Synthesis of Tetracene Sulfoxide and Tetracene Sulfone via a Cascade Cyclization Reaction Yi-Chun Lin, Chih-Hsiu Lin*

 Supporting Material A

 Supporting Material A}

Table of Contents

Instrumental and general experimental set-ups 2
General procedure for the syntheses of diol 1a-1n 2-10
General procedure for the syntheses of tetracene sulfoxide 2a-2n and their spectroscopic characterization 10-20
General procedure for the syntheses of tetracene sulfone 3a-3k and their spectroscopic characterization 20-25
UV and fluorescence spectra of 2a-2n, 3a-3k, and 4 26-36
Solvatochromism measurements of 2a and 3a. 37
Cyclic voltammetry measurements of 2a and 3a 38
TGA measurements of 2a and 3a 39

Instruments and General Experimental Set-ups:

Nuclear magnetic resonance spectra were taken on Brucker AMX-400 (400 MHz), Brucker AV-400 (400 MHz), or Brucker AV-500 (500 MHz) spectrometer. Infrared spectrum data were measured on a Thermo Nicolet Avatar 360 E.S.P. FT-IR spectrometer. Samples were pressed into KBr tablet or deposited on KBr pellet from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. High resolution mass spectra were taken on JEOL JMS-700 10 kV . Ultraviolet-visible spectrum data were obtained with Hitachi U-3310. The samples were dissolved in dichloromethane and placed in a 1 cm quarzt cell. The absorptions were monitored between $200 \sim 700 \mathrm{~nm}$. Fluorescence spectra were measured with Hitachi F-4500 spectrometer. Coumarin 6 dye was used as the standard to determine quantum yield. X-ray crystallography was performed on Brucker Ninius X8APEX. Cyclic voltammetry samples were prepared in acetonitrile solution with TBAPF $_{6}$ as the supporting electrolyte. The measurements were carried out on Bioanalytical System BAS1008 with a scan-rate of $100-150 \mathrm{mV} / \mathrm{sec}$. TGA measurements were performed with Perkin Elmer Pyis 1 TGA.

All reactions are performed under 1 atmosphere of inert gas (dried nitrogen) and well mixed with magnetic stirring devices. Reagent grade chemicals and solvents were used in all reactions. Reaction vessels were dried in oven before use. Diethyl ether and tetrahydrofuran were distilled over metallic sodium with benzophenone radical anion as the indicator. Dichloromethane were distilled from CaH_{2}. Hexane were dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ and distilled before use. Flash column chromatography was performed with Merck silica gel $60(1.11567 .9025,0.040-0.063 \mathrm{~mm})$ as the stationary phase. All ratios of reported mixed eluents are based on volume.

General procedure for the synthesis of o-bis-(1-hydroxy-3-phenyl-prop-2-inyl)-benzol derivatives (1a-1m): The solutions of various phenylacetylene
derivatives in THF (ca. $15 \mathrm{mmol} / 30 \mathrm{~mL}$) were cooled to $-78{ }^{\circ} \mathrm{C}$. To these solutions were slowly added $\mathrm{n}-\mathrm{BuLi}$ (2.5 M in hexane, 1.1 equivalents) and the deprotonation reactions were allowed to proceed for 5 min . To these solutions of lithium phenylacetylide were added THF solutions of phthalaldehyde derivatives (ca. $1 \mathrm{~g} / 5$ mL). The reactions were warmed back to room temperature before stirred for another 30 min . The reactions were quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and THF was then removed on a rotary evaporator. The residue from each reaction was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 3)$ and the combined organic extracts were dried over MgSO_{4}. Solvent was removed on a rotary evaporator and the crude products were purified with flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to furnish the desired products as mixtures of diastereomers. The ratio of various isomers can be determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

1a

Yield: 87%, isomeric ratio: 1:0.7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.19$ (s), $6.31(\mathrm{~s})$, $6.28 \sim 7.50(\mathrm{~m}), 6.28 \sim 7.50(\mathrm{~m}), 7.75(\mathrm{dd}, J=5.6,3.2 \mathrm{~Hz}), 7.92(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz})$.

1b

Yield: 49 \%. Isomeric ratio: 1: 0.5 . IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3418,2933,2199$,

1516, 1489, 1030, 1092, 756. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ס3.09 (d, $J=2.8 \mathrm{~Hz}$), $3.40(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 3.92(\mathrm{~s}), 3.93(\mathrm{~s}), 6.11(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 6.23(\mathrm{~d}, J=2.8 \mathrm{~Hz})$, $7.28 \sim 7.34(\mathrm{~m}), 7.44 \sim 7.49(\mathrm{~m}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 55.59, 61.76, 63.31, $86.98,87.30,88.17,88.52,111.12,112.42,122.30,122.37,128.30,128.35,128.57$, 128.64, 130.61, 131.12, 131.70, 148.65, 148.82. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{4}$, Calc.: 398.1518; Found: 398.1514.

1c

Yield: 41\%. Isomeric ratio: 1: 0.5. $\quad \operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3369,2922,2221,1490$, 1208, 1031, 755, 689. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.00$ (broad s), 3.33 (broad s), $6.11(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 6.21(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 7.31 \sim 7.34(\mathrm{~m}), 7.45 \sim 7.48(\mathrm{~m}), 7.83(\mathrm{~s}), 7.97$ (s). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 61.47, 62.65, 86.58, 86.91, 87.94, 88.24, 121.71, $121.78,128.36,128.92,128.98,129.98,130.91,131.77,131.80,132.86,132.97$, 137.79, 138.09. HRMS. (M^{+}), $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Cl}_{2}$, Calc.: 406.0527; Found: 406.0528.

1d

Yield: 86%, isomeric ratio: $1: 0.3$. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3343,2952,2870,2228$,
$1458,1266,1019,835 .{ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{~s}), 1.29(\mathrm{~s}),, 3.09(\mathrm{~d}, J$ $=4.8 \mathrm{~Hz}), 3.48(\mathrm{~d}, J=6 \mathrm{~Hz}), 6.18(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 6.47(\mathrm{~d}, J=6 \mathrm{~Hz}), 7.30 \sim 7.44(\mathrm{~m})$, $7.73(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz}), 7.92(\mathrm{dd}, J=5.6,3.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $31.11,34.74,62.46,63.90,87.16,87.45,87.50,87.78,119.28,119.35,125.27,128.05$, 129.01, 129.17, 131.53, 138.07, 138.45, 151.89, 151.96. HRMS. (M^{+}), $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{2}$, Calc.: 450.2559; Found: 450.2567.

1e

Yield: 55\%. Isomeric ratio: 1: 0.4. $\quad \operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3363,2232,1489,1092$, 1015, 964, 827, 755. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.10$ (s), 6.24 (s), $7.23 \sim 7.27$ (m), $7.34 \sim 7.42(\mathrm{~m}), 7.68(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz}), 7.86(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): 62.19, $63.69,86.17,86.46,88.66,89.02,120.67,120.72,121.72$, 128.03, 128.64, 128.94, 129.21, 132.95, 132.98, 134.73, 134.79, 137.66, 138.13. HRMS. (M^{+}), $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Cl}_{2}$, Calc.: 406.0527; Found: 406.0536.

1f

Yield: 45%, isomeric ratio: 1: 1. $\operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3373,2199,1486,1096,1070$,

1011, 823, 754. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.15$ (s), 6.26 (s), 7.30~7.34 (m), $7.40 \sim 7.46(\mathrm{~m}), 7.71(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz}), 7.87(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $62.43,63.73,86.30,86.60,88.70,89.05,121.07,121.12,123.02$, $123.08,128.06,129.19,129.26,129.29,131.58,131.60,133.13,133.17,137.62$, 138.01. HRMS. ([M- OH $\left.]^{+}\right), \mathrm{C}_{24} \mathrm{H}_{15} \mathrm{OBr}_{2}$, Calc.: 476.9490; Found: 476.9489.
$1 g$

Yield: 60 \%. Isomeric ratio: 1: 0.5. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3283,2226,1487$, 1378, 1204, 1090, 1016, 827. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.89(\mathrm{~d}, J=5.0 \mathrm{~Hz})$, $3.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 6.08(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 6.17(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 7.28 \sim 7.30(\mathrm{~m})$, $7.36 \sim 7.39(\mathrm{~m}), 7.80(\mathrm{~s}), 7.93(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): 61.52, 62.62, 86.90, $87.15,87.55,87.85,120.15,120.21,128.79,129.99,130.90,132.99,133.04,133.08$, 133.15, 135.19, 135.25, 137.61, 137.90. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{24} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Cl}_{4}$, Calc.: 473.9748; Found: 473.9744.

1h

Yield: 62 \%. Isomeric ratio: 1:0.5. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3422,2228,1517$,

1489, 1205, 1090, 827, 760. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.91$ (s), 3.92 (s), 6.10 (s), 6.20 (s), $7.26 \sim 7.29(\mathrm{~m}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 56.05,62.17,63.41$, 86.06, 86.38, 88.86, 89.20, 111.20, 112.34, 120.63, 120.71, 128.74, 128.77, 130.42, $130.75,132.91,134.85,134.93,148.97,149.11$. HRMS. ([M-OH $\left.]^{+}\right), \mathrm{C}_{26} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Cl}_{2}$, Calc.: 449.0711; Found: 449.0706.
$1 i$

Yield: 64\%. Isomeric ratio: 1: 0.3. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3372,2937,2228,1601$, 1537, 1482, 1287, 1163, 689. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.76$ (s), 3.78 (s), 6.19 (s), 6.30 (s), 6.86~6.90 (m), 7.05~7.09 (m), 7.19~7.23 (m), 7.39~7.44 (m), 7.74 (dd, J $=5.6,3.2 \mathrm{~Hz}), 7.91(\mathrm{dd}, J=5.6,3.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 55.25,62.39$, $63.84,87.21,87.52,87.85,115.30,116.52,116.57,123.22,123.27,124.30,128.06$, 129.14, 129.22, 129.38, 137.84, 138.24, 159.23. HRMS. ([M-OH] $]^{+}$), $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{3}$, Calc.: 381.1491; Found: 381.1492.

1j

Yield: 79%, Isomeric ratio can not be accurately determined by NMR
spectroscopy. $\operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3365,2837,2226,1609,1490,1030,756,690$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): C 3.84 (s), 3.85 (s$), 6.11$ (s$), 6.16$ (s$), 6.24$ (s), 6.26 (s), $6.89(\mathrm{dd}, J=8.4,2.8 \mathrm{~Hz}), 6.92(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}), 7.28 \sim 7.32(\mathrm{~m}), 7.46 \sim 7.50(\mathrm{~m})$, $7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$):55.33, 61.89, $62.15,63.33,63.76,87.01,87.22,87.39,87.51,87.65,87.99,88.04,88.38,113.47$, 113.72, 113.80, 115.23, 122.27, 122.32, 122.34, 122.40, 128.27, 128.30, 128.53, $128.59,128.64,129.68,130.00,130.52,130.74,131.75,131.77,139.61,139.91$, 159.78, 159.88. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{3}$, Calc.:368.1412; Found:368.1407.

1k

Yield: 63%. Isomeric ratio can not be accurately determined by NMR spectroscopy. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3353,3062,2230,1489,1084,1031,964,754$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.13$ (s), 6.15 (s), 6.24(s), 7.29~7.33 (m, 10H), $7.45 \sim 7.50(\mathrm{~m}), 7.54(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}), 7.62(\mathrm{~d}, J=8.4), 7.78(\mathrm{~d}, J=8.4), 7.88(\mathrm{~d}, J$ $=2.0), 8.03(\mathrm{~d}, J=2.0) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 61.62,61.69,63.05,87.03$, 87.26, 87.38, 87.47, 87.57, 87.67, 87.74, 87.95, 121.92, 121.97, 122.03, 122.89, $123.02,128.26,128.28,128.68,128.73,128.76,129.74,130.77,130.87,131.72$, $131.75,131.78,131.93,131.98,136.78,137.25,139.85,140.25$. HRMS. ([M-OH] ${ }^{+}$), $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{OBr}$, Calc.: 399.0385; Found: 399.0376.

11

Yield: 72 \%. Isomeric ratio: 1:0.6. $\mathrm{IR}(\mathrm{KBr}) \vee\left(\mathrm{cm}^{-1}\right) 3389,2228,1603$, 1574, 1287, 1165, 1046, 780. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.77$ (s), 3.78 (s), 6.10 (s), $6.20(\mathrm{~s}), 6.88 \sim 7.22(\mathrm{~m}), 7.82(\mathrm{~s}, 2 \mathrm{H}), 7.96(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 55.26, 61.38, 62.60, 86.45, 87.78, 87.81, 88.09, 115.46, 115.49, 116.63, 116.68, 122.70, 122.76, 124.30, 124.33, 129.46, 129.93, 130.89, 132.85, 132.94, 137.74, 138.06, 159.22. HRMS. ([M-OH] $), \mathrm{C}_{26} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Cl}_{2}$, Calc.: 449.0711; Found: 449.0710.

1m

Yield: 79\%. Isomeric ration: 1: 0.5. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3361,3057,2231$, 1490, 1443, 796, 753, 690. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.33$ (s), 6.47 (s), 7.32~7.35 (m), $7.50 \sim 7.55(\mathrm{~m}), 7.89 \sim 7.91(\mathrm{~m}), 8.21(\mathrm{~s}), 8.39(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ס62.72, 64.30, 87.59, 87.78, 88.11, 122.32, 126.87, 126.99, 127.77, 127.97, 128.10, $128.34,128.65,128.71,128.97,131.79,131.83,133.08,135.42,135.63$. HRMS. $\left(\mathrm{M}^{+}\right)$, $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{O}_{2}$, Calc.:388.1463; Found: 388.1461.

1n

THF solutions of 1-hexyne ($1.11 \mathrm{~mL}, 9.69 \mathrm{mmol}$ in 10 mL THF) and phenylacetylene ($0.82 \mathrm{~mL}, 7.46 \mathrm{mmol}$ in 10 mL THF) are placed in two 100 mL round bottom flasks respectively. n -BuLi (2.5 M in hexane, $3.88 \mathrm{~mL}, 9.69 \mathrm{mmol}$) was added to the hexyne solution at $-78{ }^{\circ} \mathrm{C}$ and this deprotonation reaction was stirred for 5 min . (deprotonation of phenylacetylene was also accomplished accordingly). To this solution was then added a THF solution of phthaldehyde ($1 \mathrm{~g}, 7.46 \mathrm{mmol}$ in 5 mL). The mixture was stirred for a few minuets at $-78^{\circ} \mathrm{C}$ before the solution of lithium phenylacetylide was added. The reaction was warmed back to room temperature and stirred for 1 hr before quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The solvent was removed on rotary evaporator and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. The combined organic phase was dried over MgSO_{4} and concentrated. The crude product was purified with flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to furnish the desired product (contaminated with small amount of compound 1a as a colorless viscous oil (1.9 g, 74%). At least three diastereomers can be distinguished in ${ }^{1} \mathrm{H}$ NMR spectrum.

IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3350,2957,2231,1490,1443,1095,997,756 .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88 \sim 0.93(\mathrm{~m}), 1.40 \sim 1.45(\mathrm{~m}), 1.51 \sim 1.56(\mathrm{~m}), 2.28 \sim 2.32(\mathrm{~m}), 5.89(\mathrm{~s}$, 1H), $5.94(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 7.31 \sim 7.50(\mathrm{~m})$, $7.65 \sim 7.67(\mathrm{~m}), 7.71 \sim 7.73(\mathrm{~m}), 7.81 \sim 7.85(\mathrm{~m}, 1 \mathrm{H}), 7.89 \sim 7.93(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 13.53, 18.51, 21.97, 30.51, $30.55,62.00,62.10,62.22,63.46$, $63.61,63.65,63.78,78.74,79.12,86.98,87.41,87.73,88.11,88.47,88.69,88.85$,
122.33, 122.41, 127.82, 127.88, 127.97, 128.25, 128.51, 128.58, 128.76, 128.89, 128.93, 129.09, 131.73, 137.89, 138.28, 138.72. HRMS. ([M-OH] ${ }^{+}$), $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}$, Calc.:301.1591;Found: 301.1593.

General procedure for the synthesis of 5-phenylsulfoxide-12-phenyl

 tetracene derivatives ($2 \mathrm{a}-2 \mathrm{n}$) via cascade cyclization reactions: In round bottom flasks, bis-phenylacetylene diol adducts ($\mathbf{1 a} \mathbf{- 1 n}$) and $\mathrm{Et}_{3} \mathrm{~N}$ (2.5 equivalents) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{mM}-30 \mathrm{mM})$. The mixed solutions were immersed in an ice bath then 2.5 equivalents of phenylsulfenyl chloride was slowly added. The reaction was refluxed for 4 hr before quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×). The combined organic extracts was dried over MgSO_{4} and concentrated. The crude products were purified with flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ and hexane mixtures as eluents) to give the tetracene derivatives as orange powders2a

Yield: 79 \%. $\quad \operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right) 2924,2853,1442,1080,1044,876,744,701$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26 \sim 7.51(\mathrm{~m}, 10 \mathrm{H}), 7.62 \sim 7.66(\mathrm{~m}, 5 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.64(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 122.68, 123.17, 124.29, 124.87, 125.77, 126.37, 127.19, 127.61, 128.00, 128.06, 128.22, 128.48, 128.90, 129.19, 129.60, 130.76, 130.80, 130.89, 131.69, 131.84, 132.08, 138.10, 143.95, 145.16. HRMS. $\left(\mathrm{M}^{+}\right)$,

2b

Yield: 57 \%. IR (KBr) v $\left(\mathrm{cm}^{-1}\right): ~ 2924,1491,1431,1305,1239,1045,755$, 702. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~s}$, $1 \mathrm{H}), 7.24 \sim 7.46(\mathrm{~m}, 7 \mathrm{H}), 7.60 \sim 7.65(\mathrm{~m}, 6 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 9.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $9.39(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125MHz, CDCl_{3}): 55.92, 56.03, 104.37, 104.61, 119.79, $123.15,124.32,124.46,124.54,127.23,127.94,127.97,128.36,128.53,128.61$, $128.98,129.63,130.01,130.62,130.91,130.96,138.56,143.16,145.31,150.74$, 151.26. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}$, Calc.: 488.1446; Found: 488.1454 .

2c

Yield: 65 \%. \quad IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 2925,1441,1107,1081,1045,899,756,703 .{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33 \sim 7.43(\mathrm{~m}, 6 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62 \sim 7.67(\mathrm{~m}$, $6 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 122.15,123.04,124.18,125.34,126.60,128.00,128.15$, $128.25,128.52,128.57,128.66,128.91,129.00,129.05,129.33,129.50,129.76$, $130.13,130.20,130.59,130.69,130.78,132.13,137.56,144.08,144.77$. HRMS. $\left(\mathrm{M}+\mathrm{H}^{+}\right), \mathrm{C}_{30} \mathrm{H}_{19} \mathrm{OCl}_{2} \mathrm{~S}$, Calc.: 497.0534; Found: 497.0530.

2d

Yield: 70 \%. $\operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3053,2961,1473,1365,1265,1046,742$, 695. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 7.29 \sim 7.39(\mathrm{~m}, 8 \mathrm{H}), 7.52$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58 \sim 7.68(\mathrm{~m}, 5 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.58(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $30.37,31.48,34.84,34.92,122.09,122.63,122.97,124.49,125.26,125.55$, 126.14, 127.23, 127.56, 128.13, 128.40, 128.58, 128.96, 129.58, 129.72, 130.61, 130.66, 130.86, 131.12, 131.95, 135.27, 143.89, 145.48, 146.90, 151.03. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{38} \mathrm{H}_{36} \mathrm{OS}$, Calc.: 540.2487; Found: 540.2483.

2e

Yield : 68 \%. $\operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3053,1487,1441,1084,1046,875,737,691$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33 \sim 7.45(\mathrm{~m}, 8 \mathrm{H}), 7.57 \sim 7.65(\mathrm{~m}, 5 \mathrm{H}), 7.77(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.63(\mathrm{~s}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $122.99,124.25,125.28,125.60,126.42,126.79$, 128.22, 128.55, 128.77, 129.08, 129.15, 129.29, 129.43, 129.52, 129.60, 129.68, 129.91, 131.50, 131.53, 132.19, 132.35, 133.52, 134.67, 135.96, 141.33, 144.89. HRMS. (M^{+}), $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{OCl}_{2} \mathrm{~S}$, Calc.: 497.0534; Found: 497.0541.

$2 f$

Yield: 39 \%. IR (KBr) $\vee\left(\mathrm{cm}^{-1}\right): 3062,1584,1482,1443,1079,1047,1012$,
741. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32 \sim 7.52(\mathrm{~m}, 7 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.60 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.96$ (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.63(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $120.10,122.88,123.01,124.27,125.19,126.51,126.90,126.92$, 128.27, 128.61, 129.14, 129.36, 129.97, 131.08, 131.57, 132.15, 132.42, 132.52, 133.59, 136.44, 141.37, 144.82. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{30} \mathrm{H}_{18} \mathrm{OBr}_{2} \mathrm{~S}$, Calc.: 583.9445; Found: 583.9430.

2g

Yield: 42 \%. $\quad \operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3062,1441,1107,1085,1047,982,809,746$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.34~7.45(m, 6H), 7.58~7.60(m, 3H), 7.64 (d, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.57(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $122.49,124.15,125.17,125.63,126.20,128.06,128.64$, 128.97, 129.21, 129.27, 129.37, 129.66, 129.75, 130.00, 130.11, 130.37, 130.99, 131.31, 132.03, 132.06, 132.09, 133.82, 134.92, 135.41, 141.47, 144.49. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{30} \mathrm{H}_{16} \mathrm{OCl}_{4} \mathrm{~S}$, Calc.: 563.9676; Found: 563.9666.

2h

Yield: 47 \%. IR (KBr) v $\left(\mathrm{cm}^{-1}\right): 2934,1490,1430,1305,1233,1154,1083$, 1016. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}$, $1 \mathrm{H}), 7.35 \sim 7.39(\mathrm{~m}, 6 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59 \sim 7.65(\mathrm{~m}, 4 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 8.92$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$), $9.37(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 55.99, 56.06, 104.25, 104.54, 119.88, 123.80, 124.31, 125.18, 125.54, 128.27, 128.82, 129.08, 129.11, 129.20, 129.87, 130.26, 130.98, 132.16, 132.24, 134.43, 136.29, 140.46, 144.95, 151.20, 151.54. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{32} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Cl}_{2} \mathrm{~S}$, Calc.: 556.0667; Found: 556.0670.
$\mathbf{2 i}$ and $\mathbf{2 i} \mathbf{i}^{\prime}$

Yield of $\mathbf{2 i}: 35 \%$, yield of $\mathbf{2 i}: 12 \%$.
2i IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 2925,1620,1458,1434,1233,1042,739,701 .{ }^{1} \mathrm{H} \operatorname{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.93 \sim 6.98(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=6.5 \mathrm{~Hz}$,

1H), 7.13 (dd, $J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30 \sim 7.42(\mathrm{~m}, 5 \mathrm{H}), 7.52(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 9.52(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right): 55.37$, $55.53,99.06,113.83,113.86,116.22,120.90,123.25,123.32,124.42,124.51,125.42$, $126.55,127.51,128.38,128.43,128.93,128.97,129.62,129.98,130.40,132.44$, 139.56, 144.03, 145.16, 158.70, 159.65, 159.67. HRMS. (M^{+}), $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}$, Calc.: 488.1446; Found: 488.1440.

2i' $\operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right) 2925,1581,1544,1463,1243,1044,742,701 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 6.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87($ broad s, 1H), $6.92(\mathrm{dd}, J=7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=8,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28 \sim 7.42(\mathrm{~m}, 7 \mathrm{H}), 7.63$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H})$, $8.54(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 9.59(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 55.34, 55.48, $102.99,112.32,112.35,114.60,115.83,122.04,124.41,125.59,126.55,128.06$, $128.12,128.26,128.38,128.65,128.97,129.62,130.68,131.49,132.19,142.73$, 144.01, 145.20, 157.39, 158.79, 158.82. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}$, Calc.: 488.1446; Found: 488.1440.

$\mathbf{2 j}$ and $\mathbf{2 j}$ '

Combined yield: 39 \%. Isomeric ratio: 1: 0.3. IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 2929,1630$,
$1468,1443,1233,1043,746,699 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.85$ (s), 3.94 (s), 6.90 (s), 7.02 (d, $J=8 \mathrm{~Hz}), 7.09(\mathrm{~d}, J=8 \mathrm{~Hz}), 7.25 \sim 7.48(\mathrm{~m}), 7.62 \sim 7.65(\mathrm{~m}), 7.83(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}$), 8.09 (s), 8.19 (s), 8.92~8.95 (m), $9.43(\mathrm{~s}), 9.55(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $55.22,55.32,102.83,103.09,119.96,121.93,122.53,122.71,123.14,123.28$, $124.38,124.46,124.68,124.92,126.75,127.14,127.21,127.42,127.52,127.62$, $127.69,127.89,127.96,128.05,128.11,128.13,128.34,128.48,128.53,128.71$, 128.94, 129.23, 129.34, 129.48, 129.61, 129.71, 129.79, 129.87, 130.07, 130.26, $130.55,130.66,130.73,130.84,130.89,130.94,131.17,132.06,132.12,133.48$, 138.26, 138.50, 142.90, 144.25, 145.35, 157.49, 158.00. HRMS. (M^{+}), $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}$, Calc.:458.1341; Found: 458.1344 .
$\mathbf{2 k}$ and $\mathbf{2 k}{ }^{\prime}$

Combined yield: 57 \%. Isomeric ratio: 1:1.
IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3055,2922,1440,1080,1045,888,753,701 .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30 \sim 7.44(\mathrm{~m}), 7.51(\mathrm{dd}, J=8.4,6.8 \mathrm{~Hz}), 7.50 \sim 7.54(\mathrm{~m}), 7.59 \sim 7.67$ (m), $7.80(\mathrm{~d}, J=8 \mathrm{~Hz}), 7.93(\mathrm{~s}), 8.12(\mathrm{~s}), 8.18(\mathrm{~s}), 8.25(\mathrm{~s}), 8.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 8.96$ (d, $J=9.2 \mathrm{~Hz}$), $9.55(\mathrm{~s}), 9.63(\mathrm{~s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 120.17,120.86$, $122.02,123.23,123.29,124.38,125.22,125.32,126.42,127.76,127.95,128.06$,
$128.09,128.14,128.28,128.63,129.05,129.08,129.35,129.42,129.49,129.65$, $129.79,129.91,129.96,130.02,130.16,130.27,130.77,130.84,130.91,131.43$, $132.19,132.39,132.53,137.95,144.05,144.22,145.16,145.21$. HRMS. ([M+H] $\left.{ }^{+}\right)$, $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{OBrS}$, Calc.: 507.0418; Found: 507.0422.

21

Yield: 57 \%. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$ 2931, 1573, 1462, 1433, 1285, 1227, 1107, 737. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.98 \sim 7.06(\mathrm{~m}, 6 \mathrm{H})$, $7.10 \sim 7.15(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 8.02$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 9.35(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): 55.36,55.39,102.06,113.72,116.52,121.39,122.22,123.47,124.34,125.16$, $126.43,126.53,127.34,128.86,128.88,128.92,128.99,129.30,129.65,129.68$, $130.14,130.46,132.98,137.05,138.23,139.62,158.75,159.72 . \operatorname{HRMS} .\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{Cl}_{2} \mathrm{~S}$, Calc.: 557.0745; Found: 557.0729.

2m

Yield of impure pentacene derivative 2m: 9 \%.

IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$ 2923, 2852, 1441, 1080, 1045, 888, 746, 702. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.27 \sim 7.74(\mathrm{~m}, 15 \mathrm{H}), 7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.44$ $(\mathrm{s}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 9.94(\mathrm{~s}, 1 \mathrm{H})$. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{34} \mathrm{H}_{22} \mathrm{OS}$, Calc.: 478.1391; Found: 478.1390.

2n

Yield: 10 \%. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right) 2956,2925,1626,1442,1080,1043,746,690$.
 $(\mathrm{m}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27 \sim 7.49(\mathrm{~m}), 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 7.92 \sim 7.94(\mathrm{~m}$, $1 \mathrm{H}), 7.99 \sim 8.00(\mathrm{~m}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 2 \mathrm{H}), 9.61(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 14.02, 23.48, 28.93, 33.63, 123.41, 124.03, 124.21, 124.32, $125.09,125.45,125.89,126.29,127.43,128.30,128.32,128.40,128.45,128.88$,
$129.50,130.41,131.04,131.98,143.41,145.36$. HRMS. ([M+H $\left.]^{+}\right), \mathrm{C}_{28} \mathrm{H}_{25} \mathrm{OS}$, Calc.: 409.1626; Found: 409.1633.

General procedure for the synthesis of 5-phenylsulphonyl-12-phenyl tetracene

 derivatives (3a, 3d, 3e, 3f, 3i, $\mathbf{3 j}$, and $3 \mathbf{k}$) via cascade cyclization reaction: To $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of bis-phenylacetylene adducts ($\mathbf{1 a}, \mathbf{1 d}, \mathbf{1 e}, \mathbf{1 f}, \mathbf{1 i}, \mathbf{1} \mathbf{j}$, and $\mathbf{1 k}$) were slowly added 2.5 equivalents of $\mathrm{Et}_{3} \mathrm{~N}$ and p-toluenesulfinyl chloride respectively at $0^{\circ} \mathrm{C}$. The mixed solutions were then refluxed for 6 hr before quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was dried over MgSO_{4} and concentrated in vacuo. The crude products were purified with flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.=2: 1\right)$ to provide the tetracene products as red-orange powders.3a

Yield: 66 \%. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3054,2923,1490,1303,1148,755,673,582$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.32(\mathrm{~s}, 3 \mathrm{H}), 7.21 \sim 7.23(\mathrm{~m}, 2 \mathrm{H}), 7.25 \sim 7.29(\mathrm{~m}, 1 \mathrm{H})$, $7.33 \sim 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.40 \sim 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.52 \sim 7.56(\mathrm{~m}, 1 \mathrm{H}), 7.62 \sim 7.65(\mathrm{~m}, 4 \mathrm{H}), 7.72$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H})$,
$9.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.12(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.49, $124.48,124.55,124.68,125.98,126.09,126.75,127.29,127.70,128.03,128.25$, 128.33, 128.45, 128.58, 129.13, 129.24, 129.41, 129.66, 130.48, 130.66, 131.68, 132.57, 138.41, 141.80, 143.51, 147.14. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{31} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}$, Calc.: 458.1341; Found: 458.1344.

3d

Yield: 42 \%. $\operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 2962,1324,1303,1149,1084,685,654,592$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 7.21 \sim 7.23(\mathrm{~m}$, 2H), 7.31~7.35 (m, 3H), $7.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62 \sim 7.66$ (m, 3H), 7.76 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.33(\mathrm{~s}, 1 \mathrm{H}), 9.39(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 10.07(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $21.46,30.23,31.44,34.69,34.82,122.25,124.28,124.35,125.25,125.78,125.96$, 126.44, 127.25, 127.49, 127.57, 128.06, 128.34, 129.08, 129.47, 129.63, 129.84, $130.30,130.35,130.66,132.32,135.42,143.38,146.33,147.04,151.12$. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{39} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{~S}$, Calc.: 570.2593; Found: 570.2596.

Yield: 38 \%. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$: 2924, 1319, 1488, 1449, 1086, 810, 680, 648. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43 \sim 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.18(\mathrm{~s}, 1 \mathrm{H}), 9.52(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 10.09(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $21.50,124.93,125.59,125.98,126.69,126.78,126.85,127.10,127.29,127.93$, 129.13, 129.22, 129.33, $129.45,129.53,129.77,130.17,130.99,131.15,132.00$, 132.70, 134.80, 136.16, 136.47, 141.36, 143.88, 144.42. HRMS. $\left(\mathrm{M}^{+}\right)$, $\mathrm{C}_{31} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{~S}$, Calc.: 526.0561; Found: 526.0562.

3f

Yield: 35 \%. IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$: 2921, 1484, 1319, 1149, 1083, 809, 730, 680.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.32(\mathrm{~s}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=$
$8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=10,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74 \sim 7.76(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 9.44(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 10.09(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}): 21.52, 119.74, 123.01, 124.95, 125.99, 126.68, 126.73, 126.91, $127.15,127.32,127.94,129.09,129.16,129.45,129.62,129.78,129.94,130.12$, $131.04,131.71,132.17,132.30,132.75,136.65,141.37,143.89,144.39$. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{31} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Br}_{2} \mathrm{~S}$, Calc.: 613.9551 ; Found: 613.9554 .

$\mathbf{3 i}$ and $\mathbf{3 i}{ }^{\prime}$

Combined yield: 73 \%. Isomeric ratio: 1: 0.85. IR (KBr) v $\left(\mathrm{cm}^{-1}\right) 2924$, 1622, 1582, 1458, 1285, 1142, 1083, 585. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.32(\mathrm{~s})$, 2.33 (s), 3.42 (s), 3.81 (s), $3.82(\mathrm{~s}), 3.85(\mathrm{~s}), 3.97(\mathrm{~s}), 6.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 6.83(\mathrm{dd}, J$ $=2.4,1.6 \mathrm{~Hz}), 6.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 6.93 \sim 7.04(\mathrm{~m}), 7.13(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}), 7.20(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}), 7.21(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 7.32 \sim 7.43(\mathrm{~m}), 7.50 \sim 7.57(\mathrm{~m}), 7.73(\mathrm{t}, J=9.2 \mathrm{~Hz})$, $7.90(\mathrm{dd}, J=8,1.2 \mathrm{~Hz}), 7.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 8.25(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 8.74(\mathrm{~d}, J=2.4 \mathrm{~Hz})$, $8.90(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 10.00(\mathrm{~s}), 10.04(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR (125MHz, $\left.\mathrm{CDCl}_{3}\right): 21.45,55.32$, $55.48,100.62,102.86,112.32,113.89,114.36,116.03,117.15,120.29,121.77,123.03$, $123.64,123.81,124.51,125.62,125.77,125.86,126.28,126.69,126.82,127.57$, $127.67,127.80,128.02,128.14,128.36,128.55,128.86,128.98,129.27,129.52$,
$129.58,129.88,129.94,130.16,132.49,132.66,133.27,133.85,139.71,141.88$, 141.97, 143.33, 144.16, 145.42, 146.92, 157.26, 158.83, 159.37, 159.61. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{33} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$, Calc.: 518.1552; Found: 518.1559.
$\mathbf{3 j}$ and $\mathbf{3 j}$ ’

Combined yield: 74%. Isomeric ratio: 1:0.7.

IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 2925,1633,1469,1429,1303,1147,673,582 .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.32$ (s), 2.33 (s), 3.86 (s), 3.97 (s), $6.88(\mathrm{~d}, J=2 \mathrm{~Hz}), 7.04(\mathrm{dd}, J=$ 9.2, 2.4 Hz), $7.12(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}), 7.20 \sim 7.27(\mathrm{~m}), 7.40 \sim 7.43(\mathrm{~m}), 7.49 \sim 7.54(\mathrm{~m})$, 7.59~7.64 (m), 7.91~7.95 (m), 8.06 (s), 8.17 (s), 9.38 (d, $J=9.2 \mathrm{~Hz}$), 9.43 (d, $J=9.2$ Hz), 9.98 (s , 10.05 (s$), 8.92 \sim 8.95(\mathrm{~m}), 9.43(\mathrm{~s}), 9.55(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): 21.36,22.54,55.16,55.30,102.35,103.48,121.47,122.15,122.82,124.05$, $124.30,124.44,124.47,124.55,124.62,125.82,125.86,126.68,126.98,127.21$, $127.55,127.87,127.99,128.04,128.13,128.22,128.32,128.45,128.51,128.76$, $129.49,129.56,129.72,130.52,130.58,130.71,130.82,131.49,131.70,133.98$, $138.32,138.56,141.78,141.86,143.35,143.40,145.95,147.34,157.56,158.19$. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}$, Calc.: 488.1446; Found: 488.1432.
$\mathbf{3 k}$ and $\mathbf{3 k}{ }^{\prime}$

Combined yield: 53 \%. Isomeric ratio: $1: 0.55$. $\operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 2923$, $1309,1149,1083,756,703,677,580 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.33$ (s), 2.34 (s), 7.21~7.23 (m), 7.26~7.29 (m), 7.37~7.40 (m), 7.45(d, $J=9.5 \mathrm{~Hz}), 7.53 \sim 7.65(\mathrm{~m})$, $7.89 \sim 7.94(\mathrm{~m}), 8.16(\mathrm{~s}), 8.21(\mathrm{~s}), 8.23(\mathrm{~s}), 9.44(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 9.48(\mathrm{~d}, J=9.5 \mathrm{~Hz})$, $10.02(\mathrm{~s}), 10.13(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : 21.49, 22.63, 120.47, 121.20, $123.71,124.78,124.83,124.94,125.01,126.00,126.37,127.73,127.81,128.12$, 128.24, 128.29, 128.42, 128.66, 128.78, 128.89, 129.27, 129.56, 129.65, 129.72, 129.76, 129.91, 130.30, 130.62, 130.69, 130.85, 130.98, 131.83, 132.13, 132.98, 138.20, 141.78, 141.82, 143.64, 147.10, 147.28. HRMS. $\left(\mathrm{M}^{+}\right), \mathrm{C}_{31} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{BrS}$, Calc.: 536.0446; Found: 536.0442.

UV and PL spectrum of 2a

UV and PL spectrum of $\mathbf{2 b}$

UV and PL spectrum of 2c

UV and PL spectrum of 2d

UV and PL spectrum of $\mathbf{2 e}$

UV and PL spectrum of $2 f$

UV and PL spectrum of $\mathbf{2 g}$

UV and PL spectrum of $\mathbf{2 h}$

UV and PL spectrum of $\mathbf{2 i}$

$\mathbf{U V}$ and $P L$ spectrum of $\mathbf{2 i}$

$\mathbf{U V}$ and PL spectrum of $\mathbf{2 j}$ and $\mathbf{2 j} \mathbf{j}$ mixture

UV and PL spectrum of $\mathbf{2 k}$ and $\mathbf{2 k}$ ' mixture

UV and PL spectrum of 21

UV and PL spectrum of $\mathbf{2 n}$

UV and PL spectrum of 3a

UV and PL spectrum of 3d

UV and PL spectrum of 3e

UV and PL spectrum of $3 f$

UV and PL spectrum of 3i and 3i' mixture

UV and PL spectrum of $\mathbf{3 j}$ and $\mathbf{3 j}$ ' mixture

UV and PL spectrum of 3 k and 3 k ' mixture

UV and PL spectrum of 4

Solvatochromism observed for tetracene sulfoxides 2a

Solvatochromism observed for tetracene sulfone 3a

Cyclic voltammogram of tetracene sulfoxide 2a

Cyclic voltammogram of tetracene sulfone 3a

TGA of tetracene sulfoxide 2a

TGA of tetracene sulfone 3a

