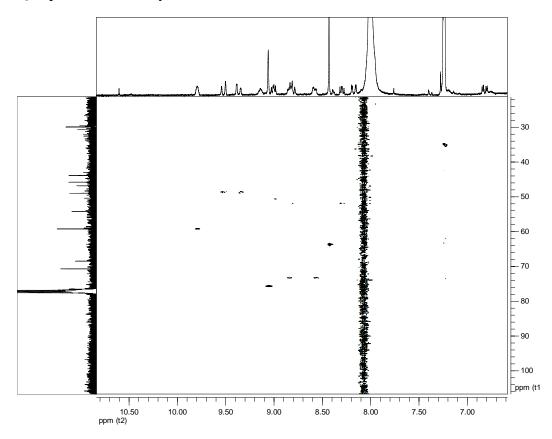
- HMQC and GCOSY analyses of **15** facilitated the assignment of peaks corresponding to protons H_D (2 protons), H_B (2 protons) and H_A .
- From 1D nOe analysis of tricycle **15**; Proton H_B at δ 2.07 ppm has an nOe with H_D , thus this proton is on the same face as H_D which is the β face. Proton H_B at δ 2.56 must be on the opposite α face. This proton has an nOe with H_A , thus H_A is on the α face.

1D nOe analysis of tricycle 15.

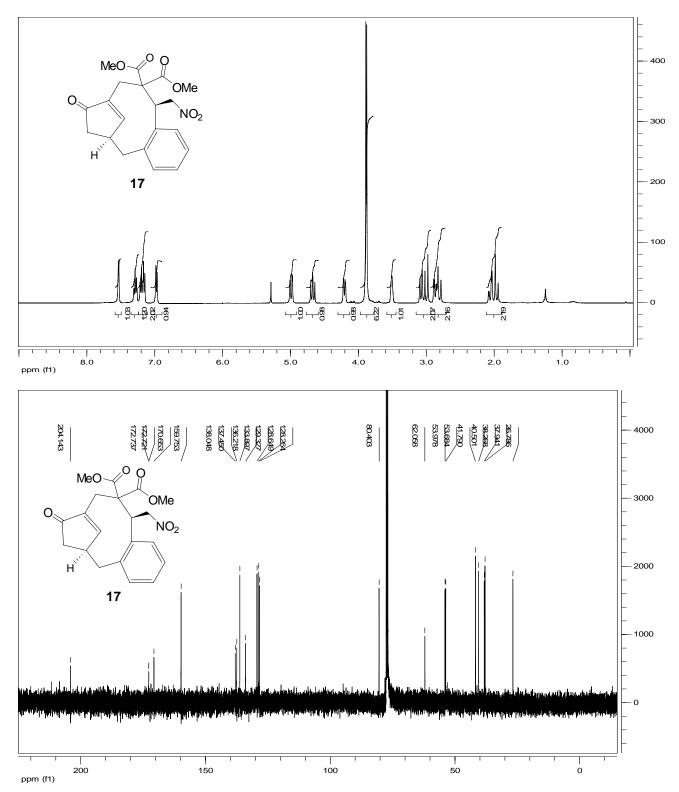
¹H and ¹³C NMR spectra for tetracycle **16** (Major and minor diastereomers).


Figure D, Chem 3D representation for 24 showing observed nOe


- The stereochemistry of the quaternary carbon of lactam 16 was assigned based on NOESY data of the corresponding alcohol 24 in a 50% mixture of d_6 -acetone in CDCl₃.
- HMQC and GCOSY analyses of **24** facilitated the assignment of peaks.
- An nOe was observed between the methine proton H_F on the lactam ring of 24 and one of the methylene protons H_I of the primary alcohol which is only possible with the *cis* fused lactam configuration.

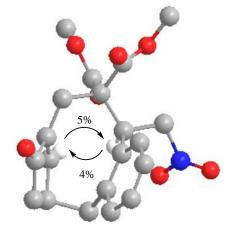
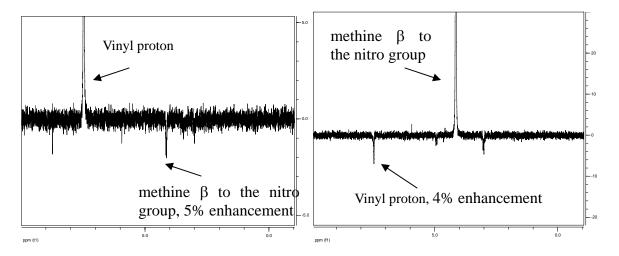
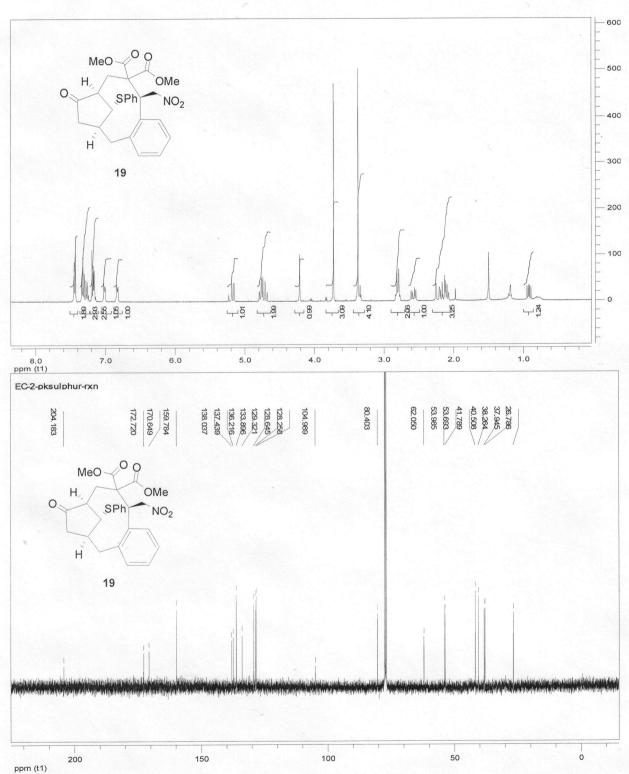
NOESY spectrum of tetracycle 24 in 50% d_6 -acetone in CDCl₃.

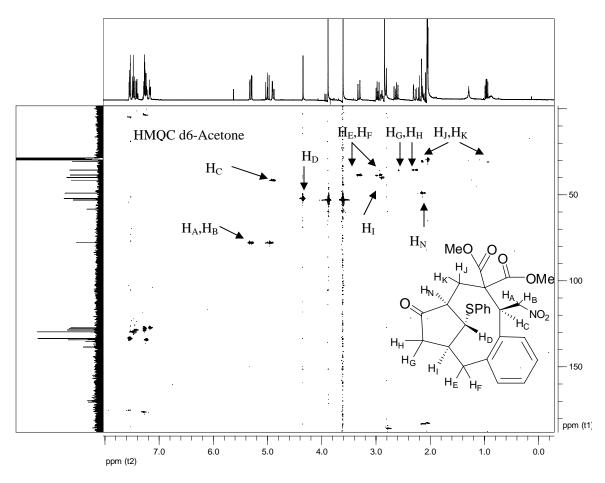

GCOSY spectrum of tetracycle 24 in 50% d_6 -acetone in CDCl₃ with D_2O added.

HMQC spectrum of tetracycle 24 in 50% d_6 -acetone in CDCl₃.

¹H and ¹³C NMR spectra of tricycle **17**.

1D nOe analysis of tricycle **17**.

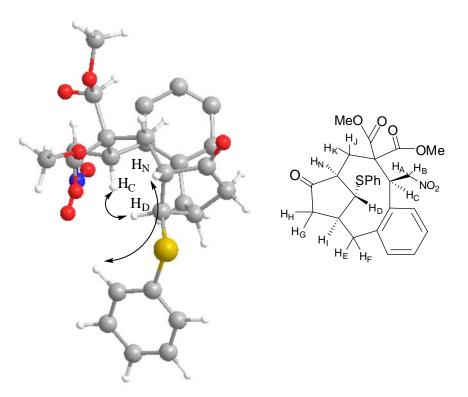
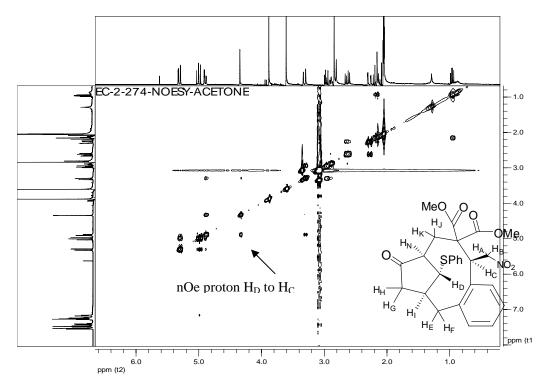




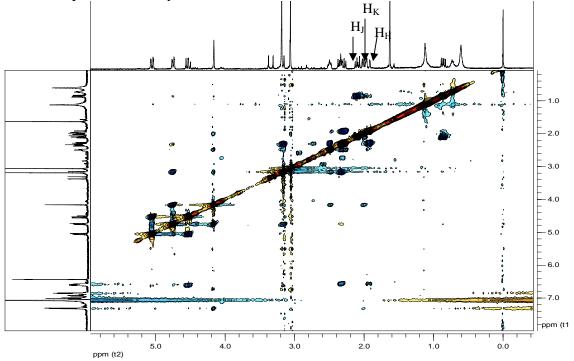

Figure E, Chem 3D representation for **17** showing observed nOes

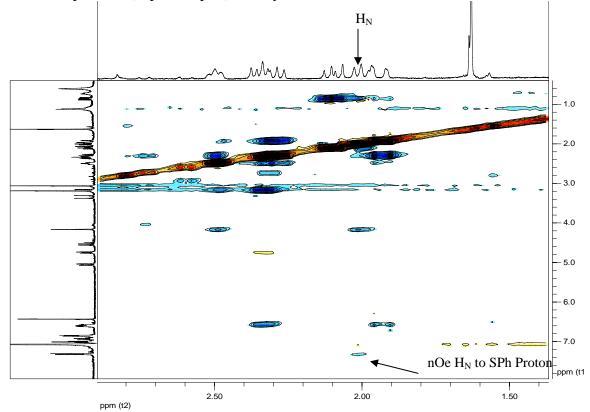
• The above nOes demonstrate that the solution phase conformation of **17** is similar to the x-ray structure shown in the main text (figure 2).

¹H and ¹³C NMR spectra of tricycle **19** in CDCl₃.

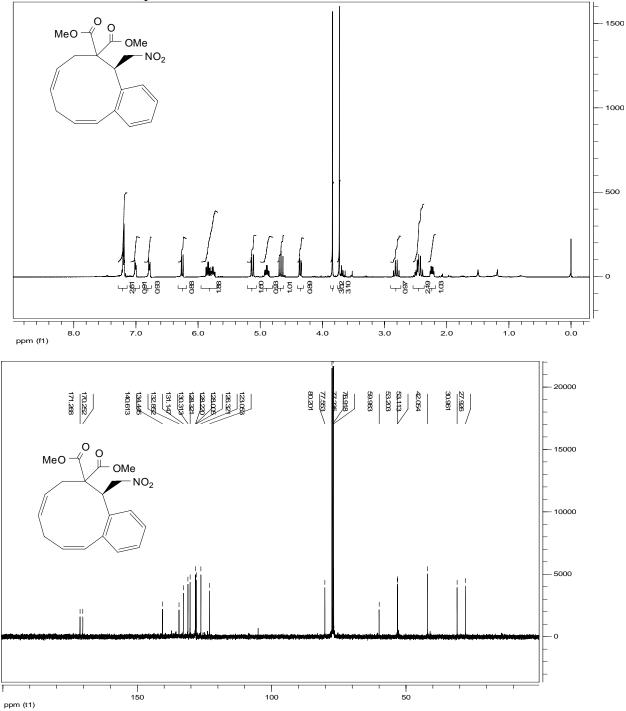
HMQC spectrum of tricycle **19** in d6-acetone.

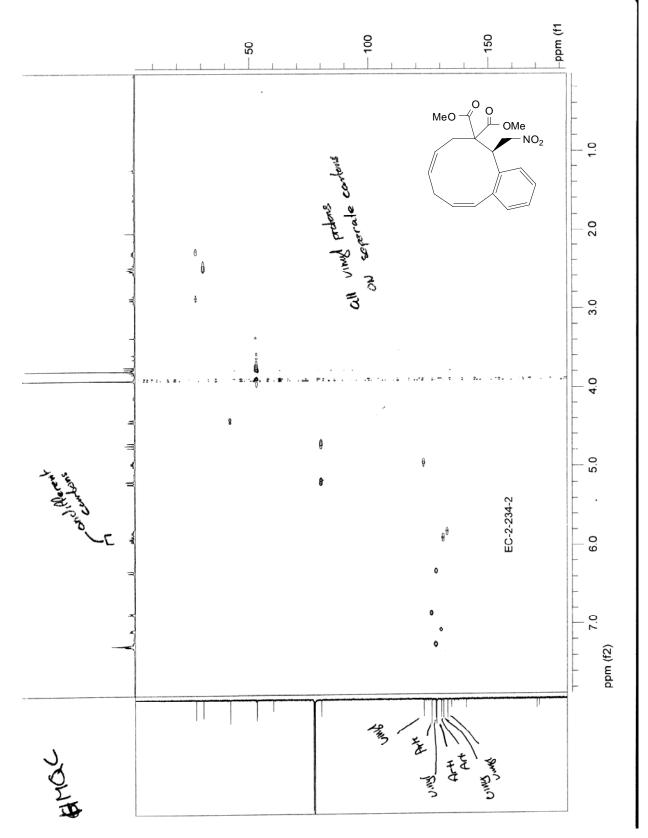



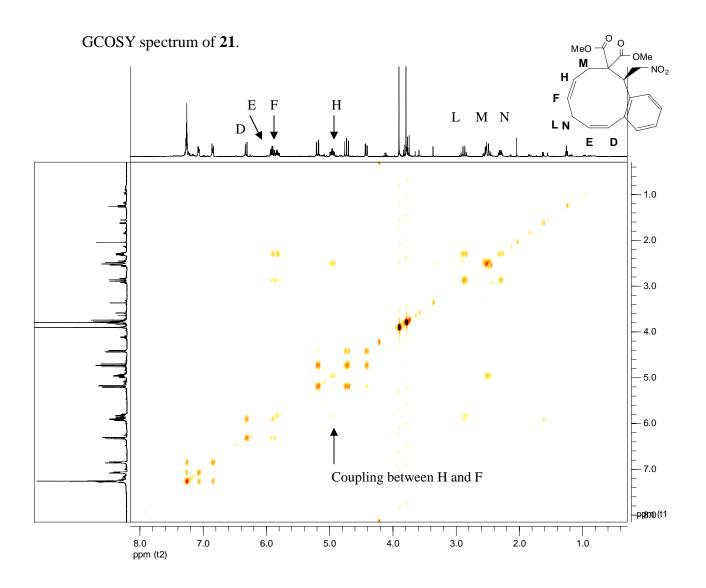

Figure F, Chem 3D representation for **19** showing observed nOes


- HMBC analysis of **19** in d_6 -acetone shows that H_E and H_F couple to three aromatic carbons. Thus H_E and H_F are benzylic hydrogens.
- HMBC analysis indicates that the malonate quaternary carbon couples with H_J and H_K .
- Protons H_A and H_B are identified from their chemical shifts thus the remaining diastereotopic protons are H_H and H_G.
- GCOSY establishes H_I , as this proton couples with H_G . H_D is a singlet at 4.21 ppm, which suggests that the remaining high field methine proton is H_N .
- The stereochemistry of proton H_I was established as α from x-ray analysis of 17.
- NOESY analysis of **19** shows a strong nOe from H_D to H_C . Thus H_D is in the β face as in Figure F.
- NOESY analysis of **19** (50/50 mixture of CDCl₃/d₆-benzene) shows an nOe from H_D to an aromatic proton which must belong to the SPh group. NOESY analysis also shows an nOe from H_N to the same aromatic proton established as a SPh group suggesting that H_N is on the α -face as shown in Figure F.

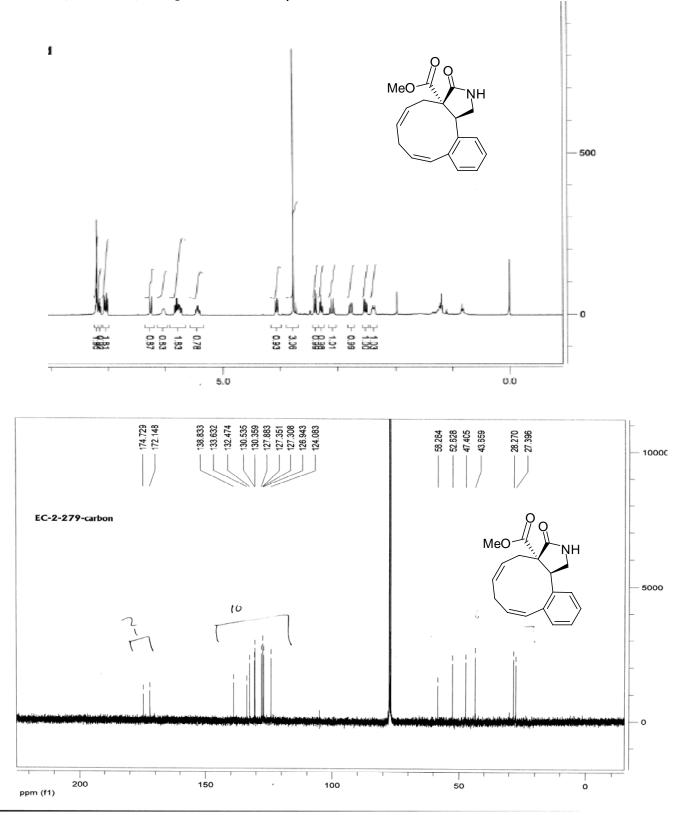
NOESY spectrum of tricycle **19** in d6-acetone.

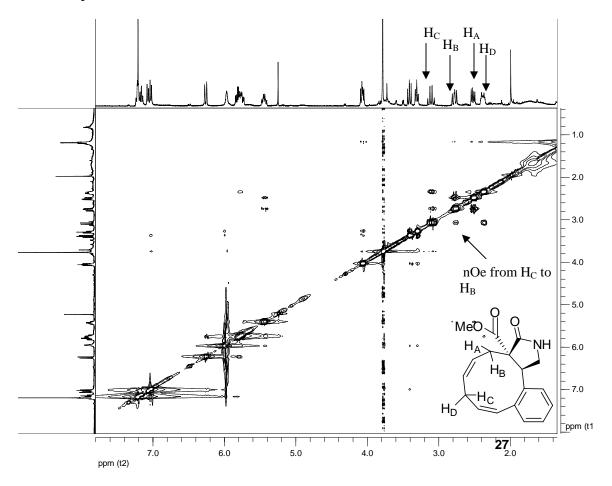

NOESY spectrum of tricycle 19 in a 50/50 mixture of CDCl₃ and d6-benzene.




NOESY spectrum (expanded plot) of tricycle **19** in a 50/50 mixture of CDCl₃ and d6-benzene.

¹H and ¹³C NMR spectra of **21**.


HMQC spectrum of 21.

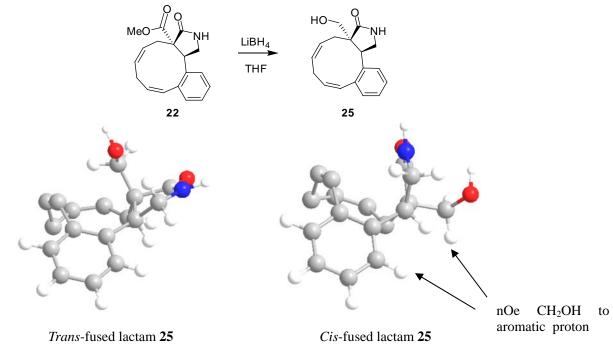
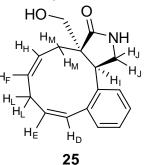
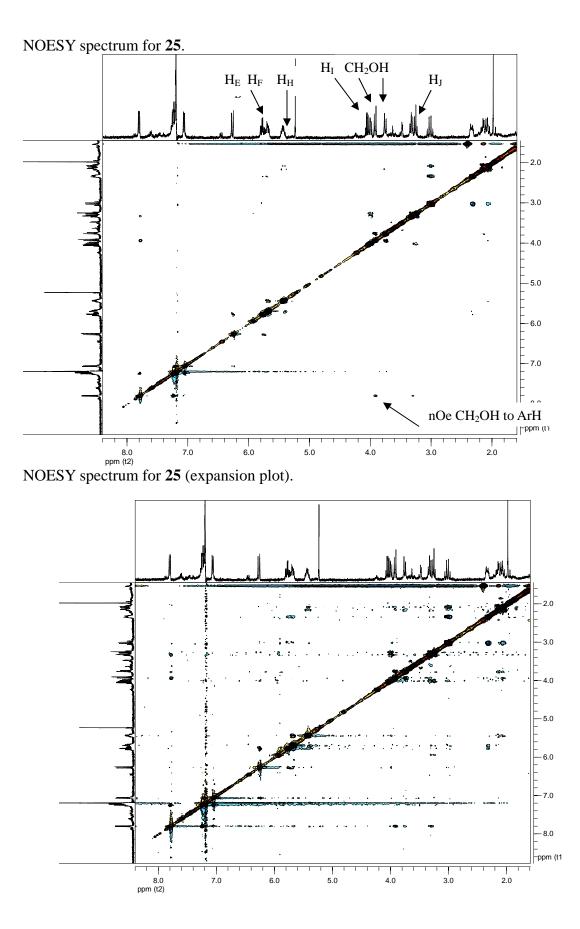


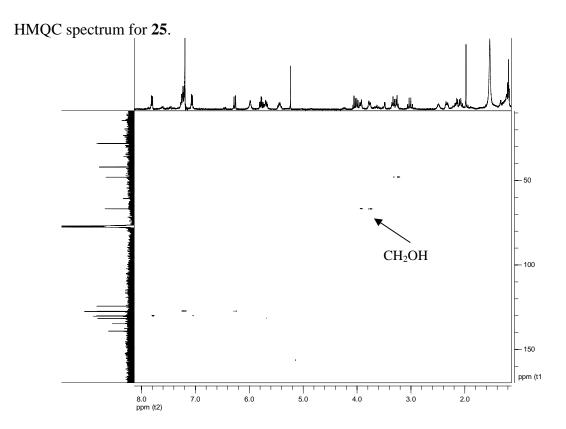
GCOSY spectrum of 21 shows the connectivity and correlation of protons to each other. Proton **D** couples with proton **E** which couples with protons **L** and **N**. Proton **L** couples with protons **F** which couples with protons **H**. Proton **H** couples with protons **M**.

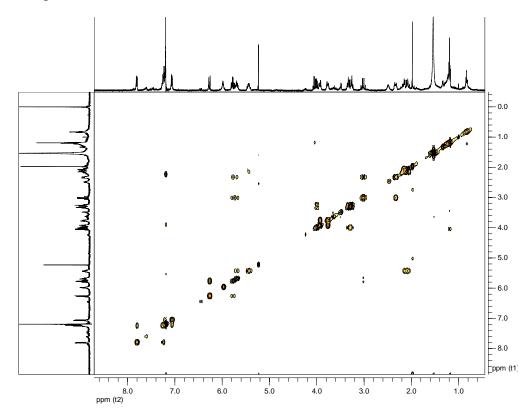
¹H, ¹³C NMR, HMQC and GCOSY spectra for **22**.

NOESY spectrum for 22.

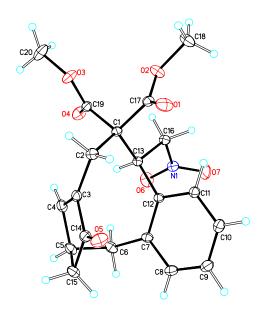
The stereochemistry of **22** was assigned as the *cis* fused lactam based on examination of the minimum-energy conformers for the *cis* and *trans* fused ring system derived from a conformational search (MMFF¹⁰) of **25** and nOe analysis of **25**.


Figure G. Minimum-energy conformers for the *cis* and *trans* fused ring system derived from a conformational search (MMFF¹⁰) of **25**


- Peaks corresponding to the methylene protons of the primary alcohol of **25** were easily identified using GCOSY and HMQC analyses.
- An nOe was observed between the methylene protons of the primary alcohol and an aromatic proton.
- Examination of the minimum conformations (calculated using MMFF) (Figure G) show that this nOe should only be observable for *cis* fused lactam **25**.
- Additionally, proton H_I , previously assigned as α , also has a weak nOe to the same aromatic proton.

¹⁰ Conformational searches (Merck Molecular Mechanics Fourse Field) were performed using Spartan '04 Windows (Wavefunction, Irvine, CA).



GCOSY spectrum for 25.

5. X-ray crystal structure analysis for Pauson-Khand product 17.

Crystals of compound **17** suitable for x-ray analysis were obtained by slow evaporation from CH₂Cl₂/isooctane. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC #627520). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)-1223-336-033; e-mail: <u>deposit@ccdc.cam.ac.uk</u>.

Table 3. Crystal data and structure refinement for 17.					
Empirical formula	C20 H21 N O7				
Formula weight	387.38				
Temperature	173(2) K				
Wavelength	0.71073 Å				
Crystal system	Orthorhombic				
Space group	P2(1)2(1)2(1)				
Unit cell dimensions	a = 8.8302(5) Å	α= 90°.			
	b = 13.5528(8) Å	β= 90°.			
	c = 14.9410(8) Å	$\gamma = 90^{\circ}$.			
Volume	1788.05(17) Å ³				
Z	4				
Density (calculated)	1.439 Mg/m ³				
Absorption coefficient	0.110 mm ⁻¹				

F(000)	816
Crystal size	0.60 x 0.55 x 0.50 mm ³
Theta range for data collection	2.03 to 36.32°.
Index ranges	-13<=h<=13, -21<=k<=21, -24<=l<=23
Reflections collected	19695
Independent reflections	4578 [R(int) = 0.0247]
Completeness to theta = 36.32°	95.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9472 and 0.9371
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4578 / 0 / 337
Goodness-of-fit on F ²	1.111
Final R indices [I>2sigma(I)]	R1 = 0.0367, wR2 = 0.0920
R indices (all data)	R1 = 0.0415, wR2 = 0.0950
Absolute structure parameter	1.2(5)
Largest diff. peak and hole	0.367 and -0.376 e.Å ⁻³

Table 4. Atomic coordinates ($x\;10^4$) and equivalent isotropic displacement parameters (Å $^{2}x\;10^{3}$)

	Х	У	Z	U(eq)
O(1)	-2226(1)	9320(1)	2410(1)	28(1)
O(2)	-2414(1)	10955(1)	2261(1)	23(1)
O(3)	-2499(1)	10733(1)	345(1)	25(1)
O(4)	-352(1)	11607(1)	385(1)	25(1)
O(5)	1216(1)	7265(1)	1034(1)	25(1)
D(6)	3109(1)	12018(1)	1844(1)	29(1)
D(7)	2759(1)	11933(1)	3268(1)	35(1)
N(1)	2344(1)	11812(1)	2498(1)	19(1)
C(1)	-619(1)	10154(1)	1334(1)	14(1)
C(2)	-549(1)	9131(1)	856(1)	18(1)
C(3)	964(1)	8915(1)	465(1)	16(1)

for 23. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(4)	1924(1)	9523(1)	45(1)	19(1)
C(5)	3530(1)	9202(1)	179(1)	20(1)
C(6)	4087(1)	9752(1)	1041(1)	20(1)
C(7)	3325(1)	9400(1)	1893(1)	16(1)
C(8)	4122(1)	8712(1)	2408(1)	20(1)
C(9)	3531(1)	8305(1)	3183(1)	22(1)
C(10)	2097(1)	8578(1)	3463(1)	21(1)
C(11)	1296(1)	9270(1)	2975(1)	17(1)
C(12)	1869(1)	9689(1)	2189(1)	13(1)
C(13)	950(1)	10487(1)	1728(1)	13(1)
C(14)	1768(1)	7982(1)	677(1)	18(1)
C(15)	3377(1)	8091(1)	336(1)	20(1)
C(16)	795(1)	11392(1)	2341(1)	17(1)
C(17)	-1848(1)	10077(1)	2060(1)	16(1)
C(18)	-3586(1)	10962(1)	2940(1)	27(1)
C(19)	-1114(1)	10931(1)	646(1)	16(1)
C(20)	-3090(2)	11409(1)	-317(1)	33(1)