Synthesis of Tetracene Sulfoxide and Tetracene Sulfone via a Cascade Cyclization Reaction Yi-Chun Lin, Chih-Hsiu Lin*

Supporting Material A

Table of Contents

Instrumental and general experimental set-ups
General procedure for the syntheses of diol 1a-1n 2-10
General procedure for the syntheses of tetracene sulfoxide 2a-2n and their spectroscopic characterization10-20
General procedure for the syntheses of tetracene sulfone 3a-3k and their spectroscopic characterization
UV and fluorescence spectra of 2a-2n , 3a-3k , and 4 26-36
Solvatochromism measurements of 2a and 3a
Cyclic voltammetry measurements of 2a and 3a
TGA measurements of 2a and 3a

Instruments and General Experimental Set-ups:

Nuclear magnetic resonance spectra were taken on Brucker AMX-400 (400 MHz), Brucker AV-400 (400 MHz), or Brucker AV-500 (500 MHz) spectrometer. Infrared spectrum data were measured on a Thermo Nicolet Avatar 360 E.S.P. FT-IR spectrometer. Samples were pressed into KBr tablet or deposited on KBr pellet from CH₂Cl₂ solution. High resolution mass spectra were taken on JEOL JMS-700 10kV. Ultraviolet-visible spectrum data were obtained with Hitachi U-3310. The samples were dissolved in dichloromethane and placed in a 1 cm quarzt cell. The absorptions were monitored between 200~700 nm. Fluorescence spectra were measured with Hitachi F-4500 spectrometer. Coumarin 6 dye was used as the standard to determine quantum yield. X-ray crystallography was performed on Brucker Ninius X8APEX. Cyclic voltammetry samples were prepared in acetonitrile solution with TBAPF₆ as the supporting electrolyte. The measurements were carried out on Bioanalytical System BAS1008 with a scan-rate of 100-150 mV/sec. TGA measurements were performed with Perkin Elmer Pyis 1 TGA.

All reactions are performed under 1 atmosphere of inert gas (dried nitrogen) and well mixed with magnetic stirring devices. Reagent grade chemicals and solvents were used in all reactions. Reaction vessels were dried in oven before use. Diethyl ether and tetrahydrofuran were distilled over metallic sodium with benzophenone radical anion as the indicator. Dichloromethane were distilled from CaH₂. Hexane were dried over P₂O₅ and distilled before use. Flash column chromatography was performed with Merck silica gel 60 (1.11567.9025, 0.040-0.063 mm) as the stationary phase. All ratios of reported mixed eluents are based on volume.

General procedure for the synthesis of *o*-bis-(1-hydroxy-3-phenylprop-2-inyl)-benzol derivatives (1a-1m): The solutions of various phenylacetylene

2

derivatives in THF (ca. 15 mmol/30 mL) were cooled to -78 °C. To these solutions were slowly added n-BuLi (2.5 M in hexane, 1.1 equivalents) and the deprotonation reactions were allowed to proceed for 5 min. To these solutions of lithium phenylacetylide were added THF solutions of phthalaldehyde derivatives (ca. 1 g/5 mL). The reactions were warmed back to room temperature before stirred for another 30 min. The reactions were quenched with saturated NH₄Cl and THF was then removed on a rotary evaporator. The residue from each reaction was then extracted with $CH_2Cl_2(\times 3)$ and the combined organic extracts were dried over MgSO₄. Solvent was removed on a rotary evaporator and the crude products were purified with flash column chromatography (CH₂Cl₂) to furnish the desired products as mixtures of diastereomers. The ratio of various isomers can be determined by ¹H NMR spectroscopy.

1a

Yield: 87%, isomeric ratio: 1:0.7. ¹H NMR (400 MHz, CDCl₃): δ 6.19 (s), 6.31(s), 6.28~7.50 (m), 6.28~7.50 (m), 7.75 (dd, J = 5.6, 3.2 Hz), 7.92 (dd, J = 5.6, 3.6 Hz).

1b

Yield: 49 %. Isomeric ratio: 1: 0.5. IR (KBr) v (cm⁻¹): 3418, 2933, 2199,

1516, 1489, 1030, 1092, 756. ¹H NMR (400 MHz, CDCl₃):δ3.09 (d, J = 2.8 Hz), 3.40 (d, J = 4.0 Hz), 3.92 (s), 3.93 (s), 6.11 (d, J = 4.0 Hz), 6.23 (d, J = 2.8 Hz), 7.28~7.34 (m), 7.44~7.49 (m). ¹³C NMR (125MHz, CDCl₃): 55.59, 61.76, 63.31, 86.98, 87.30, 88.17, 88.52, 111.12, 112.42, 122.30, 122.37, 128.30, 128.35, 128.57, 128.64, 130.61, 131.12, 131.70, 148.65, 148.82. HRMS. (M⁺), C₂₆H₂₂O₄, Calc.: 398.1518; Found: 398.1514.

1c

Yield: 41%. Isomeric ratio: 1: 0.5. IR (KBr) v (cm⁻¹): 3369, 2922, 2221, 1490, 1208, 1031, 755, 689. ¹H NMR (400 MHz, CDCl₃): δ 3.00 (broad s), 3.33 (broad s), 6.11(d, *J* = 4.4 Hz), 6.21(d, *J* = 5.6 Hz), 7.31~7.34 (m), 7.45~7.48 (m), 7.83 (s), 7.97 (s). ¹³C NMR (100MHz, CDCl₃): 61.47, 62.65, 86.58, 86.91, 87.94, 88.24, 121.71, 121.78, 128.36, 128.92, 128.98, 129.98, 130.91, 131.77, 131.80, 132.86, 132.97, 137.79, 138.09. HRMS. (M⁺), C₂₄H₁₆O₂Cl₂, Calc.: 406.0527; Found: 406.0528.

1d

Yield: 86%, isomeric ratio: 1 : 0.3. IR (KBr) v (cm⁻¹): 3343, 2952, 2870, 2228,

1458, 1266, 1019, 835. ¹H NMR (400 MHz, CDCl₃): δ 1.28 (s,), 1.29 (s,), 3.09 (d, *J* = 4.8 Hz), 3.48 (d, *J* = 6 Hz), 6.18 (d, *J* = 4.8 Hz), 6.47 (d, *J* = 6 Hz), 7.30~7.44 (m), 7.73 (dd, *J* = 5.6, 3.6 Hz), 7.92 (dd, *J* = 5.6, 3.2 Hz). ¹³C NMR (100MHz, CDCl₃): 31.11, 34.74, 62.46, 63.90, 87.16, 87.45, 87.50, 87.78, 119.28, 119.35, 125.27, 128.05, 129.01, 129.17, 131.53, 138.07, 138.45, 151.89, 151.96. HRMS. (M⁺), C₃₂H₃₄O₂, Calc.: 450.2559; Found: 450.2567.

1e

Yield: 55%. Isomeric ratio: 1: 0.4. IR (KBr) v (cm⁻¹): 3363, 2232, 1489, 1092, 1015, 964, 827, 755. ¹H NMR (400 MHz, CDCl₃): δ 6.10 (s), 6.24 (s), 7.23~7.27 (m), 7.34~7.42 (m), 7.68 (dd, J = 5.6, 3.6 Hz), 7.86 (dd, J = 5.6, 3.6 Hz). ¹³C NMR (100MHz, CDCl₃): 62.19, 63.69, 86.17, 86.46, 88.66, 89.02, 120.67, 120.72, 121.72, 128.03, 128.64, 128.94, 129.21, 132.95, 132.98, 134.73, 134.79, 137.66, 138.13. HRMS. (M⁺), C₂₄H₁₆O₂Cl₂, Calc.: 406.0527; Found: 406.0536.

1f

Yield: 45%, isomeric ratio: 1: 1. IR (KBr) v (cm⁻¹): 3373, 2199, 1486, 1096, 1070,

1011, 823, 754. ¹H NMR (400 MHz, CDCl₃): δ 6.15 (s), 6.26 (s), 7.30~7.34 (m), 7.40~7.46 (m), 7.71 (dd, J = 5.6, 3.6 Hz), 7.87 (dd, J = 5.6, 3.6 Hz). ¹³C NMR (100MHz, CDCl₃): 62.43, 63.73, 86.30, 86.60, 88.70, 89.05, 121.07, 121.12, 123.02, 123.08, 128.06, 129.19, 129.26, 129.29, 131.58, 131.60, 133.13, 133.17, 137.62, 138.01. HRMS. ([M-OH]⁺), C₂₄H₁₅OBr₂, Calc.: 476.9490; Found: 476.9489.

1g

Yield: 60 %. Isomeric ratio: 1: 0.5. IR (KBr) v (cm⁻¹): 3283, 2226, 1487, 1378, 1204, 1090, 1016, 827. ¹H NMR (500 MHz, CDCl₃): δ 2.89 (d, J = 5.0 Hz), 3.20 (d, J = 6.0 Hz), 6.08 (d, J = 5.0 Hz), 6.17 (d, J = 6.0 Hz), 7.28~7.30 (m), 7.36~7.39 (m), 7.80 (s), 7.93 (s). ¹³C NMR (100MHz, CDCl₃): 61.52, 62.62, 86.90, 87.15, 87.55, 87.85, 120.15, 120.21, 128.79, 129.99, 130.90, 132.99, 133.04, 133.08, 133.15, 135.19, 135.25, 137.61, 137.90. HRMS. (M⁺), C₂₄H₁₄O₂Cl₄, Calc.: 473.9748; Found: 473.9744.

1h

Yield: 62 %. Isomeric ratio: 1:0.5. IR (KBr) v (cm⁻¹): 3422, 2228, 1517,

1489, 1205, 1090, 827, 760. ¹H NMR (500 MHz, CDCl₃): δ3.91 (s), 3.92 (s), 6.10 (s), 6.20 (s), 7.26~7.29 (m). ¹³C NMR (125MHz, CDCl₃): 56.05, 62.17, 63.41, 86.06, 86.38, 88.86, 89.20, 111.20, 112.34, 120.63, 120.71, 128.74, 128.77, 130.42, 130.75, 132.91, 134.85, 134.93, 148.97, 149.11. HRMS. ([M-OH]⁺), C₂₆H₁₉O₃Cl₂, Calc.: 449.0711; Found: 449.0706.

1i

Yield: 64%. Isomeric ratio: 1: 0.3. IR (KBr) v (cm⁻¹): 3372, 2937, 2228, 1601, 1537, 1482, 1287, 1163, 689. ¹H NMR (400 MHz, CDCl₃): δ 3.76 (s), 3.78 (s), 6.19 (s), 6.30 (s), 6.86~6.90 (m), 7.05~7.09 (m), 7.19~7.23 (m), 7.39~7.44 (m), 7.74 (dd, *J* = 5.6, 3.2 Hz), 7.91 (dd, *J* = 5.6, 3.6 Hz). ¹³C NMR (125MHz, CDCl₃): 55.25, 62.39, 63.84, 87.21, 87.52, 87.85, 115.30, 116.52, 116.57, 123.22, 123.27, 124.30, 128.06, 129.14, 129.22, 129.38, 137.84, 138.24, 159.23. HRMS. ([M-OH]⁺), C₂₆H₂₁O₃, Calc.: 381.1491; Found: 381.1492.

1j

Yield: 79%, Isomeric ratio can not be accurately determined by NMR

spectroscopy. IR (KBr) v (cm⁻¹): 3365, 2837, 2226, 1609, 1490, 1030, 756, 690. ¹H NMR (400 MHz, CDCl₃): δ 3.84 (s), 3.85 (s), 6.11 (s), 6.16 (s), 6.24 (s), 6.26 (s), 6.89 (dd, J = 8.4, 2.8 Hz), 6.92 (dd, J = 8.4, 2.4 Hz), 7.28~7.32 (m), 7.46~7.50 (m), 7.66 (d, J = 8.4 Hz), 7.84 (d, J = 8.4 Hz). ¹³C NMR (100MHz, CDCl₃):55.33, 61.89, 62.15, 63.33, 63.76, 87.01, 87.22, 87.39, 87.51, 87.65, 87.99, 88.04, 88.38, 113.47, 113.72, 113.80, 115.23, 122.27, 122.32, 122.34, 122.40, 128.27, 128.30, 128.53, 128.59, 128.64, 129.68, 130.00, 130.52, 130.74, 131.75, 131.77, 139.61, 139.91, 159.78, 159.88. HRMS. (M⁺), C₂₅H₂₀O₃, Calc.:368.1412; Found:368.1407.

1k

Yield: 63%. Isomeric ratio can not be accurately determined by NMR spectroscopy. IR (KBr) v (cm⁻¹): 3353, 3062, 2230, 1489, 1084, 1031, 964, 754. ¹H NMR (400 MHz, CDCl₃): δ 6.13 (s), 6.15 (s), 6.24(s), 7.29~7.33 (m, 10H), 7.45~7.50 (m), 7.54 (dd, J = 8.4, 2.0 Hz), 7.62 (d, J = 8.4), 7.78 (d, J = 8.4), 7.88 (d, J = 2.0), 8.03 (d, J = 2.0). ¹³C NMR (100MHz, CDCl₃): 61.62, 61.69, 63.05, 87.03, 87.26, 87.38, 87.47, 87.57, 87.67, 87.74, 87.95, 121.92, 121.97, 122.03, 122.89, 123.02, 128.26, 128.28, 128.68, 128.73, 128.76, 129.74, 130.77, 130.87, 131.72, 131.75, 131.78, 131.93, 131.98, 136.78, 137.25, 139.85, 140.25. HRMS. ([M-OH]⁺), C₂₄H₁₆OBr, Calc.: 399.0385; Found: 399.0376.

11

Yield: 72 %. Isomeric ratio: 1:0.6. IR (KBr) v (cm⁻¹) 3389, 2228, 1603, 1574, 1287, 1165, 1046, 780. ¹H NMR (400 MHz, CDCl₃):δ3.77 (s), 3.78 (s), 6.10 (s), 6.20 (s), 6.88~7.22 (m), 7.82 (s, 2H), 7.96 (s). ¹³C NMR (100MHz, CDCl₃): 55.26, 61.38, 62.60, 86.45, 87.78, 87.81, 88.09, 115.46, 115.49, 116.63, 116.68, 122.70, 122.76, 124.30, 124.33, 129.46, 129.93, 130.89, 132.85, 132.94, 137.74, 138.06, 159.22. HRMS. ([M-OH]⁺), C₂₆H₁₉O₃Cl₂, Calc.: 449.0711; Found: 449.0710.

1m

Yield: 79%. Isomeric ration: 1: 0.5. IR (KBr) v (cm⁻¹): 3361, 3057, 2231, 1490, 1443, 796, 753, 690. ¹H NMR (400 MHz, CDCl₃): δ 6.33 (s), 6.47 (s), 7.32~7.35 (m), 7.50~7.55 (m), 7.89~7.91 (m), 8.21 (s), 8.39 (s). ¹³C NMR (125MHz, CDCl₃): δ 62.72, 64.30, 87.59, 87.78, 88.11, 122.32, 126.87, 126.99, 127.77, 127.97, 128.10, 128.34, 128.65, 128.71, 128.97, 131.79, 131.83, 133.08, 135.42, 135.63. HRMS. (M⁺), C₂₈H₂₀O₂, Calc.:388.1463; Found: 388.1461.

1n

THF solutions of 1-hexyne (1.11 mL, 9.69 mmol in 10 mL THF) and phenylacetylene (0.82 mL, 7.46 mmol in 10 mL THF) are placed in two 100 mL round bottom flasks respectively. n-BuLi (2.5 M in hexane, 3.88 mL, 9.69 mmol) was added to the hexyne solution at -78 °C and this deprotonation reaction was stirred for 5 min. (deprotonation of phenylacetylene was also accomplished accordingly). To this solution was then added a THF solution of phthaldehyde (1 g, 7.46 mmol in 5 mL). The mixture was stirred for a few minuets at -78 °C before the solution of lithium phenylacetylide was added. The reaction was warmed back to room temperature and stirred for 1 hr before quenched with saturated NH₄Cl solution. The solvent was removed on rotary evaporator and the residue was extracted with CH₂Cl₂ several times. The combined organic phase was dried over MgSO₄ and concentrated. The crude product was purified with flash chromatography (CH₂Cl₂) to furnish the desired product (contaminated with small amount of compound **1a** as a colorless viscous oil (1.9 g, 74 %). At least three diastereomers can be distinguished in ¹H NMR spectrum.

IR (KBr) v (cm⁻¹): 3350, 2957, 2231, 1490, 1443, 1095, 997, 756. ¹H NMR (400 MHz, CDCl₃):δ0.88~0.93 (m), 1.40~1.45 (m), 1.51~1.56 (m), 2.28~2.32 (m), 5.89 (s, 1H), 5.94 (s, 1H), 6.01 (s, 1H), 6.06 (s, 1H), 6.14 (s, 1H), 6.26 (s, 1H), 7.31~7.50 (m), 7.65~7.67 (m), 7.71~7.73 (m), 7.81~7.85 (m, 1H), 7.89~7.93 (m, 1H). ¹³C NMR (125MHz, CDCl₃): 13.53, 18.51, 21.97, 30.51, 30.55, 62.00, 62.10, 62.22, 63.46, 63.61, 63.65, 63.78, 78.74, 79.12, 86.98, 87.41, 87.73, 88.11, 88.47, 88.69, 88.85,

122.33, 122.41, 127.82, 127.88, 127.97, 128.25, 128.51, 128.58, 128.76, 128.89, 128.93, 129.09, 131.73, 137.89, 138.28, 138.72. HRMS. ($[M-OH]^+$), $C_{22}H_{21}O$, Calc.:301.1591;Found: 301.1593.

General procedure for the synthesis of 5-phenylsulfoxide-12-phenyl tetracene derivatives (2a-2n) *via* cascade cyclization reactions: In round bottom flasks, bis-phenylacetylene diol adducts (1a-1n) and Et₃N (2.5 equivalents) were dissolved in CH₂Cl₂ (10 mM -30 mM). The mixed solutions were immersed in an ice bath then 2.5 equivalents of phenylsulfenyl chloride was slowly added. The reaction was refluxed for 4 hr before quenched with water and extracted with CH₂Cl₂ ($3\times$). The combined organic extracts was dried over MgSO₄ and concentrated. The crude products were purified with flash chromatography (CH₂Cl₂ and hexane mixtures as eluents) to give the tetracene derivatives as orange powders

2a

Yield: 79 %. IR (KBr) v (cm⁻¹) 2924, 2853, 1442, 1080, 1044, 876, 744, 701. ¹H NMR (400 MHz, CDCl₃): δ7.26~7.51 (m, 10H), 7.62~7.66 (m, 5H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 8.28 (s, 1H), 8.96 (d, *J* = 9.2 Hz, 1H), 9.64 (s, 1H). ¹³C NMR (100MHz, CDCl₃): 122.68, 123.17, 124.29, 124.87, 125.77, 126.37, 127.19, 127.61, 128.00, 128.06, 128.22, 128.48, 128.90, 129.19, 129.60, 130.76, 130.80, 130.89, 131.69, 131.84, 132.08, 138.10, 143.95, 145.16. HRMS. (M⁺), C₃₀H₂₀OS, Calc.: 428.1235; Found: 428.1234.

2b

Yield: 57 %. IR (KBr) v (cm⁻¹): 2924, 1491, 1431, 1305, 1239, 1045, 755, 702. ¹H NMR (400 MHz, CDCl₃): δ 3.93 (s, 3H), 4.02 (s, 3H), 6.91 (s, 1H), 7.10 (s, 1H), 7.24~7.46 (m, 7H), 7.60~7.65 (m, 6H), 8.03 (s, 1H), 9.91 (d, *J* = 9.2 Hz, 1H), 9.39 (s, 1H). ¹³C NMR (125MHz, CDCl₃): 55.92, 56.03, 104.37, 104.61, 119.79, 123.15, 124.32, 124.46, 124.54, 127.23, 127.94, 127.97, 128.36, 128.53, 128.61, 128.98, 129.63, 130.01, 130.62, 130.91, 130.96, 138.56, 143.16, 145.31, 150.74, 151.26. HRMS. (M⁺), C₃₂H₂₄O₃S, Calc.: 488.1446; Found: 488.1454.

2c

Yield: 65 %. IR (KBr) v (cm⁻¹): 2925, 1441, 1107, 1081, 1045, 899, 756, 703. ¹H

NMR (400 MHz, CDCl₃): δ 7.33~7.43 (m, 6H), 7.54 (t, J = 7.4 Hz, 1H), 7.62~7.67 (m, 6H), 7.88 (s, 1H), 8.06 (s, 1H), 8.18 (s, 1H), 8.95 (d, J = 8.8 Hz, 1H), 9.58 (s, 1H). ¹³C NMR (125MHz, CDCl₃): 122.15, 123.04, 124.18, 125.34, 126.60, 128.00, 128.15, 128.25, 128.52, 128.57, 128.66, 128.91, 129.00, 129.05, 129.33, 129.50, 129.76, 130.13, 130.20, 130.59, 130.69, 130.78, 132.13, 137.56, 144.08, 144.77. HRMS. (M+H⁺), C₃₀H₁₉OCl₂S, Calc.: 497.0534; Found: 497.0530.

2d

Yield: 70 %. IR (KBr) v (cm⁻¹): 3053, 2961, 1473, 1365, 1265, 1046, 742, 695. ¹H NMR (400 MHz, CDCl₃): δ 1.49 (s, 9H), 1.52 (s, 9H), 7.29~7.39 (m, 8H), 7.52 (d, *J* = 2.4 Hz, 1H), 7.58~7.68 (m, 5H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 2H), 8.35 (s, 1H), 8.87 (d, *J* = 9.2 Hz, 1H), 9.58 (s, 1H). ¹³C NMR (125MHz, CDCl₃): 30.37, 31.48, 34.84, 34.92, 122.09, 122.63, 122.97, 124.49, 125.26, 125.55, 126.14, 127.23, 127.56, 128.13, 128.40, 128.58, 128.96, 129.58, 129.72, 130.61, 130.66, 130.86, 131.12, 131.95, 135.27, 143.89, 145.48, 146.90, 151.03. HRMS. (M⁺), C₃₈H₃₆OS, Calc.: 540.2487; Found: 540.2483.

2e

Yield : 68 %. IR (KBr) v (cm⁻¹): 3053, 1487, 1441, 1084, 1046, 875, 737, 691. ¹H NMR (400 MHz, CDCl₃): δ 7.33~7.45 (m, 8H), 7.57~7.65 (m, 5H), 7.77 (d, J =8.4 Hz, 1H), 7.96 (t, J = 8.4 Hz, 1H), 8.22 (s, 1H), 8.98 (d, J = 9.6 Hz, 1H), 9.63 (s, 1H). ¹³C NMR (125MHz, CDCl₃): 122.99, 124.25, 125.28, 125.60, 126.42, 126.79, 128.22, 128.55, 128.77, 129.08, 129.15, 129.29, 129.43, 129.52, 129.60, 129.68, 129.91, 131.50, 131.53, 132.19, 132.35, 133.52, 134.67, 135.96, 141.33, 144.89. HRMS. (M⁺), C₃₀H₁₉OCl₂S, Calc.: 497.0534; Found: 497.0541.

2f

Yield: 39 %. IR (KBr) v (cm⁻¹): 3062, 1584, 1482, 1443, 1079, 1047, 1012, 741. ¹H NMR (400 MHz, CDCl₃): δ 7.32~7.52 (m, 7H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 7.6 Hz, 2H), 7.77 (d, *J* = 8.8 Hz, 2H), 7.79 (d, *J* = 8.8 Hz, 2H), 7.96 (d, *J* = 8.4 Hz, 1H), 8.22 (s, 1H), 8.90 (d, *J* = 9.6 Hz, 1H), 9.63 (s, 1H). ¹³C NMR

(125MHz, CDCl₃): 120.10, 122.88, 123.01, 124.27, 125.19, 126.51, 126.90, 126.92, 128.27, 128.61, 129.14, 129.36, 129.97, 131.08, 131.57, 132.15, 132.42, 132.52, 133.59, 136.44, 141.37, 144.82. HRMS. (M⁺), C₃₀H₁₈OBr₂S, Calc.: 583.9445; Found: 583.9430.

2g

Yield: 42 %. IR (KBr) v (cm⁻¹): 3062, 1441, 1107, 1085, 1047, 982, 809, 746. ¹H NMR (400 MHz, CDCl₃): 7.34~7.45 (m, 6H), 7.58~7.60 (m, 3H), 7.64 (d, J = 7.6Hz, 2H), 7.92 (s, 1H), 8.08 (s, 1H), 8.12 (s, 1H), 8.96 (d, J = 9.6 Hz, 1H), 9.57 (s, 1H). ¹³C NMR (100MHz, CDCl₃): 122.49, 124.15, 125.17, 125.63, 126.20, 128.06, 128.64, 128.97, 129.21, 129.27, 129.37, 129.66, 129.75, 130.00, 130.11, 130.37, 130.99, 131.31, 132.03, 132.06, 132.09, 133.82, 134.92, 135.41, 141.47, 144.49. HRMS. (M⁺), C₃₀H₁₆OCl₄S, Calc.: 563.9676; Found: 563.9666.

2h

Yield: 47 %. IR (KBr) v (cm⁻¹): 2934, 1490, 1430, 1305, 1233, 1154, 1083, 1016. ¹H NMR (400 MHz, CDCl₃): δ 3.96 (s,3H), 4.03 (s, 3H), 6.93 (s, 1H), 7.12 (s, 1H), 7.35~7.39 (m, 6H), 7.55 (d, J = 2 Hz, 1H), 7.59~7.65 (m, 4H), 7.95 (s, 1H), 8.92 (d, J = 9.6 Hz, 1H), 9.37 (s, 1H). ¹³C NMR (125MHz, CDCl₃): 55.99, 56.06, 104.25, 104.54, 119.88, 123.80, 124.31, 125.18, 125.54, 128.27, 128.82, 129.08, 129.11, 129.20, 129.87, 130.26, 130.98, 132.16, 132.24, 134.43, 136.29, 140.46, 144.95, 151.20, 151.54. HRMS. (M⁺), C₃₂H₂₂O₃Cl₂S, Calc.: 556.0667; Found: 556.0670.

2i and 2i'

Yield of 2i: 35 %, yield of 2i': 12 %.

2i IR (KBr) v (cm⁻¹) 2925, 1620, 1458, 1434, 1233, 1042, 739, 701. ¹H NMR (500 MHz, CDCl₃): δ3.86 (s, 3H), 3.87 (s, 3H), 6.93~6.98 (m, 2H), 7.02 (t, *J* = 6.5 Hz,

1H), 7.13 (dd, J = 8.5, 1.8 Hz, 1H), 7.30~7.42 (m, 5H), 7.52 (t, J = 8 Hz, 1H), 7.57 (d, J = 9.5 Hz, 1H), 7.65 (d, J = 7.5 Hz, 2H), 7.77 (d, J = 8.5 Hz, 1H), 7.95 (d, J = 8.5 Hz, 1H), 8.13 (s, 1H), 8.29 (s, 1H), 9.52 (s, 1H). ¹³C NMR (100MHz, CDCl₃): 55.37, 55.53, 99.06, 113.83, 113.86, 116.22, 120.90, 123.25, 123.32, 124.42, 124.51, 125.42, 126.55, 127.51, 128.38, 128.43, 128.93, 128.97, 129.62, 129.98, 130.40, 132.44, 139.56, 144.03, 145.16, 158.70, 159.65, 159.67. HRMS. (M⁺), C₃₂H₂₄O₃S, Calc.: 488.1446; Found: 488.1440.

2i' IR (KBr) v (cm⁻¹) 2925, 1581, 1544, 1463, 1243, 1044, 742, 701. ¹H NMR (500 MHz, CDCl₃): δ 3.45 (s, 3H), 3.83 (s, 3H), 6.56 (d, J = 7.5 Hz, 1H), 6.87 (broad s, 1H), 6.92 (dd, J = 7, 2.5 Hz, 1H), 7.02 (dd, J = 8, 2 Hz, 1H), 7.28~7.42 (m, 7H), 7.63 (d, J = 7.6 Hz, 2H), 7.71 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.5 Hz, 1H), 8.23 (s, 1H), 8.54 (d, J = 9 Hz, 1H), 9.59 (s, 1H). ¹³C NMR (100MHz, CDCl₃): 55.34, 55.48, 102.99, 112.32, 112.35, 114.60, 115.83, 122.04, 124.41, 125.59, 126.55, 128.06, 128.12, 128.26, 128.38, 128.65, 128.97, 129.62, 130.68, 131.49, 132.19, 142.73, 144.01, 145.20, 157.39, 158.79, 158.82. HRMS. (M⁺), C₃₂H₂₄O₃S, Calc.: 488.1446; Found: 488.1440.

2j and 2j'

Combined yield: 39 %. Isomeric ratio: 1: 0.3. IR (KBr) v (cm⁻¹): 2929, 1630,

1468, 1443, 1233, 1043, 746, 699. ¹H NMR (400 MHz, CDCl₃): $\delta 3.85$ (s), 3.94 (s), 6.90 (s), 7.02 (d, J = 8 Hz), 7.09 (d, J = 8 Hz), 7.25~7.48 (m), 7.62~7.65 (m), 7.83 (d, J = 9.5 Hz), 8.09 (s), 8.19 (s), 8.92~8.95 (m), 9.43 (s), 9.55 (s). ¹³C NMR (125MHz, CDCl₃): 55.22, 55.32, 102.83, 103.09, 119.96, 121.93, 122.53, 122.71, 123.14, 123.28, 124.38, 124.46, 124.68, 124.92, 126.75, 127.14, 127.21, 127.42, 127.52, 127.62, 127.69, 127.89, 127.96, 128.05, 128.11, 128.13, 128.34, 128.48, 128.53, 128.71, 128.94, 129.23, 129.34, 129.48, 129.61, 129.71, 129.79, 129.87, 130.07, 130.26, 130.55, 130.66, 130.73, 130.84, 130.89, 130.94, 131.17, 132.06, 132.12, 133.48, 138.26, 138.50, 142.90, 144.25, 145.35, 157.49, 158.00. HRMS. (M⁺), C₃₁H₂₂O₂S, Calc.:458.1341; Found: 458.1344.

2k and 2k'

Combined yield: 57 %. Isomeric ratio: 1:1.

IR (KBr) v (cm⁻¹): 3055, 2922, 1440, 1080, 1045, 888, 753, 701. ¹H NMR (400 MHz, CDCl₃): δ 7.30~7.44 (m), 7.51 (dd, J = 8.4, 6.8 Hz), 7.50~7.54 (m), 7.59~7.67 (m), 7.80 (d, J = 8 Hz), 7.93 (s), 8.12 (s), 8.18 (s), 8.25 (s), 8.95 (d, J = 9.2 Hz), 8.96 (d, J = 9.2 Hz), 9.55 (s), 9.63 (s). ¹³C NMR (125MHz, CDCl₃): 120.17, 120.86, 122.02, 123.23, 123.29, 124.38, 125.22, 125.32, 126.42, 127.76, 127.95, 128.06,

128.09, 128.14, 128.28, 128.63, 129.05, 129.08, 129.35, 129.42, 129.49, 129.65, 129.79, 129.91, 129.96, 130.02, 130.16, 130.27, 130.77, 130.84, 130.91, 131.43, 132.19, 132.39, 132.53, 137.95, 144.05, 144.22, 145.16, 145.21. HRMS. ($[M+H]^+$), C₃₀H₂₀OBrS, Calc.: 507.0418; Found: 507.0422.

21

Yield: 57 %. IR (KBr) v (cm⁻¹) 2931, 1573, 1462, 1433, 1285, 1227, 1107, 737. ¹H NMR (400 MHz, CDCl₃): δ 3.87 (s, 3H), 3.88 (s, 3H), 6.98~7.06 (m, 6H), 7.10~7.15 (m, 3H), 7.53 (t, *J* = 8 Hz, 1H), 7.60 (d, *J* = 9.6 Hz, 1H), 7.94 (s, 1H), 8.02 (d, *J* = 2.4 Hz, 1H), 8.09 (s, 1H), 8.19 (s, 1H), 9.35 (s, 1H). ¹³C NMR (125MHz, CDCl₃): 55.36, 55.39, 102.06, 113.72, 116.52, 121.39, 122.22, 123.47, 124.34, 125.16, 126.43, 126.53, 127.34, 128.86, 128.88, 128.92, 128.99, 129.30, 129.65, 129.68, 130.14, 130.46, 132.98, 137.05, 138.23, 139.62, 158.75, 159.72. HRMS. ([M+H]⁺), C₃₂H₂₃O₃Cl₂S, Calc.: 557.0745; Found: 557.0729.

2m

Yield of impure pentacene derivative 2m: 9 %.

IR (KBr) v (cm⁻¹) 2923, 2852, 1441, 1080, 1045, 888, 746, 702. ¹H NMR (500 MHz, CDCl₃): δ 7.27~7.74 (m , 15 H), 7.81 (d, *J* = 7.5 Hz, 1H), 7.91 (d, *J* = 8 Hz, 1H), 8.44 (s, 1H), 8.58 (s, 1H), 8.62 (s, 1H), 8.91 (d, *J* = 9 Hz, 1H), 9.94 (s, 1H). HRMS. (M⁺), C₃₄H₂₂OS, Calc.: 478.1391; Found: 478.1390.

2n

Yield: 10 %. IR (KBr) v (cm⁻¹) 2956, 2925, 1626, 1442, 1080, 1043, 746, 690. ¹H NMR (500 MHz, CDCl₃): δ 1.06 (t, *J* = 7.5 Hz, 3H), 1.65~1.69 (m, 2H), 1.88~1.91 (m, 2H), 3.81 (t, *J* = 8 Hz, 2H), 7.27~7.49 (m), 7.56 (d, *J* = 7.5 Hz), 7.92~7.94 (m, 1H), 7.99~8.00 (m, 1H), 8.33 (d, *J* = 9 Hz, 1H), 8.96 (s, 2H), 9.61 (s, 1H). ¹³C NMR (125MHz, CDCl₃): 14.02, 23.48, 28.93, 33.63, 123.41, 124.03, 124.21, 124.32, 125.09, 125.45, 125.89, 126.29, 127.43, 128.30, 128.32, 128.40, 128.45, 128.88, 129.50, 130.41, 131.04, 131.98, 143.41, 145.36. HRMS. ([M+H]⁺), C₂₈H₂₅OS, Calc.: 409.1626; Found: 409.1633.

General procedure for the synthesis of 5-phenylsulphonyl-12-phenyl tetracene derivatives (3a, 3d, 3e, 3f, 3i, 3j, and 3k) *via* cascade cyclization reaction: To CH_2Cl_2 solutions of bis-phenylacetylene adducts (1a, 1d, 1e, 1f, 1i, 1j, and 1k) were slowly added 2.5 equivalents of Et_3N and *p*-toluenesulfinyl chloride respectively at 0°C. The mixed solutions were then refluxed for 6 hr before quenched with water and extracted with CH_2Cl_2 . The combined organic phase was dried over MgSO₄ and concentrated *in vacuo*. The crude products were purified with flash chromatography (CH_2Cl_2 /hexane = 2:1) to provide the tetracene products as red-orange powders.

3a

Yield: 66 %. IR (KBr) v (cm⁻¹): 3054, 2923, 1490, 1303, 1148, 755, 673, 582. ¹H NMR (400 MHz, CDCl₃):δ2.32 (s, 3H), 7.21~7.23 (m, 2H), 7.25~7.29 (m, 1H), 7.33~7.37 (m, 1H), 7.40~7.45 (m, 3H), 7.52~7.56 (m, 1H), 7.62~7.65 (m, 4H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 9.6 Hz, 2H), 8.02 (d, *J* = 8.8 Hz, 1H), 8.26 (s, 1H),

9.47 (d, J = 8.4 Hz, 1H), 10.12 (s, 1H). ¹³C NMR (100MHz, CDCl₃): 21.49, 124.48, 124.55, 124.68, 125.98, 126.09, 126.75, 127.29, 127.70, 128.03, 128.25, 128.33, 128.45, 128.58, 129.13, 129.24, 129.41, 129.66, 130.48, 130.66, 131.68, 132.57, 138.41, 141.80, 143.51, 147.14. HRMS. (M⁺), C₃₁H₂₂O₂S, Calc.: 458.1341; Found: 458.1344.

3d

Yield: 42 %. IR (KBr) v (cm⁻¹): 2962, 1324, 1303, 1149, 1084, 685, 654, 592. ¹H NMR (400 MHz, CDCl₃): δ 1.22 (s, 9H), 1.48 (s, 9H), 2.32 (s, 3H), 7.21~7.23 (m, 2H), 7.31~7.35 (m, 3H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.49 (d, *J* = 2 Hz, 1H), 7.62~7.66 (m, 3H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 2H), 8.01 (d, *J* = 8.4 Hz, 1H), 8.33 (s, 1H), 9.39 (d, *J* = 9.6 Hz, 1H), 10.07 (s, 1H). ¹³C NMR (100MHz, CDCl₃): 21.46, 30.23, 31.44, 34.69, 34.82, 122.25, 124.28, 124.35, 125.25, 125.78, 125.96, 126.44, 127.25, 127.49, 127.57, 128.06, 128.34, 129.08, 129.47, 129.63, 129.84, 130.30, 130.35, 130.66, 132.32, 135.42, 143.38, 146.33, 147.04, 151.12. HRMS. (M⁺), C₃₉H₃₈O₂S, Calc.: 570.2593; Found: 570.2596.

3e

Yield: 38 %. IR (KBr) v (cm⁻¹): 2924, 1319, 1488, 1449, 1086, 810, 680, 648. ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.39 (t, *J* = 8 Hz, 1H), 7.43~7.48 (m, 2H), 7.55 (d, *J* = 2 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 2H), 8.01 (d, *J* = 8.4 Hz, 1H), 8.18 (s, 1H), 9.52 (d, *J* = 9.6 Hz, 1H), 10.09 (s, 1H). ¹³C NMR (125MHz, CDCl₃): 21.50, 124.93, 125.59, 125.98, 126.69, 126.78, 126.85, 127.10, 127.29, 127.93, 129.13, 129.22, 129.33, 129.45, 129.53, 129.77, 130.17, 130.99, 131.15, 132.00, 132.70, 134.80, 136.16, 136.47, 141.36, 143.88, 144.42. HRMS. (M⁺), C₃₁H₂₀O₂Cl₂S, Calc.: 526.0561; Found: 526.0562.

3f

Yield: 35 %. IR (KBr) v (cm⁻¹): 2921, 1484, 1319, 1149, 1083, 809, 730, 680. ¹H NMR (400 MHz, CDCl₃): δ 2.32 (s, 3H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* =

8.4 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.57 (dd, J = 10, 1.6 Hz, 1H), 7.74~7.76 (m, 2H), 7.79 (d, J = 8 Hz, 2H), 7.89 (d, J = 8 Hz, 2H), 8.01 (d, J = 8.4 Hz, 1H), 8.19 (s, 1H), 9.44 (d, J = 10 Hz, 1H), 10.09 (s, 1H). ¹³C NMR (100MHz, CDCl₃): 21.52, 119.74, 123.01, 124.95, 125.99, 126.68, 126.73, 126.91, 127.15, 127.32, 127.94, 129.09, 129.16, 129.45, 129.62, 129.78, 129.94, 130.12, 131.04, 131.71, 132.17, 132.30, 132.75, 136.65, 141.37, 143.89, 144.39. HRMS. (M⁺), C₃₁H₂₀O₂Br₂S, Calc.: 613.9551; Found: 613.9554.

3i and 3i'

Combined yield: 73 %. Isomeric ratio: 1: 0.85. IR (KBr) v (cm⁻¹) 2924, 1622, 1582, 1458, 1285, 1142, 1083, 585. ¹H NMR (400 MHz, CDCl₃): δ 2.32 (s), 2.33 (s), 3.42 (s), 3.81 (s), 3.82 (s), 3.85 (s), 3.97 (s), 6.54 (d, *J* = 7.2 Hz), 6.83 (dd, *J* = 2.4, 1.6 Hz), 6.90 (d, *J* = 7.6 Hz), 6.93~7.04 (m), 7.13 (dd, *J* = 8.4, 2.4 Hz), 7.20 (d, *J* = 3.2Hz), 7.21 (d, *J* = 3.2Hz), 7.32~7.43 (m), 7.50~7.57 (m), 7.73 (t, *J* = 9.2 Hz), 7.90 (dd, *J* = 8, 1.2 Hz), 7.99 (d, *J* = 8.4Hz), 8.25 (d, *J* = 2.8 Hz), 8.74 (d, *J* = 2.4 Hz), 8.90 (d, *J* = 9.6 Hz), 10.00 (s), 10.04 (s). ¹³C NMR (125MHz, CDCl₃): 21.45, 55.32, 55.48, 100.62, 102.86, 112.32, 113.89, 114.36, 116.03, 117.15, 120.29, 121.77, 123.03, 123.64, 123.81, 124.51, 125.62, 125.77, 125.86, 126.28, 126.69, 126.82, 127.57, 127.67, 127.80, 128.02, 128.14, 128.36, 128.55, 128.86, 128.98, 129.27, 129.52, 129.58, 129.88, 129.94, 130.16, 132.49, 132.66, 133.27, 133.85, 139.71, 141.88, 141.97, 143.33, 144.16, 145.42, 146.92, 157.26, 158.83, 159.37, 159.61. HRMS. (M⁺), C₃₃H₂₆O₄S, Calc.: 518.1552; Found: 518.1559.

3j and 3j'

Combined yield: 74 %. Isomeric ratio: 1: 0.7.

IR (KBr) v (cm⁻¹): 2925, 1633, 1469, 1429, 1303, 1147, 673, 582. ¹H NMR (400 MHz, CDCl₃): δ 2.32 (s), 2.33 (s), 3.86 (s), 3.97 (s), 6.88 (d, J = 2 Hz), 7.04 (dd, J = 9.2, 2.4 Hz), 7.12 (dd, J = 9.2, 2.4 Hz), 7.20~7.27 (m), 7.40~7.43 (m), 7.49~7.54 (m), 7.59~7.64 (m), 7.91~7.95 (m), 8.06 (s), 8.17 (s), 9.38 (d, J = 9.2 Hz), 9.43 (d, J = 9.2 Hz), 9.98 (s), 10.05 (s), 8.92~8.95 (m), 9.43 (s), 9.55 (s). ¹³C NMR (125MHz, CDCl₃): 21.36, 22.54, 55.16, 55.30, 102.35, 103.48, 121.47, 122.15, 122.82, 124.05, 124.30, 124.44, 124.47, 124.55, 124.62, 125.82, 125.86, 126.68, 126.98, 127.21, 127.55, 127.87, 127.99, 128.04, 128.13, 128.22, 128.32, 128.45, 128.51, 128.76, 129.49, 129.56, 129.72, 130.52, 130.58, 130.71, 130.82, 131.49, 131.70, 133.98, 138.32, 138.56, 141.78, 141.86, 143.35, 143.40, 145.95, 147.34, 157.56, 158.19. HRMS. (M⁺), C₃₂H₂₄O₃S, Calc.: 488.1446; Found: 488.1432.

3k and 3k'

Combined yield: 53 %. Isomeric ratio: 1 : 0.55. IR (KBr) v (cm⁻¹): 2923, 1309, 1149, 1083, 756, 703, 677, 580. ¹H NMR (500 MHz, CDCl₃): δ 2.33 (s), 2.34 (s), 7.21~7.23 (m), 7.26~7.29 (m), 7.37~7.40 (m), 7.45(d, J = 9.5 Hz), 7.53~7.65 (m), 7.89~7.94 (m), 8.16 (s), 8.21 (s), 8.23 (s), 9.44 (d, J = 9.5 Hz), 9.48 (d, J = 9.5 Hz), 10.02 (s), 10.13 (s). ¹³C NMR (125MHz, CDCl₃) : 21.49, 22.63, 120.47, 121.20, 123.71, 124.78, 124.83, 124.94, 125.01, 126.00, 126.37, 127.73, 127.81, 128.12, 128.24, 128.29, 128.42, 128.66, 128.78, 128.89, 129.27, 129.56, 129.65, 129.72, 129.76, 129.91, 130.30, 130.62, 130.69, 130.85, 130.98, 131.83, 132.13, 132.98, 138.20, 141.78, 141.82, 143.64, 147.10, 147.28. HRMS. (M⁺), C₃₁H₂₁O₂BrS, Calc.: 536.0446; Found: 536.0442.

UV and PL spectrum of 2b

UV and PL spectrum of 2c

UV and PL spectrum of 2d

UV and PL spectrum of 2e

UV and PL spectrum of 2f

UV and PL spectrum of 2g

UV and PL spectrum of 2h

UV and PL spectrum of 2i

UV and PL spectrum of 2i'

UV and PL spectrum of 2j and 2j' mixture

UV and PL spectrum of 2k and 2k' mixture

UV and PL spectrum of 2l

UV and PL spectrum of 2n

UV and PL spectrum of 3a

UV and PL spectrum of 3d

UV and PL spectrum of 3e

UV and PL spectrum of 3f

UV and PL spectrum of 3i and 3i' mixture

UV and PL spectrum of 3j and 3j' mixture

UV and PL spectrum of 3k and 3k' mixture

UV and PL spectrum of 4

Solvatochromism observed for tetracene sulfoxides 2a

Solvatochromism observed for tetracene sulfone 3a

Cyclic voltammogram of tetracene sulfoxide 2a

Cyclic voltammogram of tetracene sulfone **3a**

TGA of tetracene sulfoxide 2a

TGA of tetracene sulfone 3a