Aminals as substrates for sulfur ylides: A synthesis of functionalised aziridines and N-heterocycles

Christoforos G. Kokotos, and Varinder K. Aggarwal*
School of Chemistry, Bristol University, Cantock's Close, Bristol, UK BS8 1TS. E-mail: v.aggarwal@bristol.ac.uk; Fax: +44 (0)117 929 8611; Tel: +44 (0)117 9546315

Supplementary Information

General Methods S1
Experimental procedures S2
NMR spectra S18
References S42

General Methods

All chemicals were purchased from Aldrich, Fluka or Lancaster. Anhydrous THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained from a purification column composed of activated alumina (A-2). Chromatography: Flash chromatography was performed on silica gel (Merck Kieselgel $60 \mathrm{~F}_{254}$ 230-400 mesh). TLC was performed on aluminum backed silica plates ($0.2 \mathrm{~mm}, 60 \mathrm{~F}_{254}$) which were developed using standard visualising agents: UV fluorescence ($254 \& 366 \mathrm{~nm}$), phosphomolybdic acid / Δ, anisaldehyde / Δ, potassium permanganate / Δ. Melting points were determined on a Khofler hot stage apparatus. Infra red spectra were recorded on a Perkin-Elmer Spectrum One FTIR spectrometer. Only selected absorbencies ($v_{\max }$) are reported. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at either 270 or 400 MHz on Delta GX/270 or Delta GX/400 instruments respectively. Chemical shifts $\left(\delta_{\mathrm{H}}\right)$ are quoted in parts per million (ppm), referenced to TMS. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at either 68 or 100 MHz on Delta GX/270 or Delta GX/400 instruments respectively. Chemical shifts (δ_{c}) are quoted in parts per million (ppm), referenced to the appropriate solvent peak and are assigned as $\mathrm{s}, \mathrm{d}, \mathrm{t}, \mathrm{q}$ for $\mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}, \mathrm{CH}_{3}$ respectively. Low resolution mass spectra (m / z) were recorded on a Micromass Analytical Autospec spectrometer, with only molecular ions $\left(\mathrm{M}^{+}\right.$or $\left.\mathrm{MH}^{+}\right)$and major peaks being reported with intensities quoted as percentages of the base peak. High-resolution mass spectra were recorded on a Micromass Analytical Autospec Spectrometer. All GC-MS experiments were performed using an Agilent

6890 apparatus and the following conditions: column: HP190915-433 HP-5MS 5\% Phenyl Methyl Siloxane, capillary $30 \mathrm{~m} \times 250 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$ nominal, carrier gas: helium $1 \mathrm{~mL} / \mathrm{min}$ (constant flow mode), injector: $250{ }^{\circ} \mathrm{C}$ (split less mode), detector: agilent MSD 5973 (EI mode), Oven: $70{ }^{\circ} \mathrm{C}(3 \mathrm{~min}), 15^{\circ} \mathrm{C} / \mathrm{min}(15.3 \mathrm{~min}), 300{ }^{\circ} \mathrm{C}(8$ min).

Experimental procedures

N-[(4-Methylphenyl)sulfonyl]pyrrolidin-2-ol

For the synthesis see: Kokotos, C. G.; Aggarwal, V. K. Chem. Comm., 2006, 2156.
tert-Butyl 2-hydroxy-1-pyrrolidinecarboxylate

For the synthesis see: Dieter, R. K.; Sharma, R. R. J. Org. Chem., 1996, 61, 4180.

General procedure for chiral imine synthesis

To a stirred solution of N-[(4-Methylphenyl)sulfonyl]pyrrolidin-2-ol or tert-Butyl 2-hydroxy-1-pyrrolidinecarboxylate (1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}), \mathrm{Ti}(\mathrm{OEt})_{4}$ (20% solution in ethanol) (2 eq.) was added under argon at room temperature. The solution was treated with (R)-2-methyl-2-propanesulfinamide (1.1 eq.) in one portion and the reaction mixture was then heated at reflux for 7 h under argon. The reaction mixture was allowed to cool to room temperature before quenching with an equal amount of brine (15 mL). The resulting slurry was then filtered through Celite, washed with an excess of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and the filtrate partitioned between brine $(80 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$ and the
combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was then purified by flash chromatography eluting with $1: 1$ EtOAc:pet. ether followed by EtOAc to give the product.

$(R)_{s}$-N2-1-[(4-Methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2-methyl-2propanesulfinamide 4^{1}

Colourless gum (81\%) as a mixture of ring opened and ring closed form; R_{f} (EtOAc:pet.ether, 1:1) 0.1/0.15/0.3; IR (film) 2957 (NH), 2925 (NH), 2870 (NH), $1597(\mathrm{HC}=\mathrm{N}), 1335(\mathrm{~S}=\mathrm{O}), 1155\left(\mathrm{SO}_{2}\right), 1091(\mathrm{~S}=\mathrm{O}), 1033(\mathrm{~S}=\mathrm{O}) \mathrm{cm}^{-1}$; open form δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8.01 ($1 \mathrm{H}, \mathrm{t}, J 4.0 \mathrm{~Hz}, \mathrm{~N}=\mathrm{CH}$), 7.72 ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{Ar}$), 7.29 ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), $4.74(1 \mathrm{H}, \mathrm{t}, J 6.3 \mathrm{~Hz}, \mathrm{NH}), 3.04-2.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.53$ $\left(2 \mathrm{H}, \mathrm{td}, J 7.1\right.$ and $\left.4.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) 1.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 1.15$ $\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$; closed form two diastereomers (1:1) $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.80-$ 7.70 (4H, d, $J 8.3 \mathrm{~Hz}, \mathrm{Ar}), 7.33-7.27$ (4H, d, $J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 5.18$ (1H, td, $J 6.8$ and $2.6 \mathrm{~Hz}, \mathrm{NCH}), 5.05(1 \mathrm{H}, \mathrm{dt}, J 6.3$ and $2.4 \mathrm{~Hz}, \mathrm{NCH}), 4.16(1 \mathrm{H}, \mathrm{d}, J 2.4 \mathrm{~Hz}, \mathrm{NH}), 3.89$ (1H, d, $J 6.8 \mathrm{~Hz}, \mathrm{NH}), 3.59$ (1 H , ddd, $J 10.3,7.5$ and $3.1 \mathrm{~Hz}, \mathrm{NCHH}$), 3.42 (1 H , ddd, J 11.3, 6.2 and $2.5 \mathrm{~Hz}, \mathrm{NCHH}), 3.15-3.07$ ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCHH}$), 2.72-2.55 (4H, m, 2 x $\mathrm{CH}_{2} \mathrm{CHN}$), $2.41\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) 2.20-1.61\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.23[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.23\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$; ring-open and ring closed forms $\delta_{\mathrm{c}}(100.5 \mathrm{MHz}$, CDCl_{3}) 168.4 (d), 144.0 (s), 143.8 (s), 143.3 (s$), 137.3$ (s), 137.2 (s$), 137.1$ (s), 130.0 (d), 129.8 (d), 129.7 (d), 127.7 (d), 127.5 (d), 127.1 (d), 72.8 (d), 70.6 (d), 56.7 (s$)$, $56.3(\mathrm{~s}), 56.0(\mathrm{~s}), 48.6(\mathrm{t}), 48.1(\mathrm{t}), 42.6(\mathrm{t}), 34.1(\mathrm{t}), 33.2(\mathrm{t}), 32.2(\mathrm{t}), 25.3(\mathrm{t}), 23.6(\mathrm{t})$, 23.2 (t), 22.6 (q), 22.5 (q), 22.4 (q), 21.6 (q), 21.5 (q), 21.1 (q); MS (ESI) $m / z(\%) 367$ $\left(\mathrm{M}+\mathrm{Na}^{+}, 25 \%\right)$ and $345\left(\mathrm{MH}^{+}, 23 \%\right)$; HRMS (ESI) found 367.1121. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Na}$ requires 367.1115 .
(R)s-2-(2-Methyl-propane-2-sulfinylamino)-pyrrolidine-1-carboxylic acid tertbutyl ester

Colourless oil (39\%); R_{f} (EtOAc:pet.ether, 1:1) 0.05; IR (film) 2952 (NH), 1641 (OCONH), $1335(\mathrm{~S}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.20-5.16(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH})$, 3.80-3.78 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$), 3.49-3.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}$), 3.29-3.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH} H), 2.10-$ $1.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.44\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.18\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}(100.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 154.7$ (s), 83.2 (d), 79.9 (s$), 56.7$ (s$), 45.2$ (t), 28.4 (q), 28.3 (t , , 22.4 (q), 22.3 (t). MS (CI) $m / z(\%) 291\left(\mathrm{MH}^{+}, 100 \%\right)$ and $186\left(\mathrm{MH}^{+}-\mathrm{SOBu}^{\mathrm{t}}, 45 \%\right)$; (Found: C, $53.92 \% ; \mathrm{H}, 8.89 \% ; \mathrm{N}, 9.43 \% . \mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 53.76 \% ; \mathrm{H}, 9.02 \%$, N , $9.65 \%) ;[\alpha]_{\mathrm{D}}{ }^{23}-104\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Reaction of aminal 4 with achiral sulfonium salt 5

To a solution of N2-1-[(4-methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2-methyl-2-propanesulfinamide $4(0.10 \mathrm{~g}, 0.29 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base ($0.10 \mathrm{~mL}, 0.3 \mathrm{mmol}$) and the reaction mixture was left stirring for 30 min . 1Benzyltetrahydrothiophenium tetrafluoroborate $5(0.12 \mathrm{~g}, 0.44 \mathrm{mmol})$ was added at 0 ${ }^{\circ} \mathrm{C}$ followed by P_{2} base ($0.10 \mathrm{~mL}, 0.3 \mathrm{mmol}$). The reaction mixture was then stirred for 3.5 hours at $0{ }^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with $1: 1$ pet. ether:EtOAc to give: propyl\}-benzenesulfonamide (6) (major trans) as a colourless oil ($63 \mathrm{mg}, 50 \%$); R_{f} (EtOAc:pet. ether, 1:1) 0.50; IR (film) 3063 (NH), 1599 (Ar), $1338\left(\mathrm{SO}_{2}\right), 1159$ $\left(\mathrm{SO}_{2}\right), 1058(\mathrm{SO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.72(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.31-7.25$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.19 ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), $5.24(1 \mathrm{H}, \mathrm{t}, J 6.1 \mathrm{~Hz}, \mathrm{NH}), 3.11$ ($1 \mathrm{H}, \mathrm{d}, J$ $3.9 \mathrm{~Hz}, \mathrm{NCHPh}), 3.05-2.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.51(1 \mathrm{H}, \mathrm{td}, J 6.4$ and 3.9 Hz , $\mathrm{C} H \mathrm{NCHPh}), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.21-2.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCH}_{2}\right), 2.04-1.96(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHHCHH}), 1.79-1.63(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCHH}), 1.19\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}(100.5 \mathrm{MHz}$, CDCl_{3}) 143.3 (s , 143.2 (s), 136.8 (s), 129.7 (d), 128.7 (d), 128.0 (d), 127.2 (d), 126.3 (d), 57.1 (s), 50.2 (d), 46.1 (d), 42.5 (t), 28.2 (t), 25.8 (t), 22.3 (q), 21.4 (q); MS (CI): $m / z(\%) 435\left(\mathrm{MH}^{+}, 87 \%\right), 378\left(\mathrm{MH}^{+}-\mathrm{Bu}^{\mathrm{t}}, 17 \%\right)$ and $224\left(\mathrm{M}^{+}-\mathrm{NSOBu}^{\mathrm{t}}-\mathrm{CH}_{2} \mathrm{Ph}, 100 \%\right)$; HRMS (CI) found 435.1776. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires 435.1772 (Found: $\mathrm{C}, 61.02 \%$; H , 6.73%; N, 6.21\%. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires C, $60.80 \% ; \mathrm{H}, 6.96 \%$; $\mathrm{N}, 6.45 \%$); $[\alpha]_{\mathrm{D}}{ }^{23}-36$ (c $1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

4-methyl- N - $\{3$-[3-phenyl-1-(propane-2-sulfinyl)-aziridin-2-yl]-propyl $\}$ -
benzenesulfonamide (6 minor: 7) (minor trans:cis $5: 1$) as a colourless oil (32 mg , 27%); R_{f} (EtOAc:pet. ether, 1:1) 0.55; IR (film) 3063 (NCH), 1599 (Ar), $1330\left(\mathrm{SO}_{2}\right)$, $1158\left(\mathrm{SO}_{2}\right), 1093(\mathrm{SO}) \mathrm{cm}^{-1} ;$ minor trans $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.72(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}$, ArH), 7.33-7.24 (7H, m, ArH), $4.87(1 \mathrm{H}, \mathrm{t}, J 6.2 \mathrm{~Hz}, \mathrm{NH}), 3.33(1 \mathrm{H}, \mathrm{d}, J 3.9 \mathrm{~Hz}$, NCHPh), $2.98\left(2 \mathrm{H}, \mathrm{q}, J 6.2 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 2.43-2.34\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{C} H \mathrm{NCHPh}\right)$, 1.96-1.83 (1H, m, CHHCH_{2}), 1.82-1.60 (3H, m, CHHCHH), $1.12\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}$ ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 143.4 (s), 143.2 (s), 137.6 (s$), 129.8$ (d), 128.0 (d), 128.6 (d), 127.2 (d), 127.1 (d), 57.4 (s$), 50.9$ (d), 47.4 (d), 42.8 (t), 28.3 (t), 25.9 (t$), 22.8$ (q), 21.5 (q); cis $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.70(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.33-7.24(5 \mathrm{H}, \mathrm{m}$, ArH), 7.17 ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), $4.41(1 \mathrm{H}, \mathrm{t}, J 6.3 \mathrm{~Hz}, \mathrm{NH}), 3.79(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}$, $\mathrm{NCHPh}), 2.88-2.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.43-2.34\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{C} H \mathrm{NCHPh}\right)$, 1.96$1.83\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCH}_{2}\right), 1.82-1.60(3 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHH}), 1.17\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}$ ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 143.6 (s), 143.4 (s), 137.3 (s), 129.7 (d), 128.4 (d), 128.1 (d), 127.6 (d), 126.6 (d), 57.0 (s$), 48.0$ (d), 46.7 (d), 42.5 (t$), 28.2$ (t$), 24.8$ (t$), 22.7$ (q), 21.5 (q); MS (CI): $m / z(\%) 435\left(\mathrm{MH}^{+}, 67 \%\right), 330\left(\mathrm{MH}^{+}-\mathrm{SOBu}^{\mathrm{t}}, 15 \%\right)$ and $224\left(\mathrm{M}^{+}-\right.$ NSOBu ${ }^{\mathrm{t}}-\mathrm{CH}_{2} \mathrm{Ph}, 100 \%$).

Reaction of aminal 4 with achiral sulfonium salt 5 leading to pyrrolidines and piperidine

To a solution of N2-1-[(4-methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2-methyl-2-propanesulfinamide $4(0.10 \mathrm{~g}, 0.29 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base ($0.10 \mathrm{~mL}, 0.3 \mathrm{mmol}$) and the reaction mixture was left stirring for 30 min . 1Benzyltetrahydrothiophenium tetrafluoroborate $5(0.12 \mathrm{~g}, 0.44 \mathrm{mmol})$ was added at 0 ${ }^{\circ} \mathrm{C}$ followed by P_{2} base ($0.10 \mathrm{~mL}, 0.3 \mathrm{mmol}$). The reaction mixture was stirred for 5 hours at $0^{\circ} \mathrm{C}$ and then heated to reflux for 15 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with 1:1 pet. ether:EtOAc to give:
$(R)_{s}-(R)-\alpha-(2 R)-2$-Methylpropane-2-sulfinic acid \{phenyl-[1-(toluene-4-sulfonyl)-pyrrolodin-2-yl]-methyl\}amide (8) (major) as a white solid ($58 \mathrm{mg}, 46 \%$) mp 72-75 ${ }^{\circ} \mathrm{C}$ (pet. ether); R_{f} (EtOAc:pet. ether, 1:1) 0.30; IR (film) 1599 (Ar), $1341\left(\mathrm{SO}_{2}\right), 1159$ $\left(\mathrm{SO}_{2}\right), 1058(\mathrm{SO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.78(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.43-$
$7.21(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.55(1 \mathrm{H}, \mathrm{d}, J 3.5 \mathrm{~Hz}, \mathrm{NH}), 4.44[1 \mathrm{H}, \mathrm{t}(\mathrm{ap}), J 3.5 \mathrm{~Hz}, \mathrm{NCHPh}]$, $4.20(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHPh}), 3.09(1 \mathrm{H}, \mathrm{dt}, J 10.9$ and $7.4 \mathrm{~Hz}, \mathrm{NCHH}), 2.80(1 \mathrm{H}, \mathrm{ddd}, J$ $10.9,7.4$ and $5.7 \mathrm{~Hz}, \mathrm{NCHH}), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.79-1.71(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH} 2), 1.63-$ $1.58(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHH}), 1.56-1.42(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCHH}), 1.24\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}$ ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 143.9 (s), 138.8 (s$), 134.1$ (s$), 129.7$ (d), 128.6 (d), 128.0 (d), 127.3 (d), 127.0 (d), 65.0 (d), 61.8 (d), 55.9 (s$), 50.1$ (t$), 29.1$ (t$), 22.8(\mathrm{t}), 22.7(\mathrm{q})$, 21.5 (q); MS (CI): $m / z(\%) 435\left(\mathrm{MH}^{+}, 85 \%\right)$ and $224\left(\mathrm{M}^{+}-\mathrm{NSOBu}^{\mathrm{t}}-\mathrm{CH}_{2} \mathrm{Ph}, 100 \%\right)$; HRMS (CI) found 435.1776. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires 435.1772; $[\alpha]_{\mathrm{D}}{ }^{23}-76$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). piperidin-3-yl]-amide (16) as a white solid ($15 \mathrm{mg}, 12 \%$) mp $79-82{ }^{\circ} \mathrm{C}$ (pet. ether); R_{f} (EtOAc:pet. ether, 1:1) 0.25; IR (film) 1599 (Ar), $1326\left(\mathrm{SO}_{2}\right), 1159\left(\mathrm{SO}_{2}\right), 1058$ (SO) $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.69(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.30-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.04 ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), 5.21 ($1 \mathrm{H}, \mathrm{br}$ s, NCHPh), 4.17 ($1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, \mathrm{NH}$), 3.84 (1 H , ddd, $J 9.8,8.2$ and $2.0 \mathrm{~Hz}, \mathrm{NHCHCHPh}$), $3.05(1 \mathrm{H}, \mathrm{td}, J 13.1$ and 2.5 Hz , $\mathrm{NCHH}), 2.87(1 \mathrm{H}, \mathrm{dt}, J 13.1$ and $6.9 \mathrm{~Hz}, \mathrm{NCHH}), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.92-1.75(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C} H H C H_{2}\right), 1.64-1.52(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHH}), 1.24\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}(100.5 \mathrm{MHz}$, CDCl_{3}) 143.3 (s$), 138.2$ (s), 136.5 (s), 129.8 (d), 128.8 (d), 127.4 (d), 127.0 (d), 126.8 (d), 61.2 (d), 59.1 (d), 56.0 (s$), 50.6$ (t), 24.3 (t), 23.8 (t), 22.8 (q), 21.5 (q); MS (CI): $m / z(\%) 435\left(\mathrm{MH}^{+}, 89 \%\right)$ and $224\left(\mathrm{M}^{+}-\mathrm{NSOBu}^{\mathrm{t}}-\mathrm{CH}_{2} \mathrm{Ph}, 100 \%\right)$; HRMS (CI) found 435.1776. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires 435.1769; $[\alpha]_{\mathrm{D}}{ }^{23}-32\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Reaction of Boc aminal 4' with achiral sulfonium salt 5

To a solution of 2-(2-methylpropane-2-sulfinylamino)-pyrrolidine-1carboxylic acid tert-butyl ester $\mathbf{4}^{\prime}(0.10 \mathrm{~g}, 0.29 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base ($0.10 \mathrm{~mL}, 0.3 \mathrm{mmol}$) and the reaction mixture was left stirring for 30 min. 1-Benzyltetrahydrothiophenium tetrafluoroborate $5(0.12 \mathrm{~g}, 0.44 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ followed by P_{2} base ($0.10 \mathrm{~mL}, 0.3 \mathrm{mmol}$). The reaction mixture was stirred for 3.5 hours at $0{ }^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with 1:1 pet. ether:EtOAc to give:
\{3-[1-(2-Methylpropane-2-sulfinyl)-3-phenylaziridin-2-yl]-propyl\}-carbamic acid tert-butyl ester (6':7’) (trans:cis) as a colourless oil (15:1) (23 mg, 39\%); R_{f} (EtOAc:pet. ether, 1:1) 0.25; IR (film) 3350 (NH), 2926 (Me), 1693 (OCONH), 1056
(SO) cm ${ }^{-1} ;$ trans $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.21(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, $3.42(1 \mathrm{H}, \mathrm{d}, J 3.9 \mathrm{~Hz}, \mathrm{NCHPh}), 3.22-3.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.97-2.93(1 \mathrm{H}, \mathrm{br} \mathrm{m}$, CHNCHPh), 2.00-1.95 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}$), 1.83-1.62 (3H, m, CHHCHH), $1.43[9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.11\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.3$ (s), $132.5(\mathrm{~s}), 129.0$ (d), 128.7 (d), 125.6 (d), 82.3 (s), 58.6 (s$), 48.5$ (d), 44.7 (d), 40.5 (t), 31.0 (t), 28.5 (q), $24.8(\mathrm{t}), 22.8(\mathrm{q}) ;$ cis $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.21(5 \mathrm{H}, \mathrm{m}, \operatorname{ArH}), 4.32(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{NH}), 3.84(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{NCHPh}), 3.12-2.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.47-2.41(1 \mathrm{H}, \mathrm{br}$ $\mathrm{m}, \mathrm{C} H \mathrm{NCHPh}), 2.00-1.95\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCH}_{2}\right), 1.83-1.62(3 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHH}), 1.45$ $\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.19\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.3$ (s), 132.5 (s), 129.0 (d), 128.7 (d), 125.6 (d), 82.4 (s), 57.4 ($)$, 40.5 (t), 38.7 (d), 36.5 (d), 31.0 (t), 28.5 (q), 24.8 (t), 22.8 (q); MS (CI): $m / z(\%) 381\left(\mathrm{MH}^{+}, 100\right)$; HRMS (CI) found 381.2212. $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires 381.2210 ..

Reaction of aminal 4 with achiral sulfonium salt 9

To a solution of N2-1-[(4-methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2-methyl-2-propanesulfinamide $4(0.10 \mathrm{~g}, 0.29 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base $(0.10 \mathrm{~mL}, 0.3 \mathrm{mmol})$ and the reaction mixture was left stirring for $30 \mathrm{~min} .1-4-$ Methoxybenzyltetrahydrothiophenium tetrafluoroborate $9(0.13 \mathrm{~g}, 0.44 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ followed by P_{2} base ($0.10 \mathrm{~mL}, 0.3 \mathrm{mmol}$). The reaction mixture was then stirred for 3.5 hours at $0{ }^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with 1:1 pet. ether:EtOAc to give: benzenesulfonamide (13a major:13a minor:14a) (major trans: minor trans:cis) as a colourless oil (2.9:1.6:1) ($58 \mathrm{mg}, 43 \%$); R_{f} (EtOAc:pet. ether, 1:1) 0.45; IR (film), 2868 ($\mathrm{O}-\mathrm{Me}$), 1598 (Ar), $1327\left(\mathrm{SO}_{2}\right), 1155\left(\mathrm{SO}_{2}\right), 1092$ (SO), 813 (p-substitution) $\mathrm{cm}^{-1} ;$ major trans $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.72(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.31(2 \mathrm{H}, \mathrm{d}, J$ $8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.29(2 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.85(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, \mathrm{ArH}), 5.42(1 \mathrm{H}, \mathrm{dd}$, $J 5.5$ and $1.6 \mathrm{~Hz}, \mathrm{NH}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.31(1 \mathrm{H}, \mathrm{d}, J 3.9 \mathrm{~Hz}, \mathrm{NCHPh}), 3.10-3.01$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}), 2.99-2.93(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}), 2.89-2.85(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NCHPh}), 2.41$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.93-1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}\right), 1.80-1.63(3 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHH}), 1.12[9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.2$ (s), 143.4 (s), 136.2 (s), 132.0 (s), 129.8 (d), 129.7 (d), 127.6 (d), 127.1 (d), 83.9 (q), 57.9 (s), 56.2 (d), 47.9 (d), 42.5 (t), 34.4 $(\mathrm{t}), 24.6(\mathrm{t}), 22.3(\mathrm{q}), 21.5(\mathrm{q}) ;$ minor trans $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.73(2 \mathrm{H}, \mathrm{d}, J 8.8$ $\mathrm{Hz}, \mathrm{ArH}), 7.62(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.30(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.15(2 \mathrm{H}, \mathrm{d}, J 8.8$ $\mathrm{Hz}, \mathrm{ArH}), 4.83(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NH}), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.35(1 \mathrm{H}, \mathrm{d}, J 4.0 \mathrm{~Hz}, \mathrm{NCHPh})$, 3.10-3.01 $(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}), 2.99-2.93(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}), 2.41-2.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{NCHCH}_{2}\right), 1.93-1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}\right), 1.80-1.63(3 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHH}), 1.12[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.2$ (s), 143.4 (s), 136.2 (s), 132.0 (s), 129.8 (d), 129.7 (d), 127.6 (d), 127.1 (d), 83.9 (q), 57.9 (s), 53.3 (d), 47.4 (d), 42.5 (t), 34.4 (t), 24.6 (t), 22.3 (q), 21.5 (q); cis $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.84(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.69$ ($2 \mathrm{H}, \mathrm{d}, J 8.4 \mathrm{~Hz}, \mathrm{ArH}$), 7.17 (2H, d, J $8.4 \mathrm{~Hz}, \mathrm{ArH}$), 6.99 ($2 \mathrm{H}, \mathrm{d}, ~ J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), 4.80 $(1 \mathrm{H}, \mathrm{t}, J 6.2 \mathrm{~Hz}, \mathrm{NH}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.75(1 \mathrm{H}, \mathrm{d}, J 6.9 \mathrm{~Hz}, \mathrm{NCHPh}), 3.10-3.01$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}), 2.99-2.93(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}), 2.71-2.63(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NCHPh}), 2.41$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.93-1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCH}_{2}\right), 1.80-1.63(3 \mathrm{H}, \mathrm{m}, \mathrm{C} H H \mathrm{C} H \mathrm{H}), 1.12[9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.2$ (s), 143.4 (s), 136.2 (s), 132.0 (s), 129.8 (d), 129.7 (d), 127.6 (d), 127.1 (d), 83.8 (q), 54.2 (s), 44.2 (d), 43.4 (d), 42.5 (t), 28.1 (t), 24.6 (t), 22.3 (q), 21.5 (q); MS (ESI): $m / z(\%) 487\left(M+\mathrm{Na}^{+}, 28 \%\right), 465\left(\mathrm{MH}^{+}\right.$, 49%) and $391\left(\mathrm{M}^{+}-\mathrm{Bu}^{\mathrm{t}}-\mathrm{O}, 100 \%\right)$; HRMS (ESI) found 487.1695. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}$ requires 487.1696 .

Reaction of aminal 4 with achiral sulfonium salt 10

To a solution of N2-1-[(4-methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2-methyl-2-propanesulfinamide $4(0.10 \mathrm{~g}, 0.29 \mathrm{mmol})$ in THF (4 mL) at $0^{\circ} \mathrm{C}$ was added P_{2} base $(0.10 \mathrm{~mL}, 0.3 \mathrm{mmol})$ and the reaction mixture was left stirring for $30 \mathrm{~min} .1-$ 4-Chlorobenzyltetrahydrothiophenium tetrafluoroborate $11(0.13 \mathrm{~g}, 0.44 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ followed by P_{2} base $(0.10 \mathrm{~mL}, 0.3 \mathrm{mmol})$. The reaction mixture was stirred for 3.5 hours at $0{ }^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with 1:1 pet. ether:EtOAc to give:
$(R)_{s}-(2 S)-(3 R)-N-\{3-[3-(4-C h l o r o p h e n y l)-1-(2-m e t h y l p r o p a n e-2-s u l f i n y l)-a z i r i d i n-2-$
yl]-propyl $\}$-benzenesulfonamide ($\mathbf{(1 3 b}$) as a white solid ($60 \mathrm{mg}, 50 \%$) $\mathrm{mp} 59-61{ }^{\circ} \mathrm{C}$ (pet. ether); R_{f} (EtOAc:pet. ether, 1:1) 0.35; IR (film), 1598 (Ar), $1327\left(\mathrm{SO}_{2}\right), 1158$ $\left(\mathrm{SO}_{2}\right), 1089$ (SO), 815 (p-substitution), $663(\mathrm{C}-\mathrm{Cl}) \mathrm{cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.72$ ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), 7.33-7.26 (4H, m, ArH), 7.12 ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), 5.28 ($1 \mathrm{H}, \mathrm{t}, J 6.2 \mathrm{~Hz}, \mathrm{NH}$), 3.11 ($1 \mathrm{H}, \mathrm{d}, J 3.9 \mathrm{~Hz}, \mathrm{NCHPh}$), 3.01-2.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), 2.47 $(1 \mathrm{H}, \mathrm{td}, J 6.4$ and $3.9 \mathrm{~Hz}, \mathrm{C} H \mathrm{NCHPh}), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.21-2.13(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C} H \mathrm{HCH}_{2}\right), 2.04-1.95(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHH}), 1.83-1.63(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCHH}), 1.19[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.3$ (s), 137.0 (s), 135.4 (s), 133.9 (s), 129.8 (d), 128.9 (d), 127.6 (d), 127.2 (d), 57.2 (s), 50.3 (d), 45.5 (d), 42.4 (t), 28.0 (t), 25.6 (t), 22.3 (q), 21.6 (q); MS (ESI): $m / z(\%) 491\left(\mathrm{M}+\mathrm{Na}^{+}, 17 \%\right)$ and $469\left(\mathrm{MH}^{+}, 100 \%\right)$; HRMS (ESI) found $469.1384 \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Cl}$ requires 469.1380 (Found: C, 56.68%; $\mathrm{H}, 6.00 \%$; N, $5.74 \% . \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Cl}$ requires $\mathrm{C}, 56.33 \% ; \mathrm{H}, 6.23 \% ; \mathrm{N}, 5.97 \%$); $[\alpha]_{\mathrm{D}}{ }^{23}-133\left(c 0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. benzenesulfonamide (13b minor:14b) (trans:cis) as a colourless oil (2:1) (19 mg, 16%); R_{f} (EtOAc:pet. ether, 1:1) 0.50; IR (film), 1599 (Ar$), 1329\left(\mathrm{SO}_{2}\right), 1161\left(\mathrm{SO}_{2}\right)$, 1091 (SO), 815 (p-substitution), $661(\mathrm{C}-\mathrm{Cl}) \mathrm{cm}^{-1}$; trans $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.72$ (2H, d, J $8.3 \mathrm{~Hz}, \mathrm{ArH}$), 7.33-7.26 (4H, m, ArH), 7.12 ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), 4.86 $(1 \mathrm{H}, \mathrm{t}, J 6.2 \mathrm{~Hz}, \mathrm{NH}), 3.34(1 \mathrm{H}, \mathrm{d}, J 3.7 \mathrm{~Hz}, \mathrm{NCHPh}), 2.99-2.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right)$, 2.41-2.35 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}$ and NCHCH_{2}), 1.94-1.88 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}\right), 1.71-1.68(3 \mathrm{H}$, $\mathrm{m}, \mathrm{CHHCHH}), 1.19\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.5(\mathrm{~s}), 136.9(\mathrm{~s})$, 135.4 (s), 132.5 (s), 129.8 (d), 128.9 (d), 127.6 (d), 127.2 (d), 57.7 (s), 48.2 (d), 42.7 (d), $42.6(\mathrm{t}), 28.1(\mathrm{t}), 25.2(\mathrm{t}), 22.3(\mathrm{q}), 21.6(\mathrm{q}) ;$ cis $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.69(2 \mathrm{H}$, d, $J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.33-7.26(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.19(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 4.52(1 \mathrm{H}, \mathrm{t}, J$ $6.3 \mathrm{~Hz}, \mathrm{NH}), 3.75(1 \mathrm{H}, \mathrm{d}, J 7.0 \mathrm{~Hz}, \mathrm{NCHPh}), 2.87-2.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.41-2.35$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{NCHCH}_{2}\right), 1.94-1.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}\right), 1.71-1.68(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CHHCHH}), 1.19\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.5(\mathrm{~s}), 136.9(\mathrm{~s}), 135.4$ (s), 132.5 (s), 129.8 (d), 128.9 (d), 127.6 (d), 127.2 (d), 58.1 (s), 48.0 (d), 42.6 (t), 39.9 (d), 28.0 (t), 25.2 (t), 22.3 (q), 21.6 (q); MS (CI): m / z (\%) $469\left(\mathrm{MH}^{+}, 62 \%\right)$ and $224\left(\mathrm{M}^{+}-\mathrm{NHSOBu}^{\mathrm{t}}\right.$-CHPhCl, 100\%); HRMS (CI) found $469.1385 \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Cl}$ requires 469.1380 .

Reaction of aminal 4 with achiral sulfonium salt 11

To a solution of N2-1-[(4-methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2-methyl-2-propanesulfinamide $4(0.10 \mathrm{~g}, 0.29 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base ($0.10 \mathrm{~mL}, 0.3 \mathrm{mmol}$) and the reaction mixture was left stirring for 30 min . 1Allyltetrahydrothiophenium tetrafluoroborate $12(0.09 \mathrm{~g}, 0.44 \mathrm{mmol})$ was added at 0 ${ }^{\circ} \mathrm{C}$ followed by P_{2} base $(0.10 \mathrm{~mL}, 0.3 \mathrm{mmol})$. The reaction mixture was then stirred for 3.5 hours at $0{ }^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with $1: 1$ pet. ether:EtOAc to give:
$(R)_{s}-(2 S)-(3 R)-4$-methyl- N - $\{3$-[1-(2-methyl-propane-2-sulfinyl)-3-vinyl-aziridin-2-yll-propyl\}-benzenesulfonamide (13c) as a colourless oil (45 mg, 41\%); R_{f} (EtOAc:pet. ether, 1:1) 0.45; IR (film) 3054 (NH), 1161 (SO_{2}), 1093 (SO), 903 $\left(\mathrm{C}=\mathrm{CH}_{2}\right), 896\left(\mathrm{C}=\mathrm{CH}_{2}\right) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.79(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.32$ ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), $5.79\left(1 \mathrm{H}\right.$, ddd, $J 17.1,10.2$ and $\left.7.9 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.38(1 \mathrm{H}$, d, $J 17.1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} H \mathrm{H}), 5.20(1 \mathrm{H}, \mathrm{d}, J 10.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} H \mathrm{H}), 4.81(1 \mathrm{H}, \mathrm{t}, J 6.2 \mathrm{~Hz}$, $\mathrm{NH})$, 3.05-2.97 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), $2.78(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $3.9 \mathrm{~Hz}, \mathrm{NCHC}=\mathrm{C})$, 2.41-2.35 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{NCHCH}_{2}\right), 1.77-1.58\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.23\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}$ ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 149.7 (d), 143.5 (s), 135.8 (s), 129.8 (d), 127.2 (d), 120.2 (t), 57.4 (s), 50.2 (d), 42.7 (t), 41.9 (d), 28.8 (t), 26.2 (t), 22.6 (q), 21.6 (q); MS (CI): m/z (\%) $385\left(\mathrm{MH}^{+}, 59 \%\right)$ and $224\left(\mathrm{M}^{+}-\mathrm{HNSOBu}^{\mathrm{t}}-\mathrm{CHCH}=\mathrm{CH}_{2}, 100 \%\right)$; HRMS (CI) found 385.1619. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires 385.1613 ; $[\alpha]_{\mathrm{D}}{ }^{23}-160\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$(R)_{s}-(2 S)-(3 S)-4-m e t h y l-N-\{3-[1-(2-m e t h y l-p r o p a n e-2-s u l f i n y l)-3-v i n y l-a z i r i d i n-2-y l]-$ propyl $\}$-benzenesulfonamide (14c) as a colourless oil (always obtained as a mixture with trans) ($35 \mathrm{mg}, 32 \%$); R_{f} (EtOAc:pet. ether, 1:1) 0.50; IR (film) $1163\left(\mathrm{SO}_{2}\right), 903$
$\left(\mathrm{C}=\mathrm{CH}_{2}\right), 896\left(\mathrm{C}=\mathrm{CH}_{2}\right) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.73(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH})$, $7.27(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 5.79\left(1 \mathrm{H}, \mathrm{ddd}, J 17.2,10.3\right.$ and $\left.7.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.37$ $(1 \mathrm{H}, \mathrm{d}, J 17.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHH}), 5.31(1 \mathrm{H}, \mathrm{d}, J 10.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} H \mathrm{H}), 4.68(1 \mathrm{H}, \mathrm{t}, J 6.3$ $\mathrm{Hz}, \mathrm{NH}), 3.16(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4 \mathrm{~Hz}, \mathrm{NCHC}=\mathrm{C}), 3.01-2.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.41(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.20\left(1 \mathrm{H}, \mathrm{td}, J 7.4\right.$ and $\left.5.5 \mathrm{~Hz}, \mathrm{NCHCH}_{2}\right), 1.62-1.42\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.17$ $\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.4$ (d), 135.9 (s$), 131.5$ (s), 129.8 (d), 127.1 (d), 120.9 (t), 56.8 (s), 42.6 (t), 38.6 (d), 35.9 (d), 27.2 (t), 24.3 (t), 22.7 (q$)$, 21.5 (q); MS (ESI): $m / z(\%) 407\left(\mathrm{M}+\mathrm{Na}^{+}, 42 \%\right)$ and $385\left(\mathrm{MH}^{+}, 100 \%\right)$; HRMS (ESI) found 407.1435. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Na}$ requires 407.1434.

Reaction of sulfinylimine 4 with achiral sulfonium salt 12

To a solution of N2-1-[(4-methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2-methyl-2-propanesulfinamide $4(0.10 \mathrm{~g}, 0.29 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added P_{2} base ($0.10 \mathrm{~mL}, 0.3 \mathrm{mmol}$) and the reaction mixture was left stirring for 30 min . 1Phenylcarbamoylmethyltetrahydrothiophenium bromide 12 ($0.13 \mathrm{~g}, 0.44 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ followed by P_{2} base $(0.10 \mathrm{~mL}, 0.3 \mathrm{mmol})$. The reaction mixture was stirred for 3.5 hours at $0{ }^{\circ} \mathrm{C}$. If the reaction is stopped and quenched, a mixture of all three compounds is obtained (aziridines $63 \% 1: 4$ trans:cis and 29% pyrrolidine 15). The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with $1: 1$ pet. ether:EtOAc.
carboxylic acid phenylamide (13d:14d) (trans:cis) (1:4) as a colourless oil (87 mg , 63%); R_{f} (EtOAc:pet. ether, 1:1) 0.30; IR (film) 3055 (NH), 1693 (NHCO), 1600 (Ar), $1526(\mathrm{NHCO}), 1327\left(\mathrm{SO}_{2}\right), 1160\left(\mathrm{SO}_{2}\right), 1027(\mathrm{SO}) \mathrm{cm}^{-1}$; trans $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $8.66(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 7.73(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.50(2 \mathrm{H}, \mathrm{dd}, J 7.8$ and 1.6 Hz , ArH), $7.35-7.21(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.07(1 \mathrm{H}, \mathrm{tt}, J 7.8$ and $1.6 \mathrm{~Hz}, \mathrm{ArH}), 5.25(1 \mathrm{H}, \mathrm{t}, J 6.3$ $\mathrm{Hz}, \mathrm{NH}), 3.23(1 \mathrm{H}, \mathrm{d}, J 3.7 \mathrm{~Hz}, \mathrm{NCHCO}), 3.02-2.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.82(1 \mathrm{H}, \mathrm{ddd}, J$ $6.9,5.5$ and $3.7 \mathrm{~Hz}, \mathrm{C} H \mathrm{NCHCO}), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.91-1.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCH}_{2}\right)$, 1.78-1.69 (3H, m, CHHCHH), $1.30\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.1$ (s), 143.5 (s), 137.2 (s), 136.9 (s), 129.8 (d), 129.2 (d), 127.1 (d), 124.9 (d), 119.9 (d), 57.6 (s), 46.1 (d), 44.0 (d), 42.3 (t), 27.4 (t), 24.4 (t), 22.5 (q), 21.6 (q); cis $\delta_{H}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.36(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 7.68(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.56(2 \mathrm{H}, \mathrm{dd}, J 8.6$ and $1.1 \mathrm{~Hz}, \mathrm{ArH}), 7.33(2 \mathrm{H}, \mathrm{t}, J 8.6 \mathrm{~Hz}, \mathrm{ArH}), 7.24(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.14(1 \mathrm{H}$, $\mathrm{tt}, J 8.6$ and $1.1 \mathrm{~Hz}, \mathrm{ArH}), 5.08(1 \mathrm{H}, \mathrm{t}, J 6.3 \mathrm{~Hz}, \mathrm{NH}), 3.42(1 \mathrm{H}, \mathrm{d}, J 7.3 \mathrm{~Hz}$, $\mathrm{NCHCO}), 3.08-2.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.43(1 \mathrm{H}, \mathrm{ddd}, J 7.3,6.8$ and 4.9 Hz , $\mathrm{CHNCHCO}), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.75-1.63(4 \mathrm{H}, \mathrm{m}, \mathrm{CHHCHH}), 1.28[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.5(\mathrm{~s}), 143.5(\mathrm{~s}), 137.0(\mathrm{~s}), 136.9(\mathrm{~s}), 129.8(\mathrm{~d})$, 129.2 (d), 127.1 (d), 125.0 (d), 119.9 (d), 57.6 (s), 42.3 (t), 39.5 (d), 35.8 (d), 27.2 (t), 23.9 (t), 22.6 (q), 21.6 (q); MS (CI): m/z (\%) $478\left(\mathrm{MH}^{+}, 20 \%\right), 253\left(\mathrm{MH}^{+}-\right.$ TsNHCH $\left.{ }_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}, 48 \%\right)$, $224\left(\mathrm{M}^{+}-\mathrm{HNSOBu}^{\mathrm{t}}-\mathrm{CHCONHPh}, 71 \%\right)$ and $57\left(\mathrm{Bu}^{\mathrm{t}+}\right.$, 100%); cis isomer: HRMS (CI) found $478.1834 \mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires 478.1833; $[\alpha]_{D}{ }^{23}-110\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
If the reaction is left stirring for 2 more days, then a mixture of cis aziridine $\mathbf{1 4 d}$ and pyrrolidine 15 is obtained (cis aziridine 45% and 47% pyrrolidine 15): $(R) s-(R)-\alpha-$ (2R)-2-(2-Methyl-propane-2-sulfinylamino)-N phenyl-2-[1-(toluene-4-sulfonyl)-pyrrolodon-2-yll-acetamide (15) as a yellow oil ($65 \mathrm{mg}, 47 \%$); R_{f} (EtOAc:pet. ether, 1:1) 0.30; IR (film) 3055 (NH), 1693 (NHCO), 1600 (Ar), 1526 (NHCO), 1327 (SO_{2}), $1160\left(\mathrm{SO}_{2}\right), 1027(\mathrm{SO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.53(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 7.73(2 \mathrm{H}, \mathrm{d}$, $J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.50(2 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.6 \mathrm{~Hz}, \mathrm{ArH}), 7.35-7.21(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.14$ $(1 \mathrm{H}, \mathrm{tt}, J 7.8$ and $1.6 \mathrm{~Hz}, \mathrm{ArH}), 5.84(1 \mathrm{H}, \mathrm{d}, J 6.4 \mathrm{~Hz}, \mathrm{NH}), 4.20(1 \mathrm{H}, \mathrm{dd}, J 6.4$ and $2.1 \mathrm{~Hz}, \mathrm{NCHCO}), 3.41-3.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.45-2.41(4 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCO}$ and $\left.\mathrm{CH}_{3}\right), 1.91-1.69\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.39\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 168.2 (s), 144.4 (s), 137.3 (s), 133.7 (s), 129.8 (d), 129.0 (d), 127.8 (d), 124.7 (d),
119.7 (d), 64.7 (d), 62.9 (d), 56.7 ($s), 51.3$ (t), 30.1 (t), $26.0(\mathrm{t}), 22.9(\mathrm{q}), 21.7$ (q); MS (CI): $m / z(\%) 478\left(\mathrm{MH}^{+}, 20 \%\right), 253\left(\mathrm{MH}^{+}-\mathrm{TsNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}, 48 \%\right), 224\left(\mathrm{M}^{+}-\right.$ HNSOBu ${ }^{\mathrm{t}}$-CHCONHPh, 71%) and $57\left(\mathrm{Bu}^{\mathrm{t}}, 100 \%\right)$. HRMS (CI) found 478.1838 $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires 478.1833; [$\left.\alpha\right]_{\mathrm{D}}{ }^{23}-40\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

$(R)_{s}$-(2S)-(3S)-2-Methylpropane-2-sulfinic acid [2-phenyl-1-(toluene-4-sulfonyl)-piperidin-3-yl]-amide (16)

To a solution of 4-methyl- N-\{3-[3-phenyl-1-(propane-2-sulfinyl)-aziridin-2yl]propyl\} benzenesulfonamide $7(30 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at room temperature was added $\mathrm{Yb}(\mathrm{OTf})_{3}(50 \mathrm{mg}, 0.02 \mathrm{mmol})$. After 48 h the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvents were removed in vacuo. The crude product purified by column chromatography, eluting with 1:1 pet. ether:EtOAc to give the product as a white solid ($25 \mathrm{mg}, 93 \%$) mp 79-82 ${ }^{\circ} \mathrm{C}$ (pet. ether); R_{f} (EtOAc:pet. ether, 1:1) 0.25 ; IR (film) 1599 (Ar), $1326\left(\mathrm{SO}_{2}\right), 1159\left(\mathrm{SO}_{2}\right), 1058(\mathrm{SO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.69 (2H, d, J $8.3 \mathrm{~Hz}, \mathrm{ArH}$), 7.30-7.19 (5H, m, ArH), 7.04 ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), $5.21(1 \mathrm{H}, \mathrm{br}$ s, NCHPh), 4.17 ($1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, \mathrm{NH}$), 3.84 ($1 \mathrm{H}, \mathrm{ddd}, J 9.8,8.2$ and 2.0 $\mathrm{Hz}, \mathrm{NHCHCHPh}), 3.05(1 \mathrm{H}, \mathrm{td}, J 13.1$ and $2.5 \mathrm{~Hz}, \mathrm{NCHH}), 2.87(1 \mathrm{H}, \mathrm{dt}, J 13.1$ and $\left.6.9 \mathrm{~Hz}, \mathrm{NCHH}), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.92-1.75(3 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH})_{2}\right), 1.64-1.52(1 \mathrm{H}, \mathrm{m}$, CHHCHH), $1.24\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.3(\mathrm{~s}), 138.2(\mathrm{~s}), 136.5$ (s), 129.8 (d), 128.8 (d), 127.4 (d), 127.0 (d), 126.8 (d), 61.2 (d), 59.1 (d), 56.0 ($s)$, 50.6 (t), 24.3 (t), 23.8 (t), 22.8 (q), 21.5 (q); MS (CI): $m / z(\%) 435\left(\mathrm{MH}^{+}, 89 \%\right)$ and $224\left(\mathrm{M}^{+}-\mathrm{NSOBu}^{\mathrm{t}}-\mathrm{CH}_{2} \mathrm{Ph}, 100 \%\right)$; HRMS (CI) found 435.1776. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ requires $435.1769 ;[\alpha]_{D}^{23}-32\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

To a solution of 4-methyl- N-\{3-[3-phenyl-1-(propane-2-sulfinyl)-aziridin-2-yl]-propyl $\}$-benzenesulfonamide $6(20 \mathrm{mg}, 0.04 \mathrm{mmol})$ in anhydrous 1,4-dioxane (1 $\mathrm{mL})$ at r.t. was added a solution of $\mathrm{HCl}(1.25 \mathrm{M})$ in EtOH . The reaction was monitored by TLC and the amount of HCl was determined by the reaction progress. Once all starting material was consumed, the reaction mixture was concentrated. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 4 \mathrm{~mL})$. The combined aqueous layers were basified with $\mathrm{NH}_{3}(1 \mathrm{~N}, 30 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 25 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed in vacuo to afford the product as a white solid ($11 \mathrm{mg}, 81 \%$) mp 122-124 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right.$, 9:1) 0.10; IR (film) $3379(\mathrm{NH}), 3324(\mathrm{NH}), 1597(\mathrm{Ar}), 1330\left(\mathrm{SO}_{2}\right), 1163\left(\mathrm{SO}_{2}\right) \mathrm{cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.68(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.28-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.17(2 \mathrm{H}$, d, $J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 4.91(1 \mathrm{H}, \mathrm{d}, J 2.9 \mathrm{~Hz}, \mathrm{NCHPh}), 3.69(1 \mathrm{H}, \mathrm{dt}, J 13.3$ and 3.9 Hz , $\mathrm{NCHH}), 3.54\left(1 \mathrm{H}, \mathrm{dd}, J 7.6\right.$ and $\left.2.9 \mathrm{~Hz}, \mathrm{NCHCH}_{2}\right), 3.19(1 \mathrm{H}, \mathrm{ddd}, J 13.3,11.8$ and $3.4 \mathrm{~Hz}, \mathrm{NCHH}), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.85-1.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}\right), 1.68-1.57(3 \mathrm{H}, \mathrm{m}$, CHHCHH and 2 x NH$), 1.53-1.47(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCHH}), 1.43-1.39(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{HCHH}$); $\delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.3$ (s), 143.2 (s), 132.8 (s), 129.7 (d), 128.7 (d), 128.0 (d), 127.2 (d), 126.3 (d), 53.2 (d), 50.4 (d), 42.5 (t), 28.2 (t), 25.8 (t), 21.4 (q); MS (CI): $m / z(\%) 331\left(\mathrm{MH}^{+}, 98 \%\right), 314\left(\mathrm{MH}^{+}-\mathrm{NH}_{3}, 100 \%\right)$ and $175\left(\mathrm{M}^{+}-\mathrm{Ts}\right.$, 75%); HRMS (CI) found 331.1480. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires 331.1473; (Found: C, 65.51\%; H, 6.61\%; N, 8.34\%. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ S requires C, 65.42%; H, 6.71\%; N, 8.48\%) $[\alpha]_{\mathrm{D}}{ }^{23}+40\left(c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

To a solution of 2-methylpropane-2-sulfinic acid [2-phenyl-1-(toluene-4-sulfonyl)-piperidin-3-yl]-amide 16 ($10 \mathrm{mg}, 0.02 \mathrm{mmol}$) in anhydrous 1,4-dioxane (1 $\mathrm{mL})$ at room temperature was added a solution of $\mathrm{HCl}(1.25 \mathrm{M})$ in EtOH . The reaction was monitored by TLC and the amount of HCl was determined by the reaction progress. Once all starting material was consumed, the reaction mixture was concentrated. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 4 \mathrm{~mL})$. The combined aqueous layers were basified with $\mathrm{NH}_{3}(1 \mathrm{~N}, 30 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed in vacuo to afford the product as a colourless oil ($6 \mathrm{mg}, 88 \%$); $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 9: 1\right)$ 0.15; IR (film) $3496(\mathrm{NH}), 1387\left(\mathrm{SO}_{2}\right), 1160\left(\mathrm{SO}_{2}\right) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.68$ ($2 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, \mathrm{ArH}$), 7.43-7.19 (7H, m, ArH), 4.89 ($1 \mathrm{H}, \mathrm{d}, J 2.6 \mathrm{~Hz}, \mathrm{NCHPh}$), 3.84 (1 H , ddd, $J 7.7,7.6$ and $\left.2.6 \mathrm{~Hz}, \mathrm{NH}_{2} \mathrm{CH}\right), 3.26-3.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 1.78-1.52 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$ and NH_{2}); $\delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 145.0(\mathrm{~s}), 136.9$ (s), 136.8 (s), 129.8 (d), 128.7 (d), 127.5 (d), 127.4 (d), 127.2 (d), 60.4 (d), 57.9 (d), 41.9 (t), 29.8 (t , 25.2 (t$), 21.6(\mathrm{q}) ;$ MS (ESI): $m / z(\%) 331\left(\mathrm{MH}^{+}, 100 \%\right)$; HRMS (ESI) found $331.1476 \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires 331.1474; (Found: C, 65.53%; H, 6.62%; N, $8.34 \% . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ S requires C, 65.42%; $\mathrm{H}, 6.71 \% ; \mathrm{N}, 8.48 \%$); $[\alpha]_{\mathrm{D}}{ }^{23}+40(c 0.2$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ Aminal 4

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridines 6 minor: aziridine 7

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridines 6 minor: aziridine 7

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ pyrrolidine 8

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ pyrrolidine 8

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridines $\mathbf{6}^{\prime}: 7^{\prime}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridines $\mathbf{6}^{\prime}: 7$ '

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridines 13amajor:13aminor:14a

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridines 13amajor:13aminor:14a

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridines 13bminor: 14b

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridines 13bminor:14b

13b

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridine 13c

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridine 13c

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridine $\mathbf{1 4 c}$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridine 14 c

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridines 13d:14d

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridines 13d:14d

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ pyrrolidine 15

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ pyrrolidine 15

nom it 1)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ piperidine 16

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ piperidine 16

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridine 17

8.0
ppm (t1)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ aziridine 17

150
pporn (t1)

References

(1) Unthank, M. G.; Husain, N.; Aggarwal, V. K. Angew. Chem. Int. Ed., 2006, 45, 7066.

