Aminals as substrates for sulfur ylides: A synthesis of functionalised aziridines and *N*-heterocycles

Christoforos G. Kokotos, and Varinder K. Aggarwal*

School of Chemistry, Bristol University, Cantock's Close, Bristol, UK BS8 1TS. E-mail: v.aggarwal@bristol.ac.uk; Fax: +44 (0)117 929 8611; Tel: +44 (0)117 954 6315

Supplementary Information

General Methods	L
Experimental procedures	2
NMR spectraS	18
References	12

General Methods

All chemicals were purchased from Aldrich, Fluka or Lancaster. Anhydrous THF, CH₂Cl₂ were obtained from a purification column composed of activated alumina (A-2). Chromatography: Flash chromatography was performed on silica gel (Merck Kieselgel 60 F₂₅₄ 230-400 mesh). TLC was performed on aluminum backed silica plates (0.2 mm, 60 F_{254}) which were developed using standard visualising agents: UV fluorescence (254 & 366 nm), phosphomolybdic acid / Δ , anisaldehyde / Δ , potassium permanganate / Δ . Melting points were determined on a Khofler hot stage apparatus. Infra red spectra were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer. Only selected absorbencies (v_{max}) are reported. ¹H NMR spectra were recorded at either 270 or 400 MHz on Delta GX/270 or Delta GX/400 instruments respectively. Chemical shifts ($\delta_{\rm H}$) are quoted in parts per million (ppm), referenced to TMS. ¹³C NMR spectra were recorded at either 68 or 100 MHz on Delta GX/270 or Delta GX/400 instruments respectively. Chemical shifts (δ_c) are quoted in parts per million (ppm), referenced to the appropriate solvent peak and are assigned as s, d, t, q for C, CH, CH₂, CH₃ respectively. Low resolution mass spectra (m/z) were recorded on a Micromass Analytical Autospec spectrometer, with only molecular ions $(M^+ \text{ or } MH^+)$ and major peaks being reported with intensities quoted as percentages of the base peak. High-resolution mass spectra were recorded on a Micromass Analytical Autospec Spectrometer. All GC-MS experiments were performed using an Agilent

6890 apparatus and the following conditions: column: HP190915-433 HP-5MS 5% Phenyl Methyl Siloxane, capillary 30 m x 250 μ m x 0.25 μ m nominal, carrier gas: helium 1 mL/min (constant flow mode), injector: 250 °C (split less mode), detector: agilent MSD 5973 (EI mode), Oven: 70 °C (3 min), 15 °C/min (15.3 min), 300 °C (8 min).

Experimental procedures

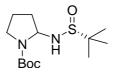
N-[(4-Methylphenyl)sulfonyl]pyrrolidin-2-ol

For the synthesis see: Kokotos, C. G.; Aggarwal, V. K. Chem. Comm., 2006, 2156.

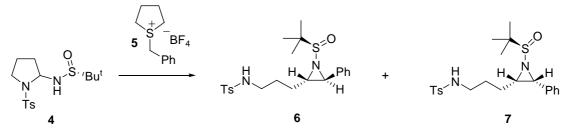
tert-Butyl 2-hydroxy-1-pyrrolidinecarboxylate

For the synthesis see: Dieter, R. K.; Sharma, R. R. J. Org. Chem., 1996, 61, 4180.

General procedure for chiral imine synthesis


To a stirred solution of *N*-[(4-Methylphenyl)sulfonyl]pyrrolidin-2-ol or *tert*-Butyl 2hydroxy-1-pyrrolidinecarboxylate (1 eq.) in CH_2Cl_2 (15 mL), Ti(OEt)₄ (20 % solution in ethanol) (2 eq.) was added under argon at room temperature. The solution was treated with (*R*)-2-methyl-2-propanesulfinamide (1.1 eq.) in one portion and the reaction mixture was then heated at reflux for 7 h under argon. The reaction mixture was allowed to cool to room temperature before quenching with an equal amount of brine (15 mL). The resulting slurry was then filtered through Celite, washed with an excess of CH_2Cl_2 (100 mL) and the filtrate partitioned between brine (80 mL) and CH_2Cl_2 (80 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 75 mL) and the combined organic layers were dried (MgSO₄) and concentrated under reduced pressure. The residue was then purified by flash chromatography eluting with 1:1 EtOAc:pet. ether followed by EtOAc to give the product.

(*R*)_s-N2-1-[(4-Methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2-methyl-2propanesulfinamide 4¹

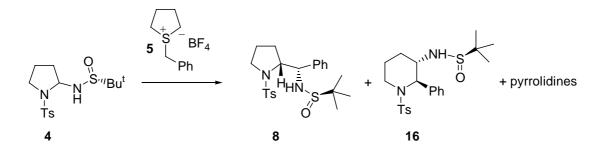

Colourless gum (81%) as a mixture of ring opened and ring closed form; R_{f} (EtOAc:pet.ether, 1:1) 0.1/0.15/0.3; IR (film) 2957 (NH), 2925 (NH), 2870 (NH), 1597 (HC=N), 1335 (S=O), 1155 (SO₂), 1091 (S=O), 1033 (S=O) cm⁻¹; open form $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.01 (1H, t, J 4.0 Hz, N=CH), 7.72 (2H, d, J 8.3 Hz, Ar), 7.29 (2H, d, J 8.3 Hz, ArH), 4.74 (1H, t, J 6.3 Hz, NH), 3.04-2.97 (2H, m, NCH₂), 2.53 (2H, td, J 7.1 and 4.0 Hz, CH₂C=N), 2.42 (3H, s, CH₃) 1.81 (2H, m, NCH₂CH₂), 1.15 [9H, s, C(CH₃)₃]; closed form two diastereomers (1:1) $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.80-7.70 (4H, d, J 8.3 Hz, Ar), 7.33-7.27 (4H, d, J 8.3 Hz, ArH), 5.18 (1H, td, J 6.8 and 2.6 Hz, NCH), 5.05 (1H, dt, J 6.3 and 2.4 Hz, NCH), 4.16 (1H, d, J 2.4 Hz, NH), 3.89 (1H, d, J 6.8 Hz, NH), 3.59 (1H, ddd, J 10.3, 7.5 and 3.1 Hz, NCHH), 3.42 (1H, ddd, J 11.3, 6.2 and 2.5 Hz, NCHH), 3.15-3.07 (2H, m, 2 x NCHH), 2.72-2.55 (4H, m, 2 x CH₂CHN), 2.41 (6H, s, 2 x CH₃) 2.20-1.61 (4H, m, 2 x CH₂CH₂), 1.23 [9H, s, C(CH₃)₃], 1.23 [9H, s, C(CH₃)₃]; ring-open and ring closed forms δ_c (100.5 MHz, CDCl₃) 168.4 (d), 144.0 (s), 143.8 (s), 143.3 (s), 137.3 (s), 137.2 (s), 137.1 (s), 130.0 (d), 129.8 (d), 129.7 (d), 127.7 (d), 127.5 (d), 127.1 (d), 72.8 (d), 70.6 (d), 56.7 (s), 56.3 (s), 56.0 (s), 48.6 (t), 48.1 (t), 42.6 (t), 34.1 (t), 33.2 (t), 32.2 (t), 25.3 (t), 23.6 (t), 23.2 (t), 22.6 (q), 22.5 (q), 22.4 (q), 21.6 (q), 21.5 (q), 21.1 (q); MS (ESI) *m/z* (%) 367 (M+Na⁺, 25%) and 345 (MH⁺, 23%); HRMS (ESI) found 367.1121. C₁₅H₂₄N₂O₃S₂Na requires 367.1115.

(*R*)_s-2-(2-Methyl-propane-2-sulfinylamino)-pyrrolidine-1-carboxylic acid *tert*butyl ester

Colourless oil (39%); R_f (EtOAc:pet.ether, 1:1) 0.05; IR (film) 2952 (NH), 1641 (OCONH), 1335 (S=O) cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.20-5.16 (1H, m, NCH), 3.80-3.78 (1H, m, NH), 3.49-3.47 (1H, m, NC*H*H), 3.29-3.25 (1H, m, NCH*H*), 2.10-1.80 (4H, m, CH₂CH₂), 1.44 [9H, s, C(CH₃)₃], 1.18 [9H, s, C(CH₃)₃]; $\delta_{\rm c}$ (100.5 MHz, CDCl₃) 154.7 (s), 83.2 (d), 79.9 (s), 56.7 (s), 45.2 (t), 28.4 (q), 28.3 (t), 22.4 (q), 22.3 (t). MS (CI) *m/z* (%) 291 (MH⁺, 100%) and 186 (MH⁺-SOBu^t, 45%); (Found: C, 53.92%; H, 8.89%; N, 9.43%. C₁₃H₂₆N₂O₃S requires C, 53.76%; H, 9.02%; N, 9.65%); [α]_D²³ –104 (*c* 1.0, CH₂Cl₂).

Reaction of aminal 4 with achiral sulfonium salt 5

To a solution of *N*2-1-[(4-methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2methyl-2-propanesulfinamide **4** (0.10 g, 0.29 mmol) in THF (4 mL) at 0 °C was added P₂ base (0.10 mL, 0.3 mmol) and the reaction mixture was left stirring for 30 min. 1-Benzyltetrahydrothiophenium tetrafluoroborate **5** (0.12 g, 0.44 mmol) was added at 0 °C followed by P₂ base (0.10 mL, 0.3 mmol). The reaction mixture was then stirred for 3.5 hours at 0 °C, diluted with CH₂Cl₂ (20 mL) and H₂O (20 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried (MgSO₄). The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with 1:1 pet. ether:EtOAc to give:

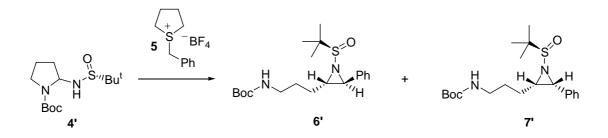

(R)s-(2S)-(3R)-4-methyl-N-{3-[3-phenyl-1-(propane-2-sulfinyl)-aziridin-2-yl]-

propyl}-benzenesulfonamide (6) (major trans) as a colourless oil (63 mg, 50%); R_f (EtOAc:pet. ether, 1:1) 0.50; IR (film) 3063 (NH), 1599 (Ar), 1338 (SO₂), 1159 (SO₂), 1058 (SO) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.72 (2H, d, *J* 8.3 Hz, ArH), 7.31-7.25 (5H, m, ArH), 7.19 (2H, d, *J* 8.3 Hz, ArH), 5.24 (1H, t, *J* 6.1 Hz, NH), 3.11 (1H, d, *J* 3.9 Hz, NCHPh), 3.05-2.91 (2H, m, NCH₂), 2.51 (1H, td, *J* 6.4 and 3.9 Hz, CHNCHPh), 2.41 (3H, s, CH₃), 2.21-2.13 (1H, m, CHHCH₂), 2.04-1.96 (1H, m, CHHC*H*H), 1.79-1.63 (2H, m, CHHC*H*H), 1.19 [9H, s, C(CH₃)₃]; δ_c (100.5 MHz, CDCl₃) 143.3 (s), 143.2 (s), 136.8 (s), 129.7 (d), 128.7 (d), 128.0 (d), 127.2 (d), 126.3 (d), 57.1 (s), 50.2 (d), 46.1 (d), 42.5 (t), 28.2 (t), 25.8 (t), 22.3 (q), 21.4 (q); MS (CI): *m/z* (%) 435 (MH⁺, 87%), 378 (MH⁺-Bu^t, 17%) and 224 (M⁺-NSOBu^t-CH₂Ph, 100%); HRMS (CI) found 435.1776. C₂₂H₃₀N₂O₃S₂ requires 435.1772 (Found: C, 61.02%; H, 6.73%; N, 6.21%. C₂₂H₃₀N₂O₃S₂ requires C, 60.80%; H, 6.96%; N, 6.45%); [α]_D²³ -36 (*c* 1.0, CH₂Cl₂).

4-methyl-N-{3-[3-phenyl-1-(propane-2-sulfinyl)-aziridin-2-yl]-propyl}-

benzenesulfonamide (6 minor:7) (minor trans: cis 5:1) as a colourless oil (32 mg, 27%); R_f (EtOAc:pet. ether, 1:1) 0.55; IR (film) 3063 (NCH), 1599 (Ar), 1330 (SO₂), 1158 (SO₂), 1093 (SO) cm⁻¹; minor *trans* $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.72 (2H, d, J 8.3 Hz, ArH), 7.33-7.24 (7H, m, ArH), 4.87 (1H, t, J 6.2 Hz, NH), 3.33 (1H, d, J 3.9 Hz, NCHPh), 2.98 (2H, q, J 6.2 Hz, NCH₂), 2.43-2.34 (4H, m, CH₃ and CHNCHPh), 1.96-1.83 (1H, m, CHHCH₂), 1.82-1.60 (3H, m, CHHCHH), 1.12 [9H, s, C(CH₃)₃]; δ_c (100.5 MHz, CDCl₃) 143.4 (s), 143.2 (s), 137.6 (s), 129.8 (d), 128.0 (d), 128.6 (d), 127.2 (d), 127.1 (d), 57.4 (s), 50.9 (d), 47.4 (d), 42.8 (t), 28.3 (t), 25.9 (t), 22.8 (q), 21.5 (q); cis δ_H (400 MHz, CDCl₃) 7.70 (2H, d, J 8.3 Hz, ArH), 7.33-7.24 (5H, m, ArH), 7.17 (2H, d, J 8.3 Hz, ArH), 4.41 (1H, t, J 6.3 Hz, NH), 3.79 (1H, d, J 7.0 Hz, NCHPh), 2.88-2.77 (2H, m, NCH₂), 2.43-2.34 (4H, m, CH₃ and CHNCHPh), 1.96-1.83 (1H, m, CHHCH₂), 1.82-1.60 (3H, m, CHHCHH), 1.17 [9H, s, C(CH₃)₃]; δ_c (100.5 MHz, CDCl₃) 143.6 (s), 143.4 (s), 137.3 (s), 129.7 (d), 128.4 (d), 128.1 (d), 127.6 (d), 126.6 (d), 57.0 (s), 48.0 (d), 46.7 (d), 42.5 (t), 28.2 (t), 24.8 (t), 22.7 (g), 21.5 (q); MS (CI): m/z (%) 435 (MH⁺, 67%), 330 (MH⁺-SOBu^t, 15%) and 224 (M⁺-NSOBu^t-CH₂Ph, 100%).

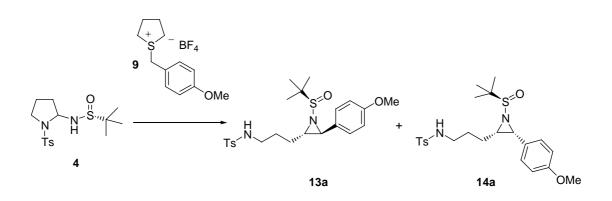
Reaction of aminal 4 with achiral sulfonium salt 5 leading to pyrrolidines and piperidine



To a solution of *N*2-1-[(4-methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2methyl-2-propanesulfinamide **4** (0.10 g, 0.29 mmol) in THF (4 mL) at 0 °C was added P_2 base (0.10 mL, 0.3 mmol) and the reaction mixture was left stirring for 30 min. 1-Benzyltetrahydrothiophenium tetrafluoroborate **5** (0.12 g, 0.44 mmol) was added at 0

^oC followed by P_2 base (0.10 mL, 0.3 mmol). The reaction mixture was stirred for 5 hours at 0 ^oC and then heated to reflux for 15 h. The reaction was diluted with CH_2Cl_2 (20 mL) and H_2O (20 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were dried (MgSO₄). The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with 1:1 pet. ether:EtOAc to give:

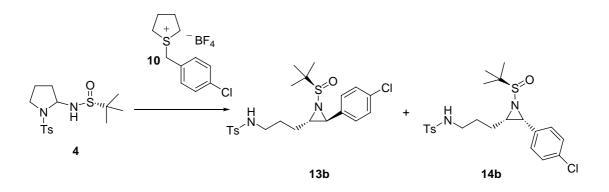
(*R*)_{*s*}-(*R*)-α-(2*R*)-2-Methylpropane-2-sulfinic acid {phenyl-[1-(toluene-4-sulfonyl)pyrrolodin-2-yl]-methyl}amide (**8**) (major) as a white solid (58 mg, 46%) mp 72-75 °C (pet. ether); *R*_f (EtOAc:pet. ether, 1:1) 0.30; IR (film) 1599 (Ar), 1341 (SO₂), 1159 (SO₂), 1058 (SO) cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.78 (2H, d, *J* 8.3 Hz, ArH), 7.43-7.21 (7H, m, ArH), 5.55 (1H, d, *J* 3.5 Hz, NH), 4.44 [1H, t (ap), *J* 3.5 Hz, NCHPh], 4.20 (1H, m, NC*H*CHPh), 3.09 (1H, dt, *J* 10.9 and 7.4 Hz, NC*H*H), 2.80 (1H, ddd, *J* 10.9, 7.4 and 5.7 Hz, NC*H*H), 2.41 (3H, s, CH₃), 1.79-1.71 (1H, m, C*H*HCH₂), 1.63-1.58 (1H, m, CHHC*H*H), 1.56-1.42 (2H, m, C*H*HC*H*H), 1.24 [9H, s, C(CH₃)₃]; $\delta_{\rm c}$ (100.5 MHz, CDCl₃) 143.9 (s), 138.8 (s), 134.1 (s), 129.7 (d), 128.6 (d), 128.0 (d), 127.3 (d), 127.0 (d), 65.0 (d), 61.8 (d), 55.9 (s), 50.1 (t), 29.1 (t), 22.8 (t), 22.7 (q), 21.5 (q); MS (CI): *m/z* (%) 435 (MH⁺, 85%) and 224 (M⁺-NSOBu^t-CH₂Ph, 100%); HRMS (CI) found 435.1776. C₂₂H₃₀N₂O₃S₂ requires 435.1772; [α]_D²³ -76 (*c* 1.0, CH₂Cl₂). (2*S*)-(3*S*)-2-Methylpropane-2-sulfinic acid [2-phenyl-1-(toluene-4-sulfonyl)piperidin-3-yl]-amide (**16**) as a white solid (15 mg, 12%) mp 79-82 °C (pet. ether); $R_{\rm f}$ (EtOAc:pet. ether, 1:1) 0.25; IR (film) 1599 (Ar), 1326 (SO₂), 1159 (SO₂), 1058 (SO) cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.69 (2H, d, *J* 8.3 Hz, ArH), 7.30-7.19 (5H, m, ArH), 7.04 (2H, d, *J* 8.3 Hz, ArH), 5.21 (1H, br s, NCHPh), 4.17 (1H, d, *J* 8.2 Hz, NH), 3.84 (1H, ddd, *J* 9.8, 8.2 and 2.0 Hz, NHC*H*CHPh), 3.05 (1H, td, *J* 13.1 and 2.5 Hz, NC*H*H), 2.87 (1H, dt, *J* 13.1 and 6.9 Hz, NC*H*H), 2.41 (3H, s, CH₃), 1.92-1.75 (3H, m, C*H*HC*H*₂), 1.64-1.52 (1H, m, CHHC*H*H), 1.24 [9H, s, C(CH₃)₃]; $\delta_{\rm c}$ (100.5 MHz, CDCl₃) 143.3 (s), 138.2 (s), 136.5 (s), 129.8 (d), 128.8 (d), 127.4 (d), 127.0 (d), 126.8 (d), 61.2 (d), 59.1 (d), 56.0 (s), 50.6 (t), 24.3 (t), 23.8 (t), 22.8 (q), 21.5 (q); MS (CI): *m/z* (%) 435 (MH⁺, 89%) and 224 (M⁺-NSOBu^t-CH₂Ph, 100%); HRMS (CI) found 435.1776. C₂₂H₃₀N₂O₃S₂ requires 435.1769; [α]_D²³ -32 (*c* 1.0, CH₂Cl₂).


Reaction of Boc aminal 4' with achiral sulfonium salt 5

To a solution of 2-(2-methylpropane-2-sulfinylamino)-pyrrolidine-1carboxylic acid *tert*-butyl ester **4'** (0.10 g, 0.29 mmol) in THF (4 mL) at 0 °C was added P₂ base (0.10 mL, 0.3 mmol) and the reaction mixture was left stirring for 30 min. 1-Benzyltetrahydrothiophenium tetrafluoroborate **5** (0.12 g, 0.44 mmol) was added at 0 °C followed by P₂ base (0.10 mL, 0.3 mmol). The reaction mixture was stirred for 3.5 hours at 0 °C, diluted with CH₂Cl₂ (20 mL) and H₂O (20 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine (20 mL), and dried (MgSO₄). The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with 1:1 pet. ether:EtOAc to give:

 $\frac{3-[1-(2-Methylpropane-2-sulfinyl)-3-phenylaziridin-2-yl]-propyl}-carbamic acid$ <u>tert-butyl ester (6':7') (trans:cis)</u> as a colourless oil (15:1) (23 mg, 39%); R_f (EtOAc:pet. ether, 1:1) 0.25; IR (film) 3350 (NH), 2926 (Me), 1693 (OCONH), 1056 (SO) cm⁻¹; *trans* $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.38-7.21 (5H, m, ArH), 4.61 (1H, br s, NH), 3.42 (1H, d, *J* 3.9 Hz, NCHPh), 3.22-3.12 (2H, m, NCH₂), 2.97-2.93 (1H, br m, *CH*NCHPh), 2.00-1.95 (1H, m, *CH*HCH₂), 1.83-1.62 (3H, m, *CHHCH*H), 1.43 [9H, s, C(CH₃)₃], 1.11 [9H, s, C(CH₃)₃]; $\delta_{\rm c}$ (100.5 MHz, CDCl₃) 154.3 (s), 132.5 (s), 129.0 (d), 128.7 (d), 125.6 (d), 82.3 (s), 58.6 (s), 48.5 (d), 44.7 (d), 40.5 (t), 31.0 (t), 28.5 (q), 24.8 (t), 22.8 (q); *cis* $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.38-7.21 (5H, m, ArH), 4.32 (1H, br s, NH), 3.84 (1H, d, *J* 7.0 Hz, NCHPh), 3.12-2.98 (2H, m, NCH₂), 2.47-2.41 (1H, br m, *CH*NCHPh), 2.00-1.95 (1H, m, *CH*HCH₂), 1.83-1.62 (3H, m, *CHHCH*H), 1.45 [9H, s, C(CH₃)₃], 1.19 [9H, s, C(CH₃)₃]; $\delta_{\rm c}$ (100.5 MHz, CDCl₃) 154.3 (s), 132.5 (s), 129.0 (d), 128.7 (d), 125.6 (d), 82.4 (s), 57.4 (s), 40.5 (t), 38.7 (d), 36.5 (d), 31.0 (t), 28.5 (q), 24.8 (t), 22.8 (q); MS (CI): *m/z* (%) 381 (MH⁺, 100); HRMS (CI) found 381.2212. C₂₀H₃₃N₂O₃S requires 381.2210.

Reaction of aminal 4 with achiral sulfonium salt 9

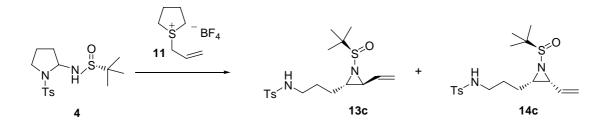


To a solution of *N*2-1-[(4-methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2-methyl-2-propanesulfinamide **4** (0.10 g, 0.29 mmol) in THF (4 mL) at 0 °C was added P₂ base (0.10 mL, 0.3 mmol) and the reaction mixture was left stirring for 30 min. 1-4-Methoxybenzyltetrahydrothiophenium tetrafluoroborate **9** (0.13 g, 0.44 mmol) was added at 0 °C followed by P₂ base (0.10 mL, 0.3 mmol). The reaction mixture was then stirred for 3.5 hours at 0 °C, diluted with CH₂Cl₂ (20 mL) and H₂O (20 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine (20 mL), and dried (MgSO₄). The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with 1:1 pet. ether:EtOAc to give:

<u>N-{3-[3-(4-Methoxyphenyl)-1-(2-methylpropane-2-sulfinyl)-aziridin-2-yl]-propyl}-</u>

benzenesulfonamide (13a major:13a minor:14a) (major trans: minor trans:cis) as a colourless oil (2.9:1.6:1) (58 mg, 43%); $R_{\rm f}$ (EtOAc:pet. ether, 1:1) 0.45; IR (film), 2868 (O-Me), 1598 (Ar), 1327 (SO₂), 1155 (SO₂), 1092 (SO), 813 (*p*-substitution) cm⁻¹; major trans δ_H (400 MHz, CDCl₃) 7.72 (2H, d, J 8.6 Hz, ArH), 7.31 (2H, d, J 8.4 Hz, ArH), 7.29 (2H, d, J 8.4 Hz, ArH), 6.85 (2H, d, J 8.6 Hz, ArH), 5.42 (1H, dd, J 5.5 and 1.6 Hz, NH), 3.80 (3H, s, OCH₃), 3.31 (1H, d, J 3.9 Hz, NCHPh), 3.10-3.01 (1H, m, NCHH), 2.99-2.93 (1H, m, NCHH), 2.89-2.85 (1H, m, CHNCHPh), 2.41 (3H, s, CH₃), 1.93-1.87 (1H, m, CHHCH₂), 1.80-1.63 (3H, m, CHHCHH), 1.12 [9H, s, C(CH₃)₃]; δ_c (100.5 MHz, CDCl₃) 154.2 (s), 143.4 (s), 136.2 (s), 132.0 (s), 129.8 (d), 129.7 (d), 127.6 (d), 127.1 (d), 83.9 (q), 57.9 (s), 56.2 (d), 47.9 (d), 42.5 (t), 34.4 (t), 24.6 (t), 22.3 (q), 21.5 (q); minor trans $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.73 (2H, d, J 8.8 Hz, ArH), 7.62 (2H, d, J 8.3 Hz, ArH), 7.30 (2H, d, J 8.3 Hz, ArH), 7.15 (2H, d, J 8.8 Hz, ArH), 4.83 (1H, br m, NH), 3.83 (3H, s, OCH₃), 3.35 (1H, d, J 4.0 Hz, NCHPh), 3.10-3.01 (1H, m, NCHH), 2.99-2.93 (1H, m, NCHH), 2.41-2.35 (4H, m, CH₃ and NCHCH₂), 1.93-1.87 (1H, m, CHHCH₂), 1.80-1.63 (3H, m, CHHCHH), 1.12 [9H, s, $C(CH_3)_3$; δ_c (100.5 MHz, CDCl₃) 154.2 (s), 143.4 (s), 136.2 (s), 132.0 (s), 129.8 (d), 129.7 (d), 127.6 (d), 127.1 (d), 83.9 (q), 57.9 (s), 53.3 (d), 47.4 (d), 42.5 (t), 34.4 (t), 24.6 (t), 22.3 (q), 21.5 (q); *cis* δ_H (400 MHz, CDCl₃) 7.84 (2H, d, *J* 8.3 Hz, ArH), 7.69 (2H, d, J 8.4 Hz, ArH), 7.17 (2H, d, J 8.4 Hz, ArH), 6.99 (2H, d, J 8.3 Hz, ArH), 4.80 (1H, t, J 6.2 Hz, NH), 3.81 (3H, s, OCH₃), 3.75 (1H, d, J 6.9 Hz, NCHPh), 3.10-3.01 (1H, m, NCHH), 2.99-2.93 (1H, m, NCHH), 2.71-2.63 (1H, m, CHNCHPh), 2.41 (3H, s, CH₃), 1.93-1.87 (1H, m, CHHCH₂), 1.80-1.63 (3H, m, CHHCHH), 1.12 [9H, s, C(CH₃)₃]; δ_c (100.5 MHz, CDCl₃) 154.2 (s), 143.4 (s), 136.2 (s), 132.0 (s), 129.8 (d), 129.7 (d), 127.6 (d), 127.1 (d), 83.8 (q), 54.2 (s), 44.2 (d), 43.4 (d), 42.5 (t), 28.1 (t), 24.6 (t), 22.3 (q), 21.5 (q); MS (ESI): m/z (%) 487 (M+Na⁺, 28%), 465 (MH⁺, 49%) and 391 (M⁺-Bu^t-O, 100%); HRMS (ESI) found 487.1695. C₂₃H₃₂N₂O₄S₂Na requires 487.1696.

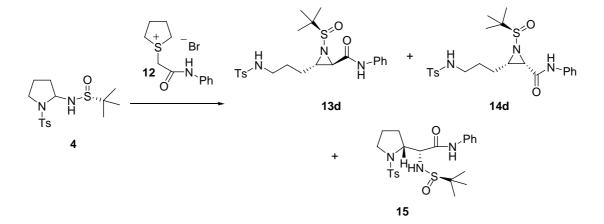
Reaction of aminal 4 with achiral sulfonium salt 10


To a solution of *N*2-1-[(4-methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2methyl-2-propanesulfinamide **4** (0.10 g, 0.29 mmol) in THF (4 mL) at 0 °C was added P₂ base (0.10 mL, 0.3 mmol) and the reaction mixture was left stirring for 30 min. 1-4-Chlorobenzyltetrahydrothiophenium tetrafluoroborate **11** (0.13 g, 0.44 mmol) was added at 0 °C followed by P₂ base (0.10 mL, 0.3 mmol). The reaction mixture was stirred for 3.5 hours at 0 °C, diluted with CH₂Cl₂ (20 mL) and H₂O (3 × 20 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine (20 mL), and dried (MgSO₄). The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with 1:1 pet. ether:EtOAc to give:

(*R*)_{*s*}-(2*S*)-(3*R*)-*N*-{3-[3-(4-Chlorophenyl)-1-(2-methylpropane-2-sulfinyl)-aziridin-2yl]-propyl}-benzenesulfonamide (**13b**) as a white solid (60 mg, 50%) mp 59-61 °C (pet. ether); *R*_f (EtOAc:pet. ether, 1:1) 0.35; IR (film), 1598 (Ar), 1327 (SO₂), 1158 (SO₂), 1089 (SO), 815 (*p*-substitution), 663 (C-Cl) cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.72 (2H, d, *J* 8.3 Hz, ArH), 7.33-7.26 (4H, m, ArH), 7.12 (2H, d, *J* 8.3 Hz, ArH), 5.28 (1H, t, *J* 6.2 Hz, NH), 3.11 (1H, d, *J* 3.9 Hz, NCHPh), 3.01-2.89 (2H, m, NCH₂), 2.47 (1H, td, *J* 6.4 and 3.9 Hz, *CH*NCHPh), 2.41 (3H, s, CH₃), 2.21-2.13 (1H, m, *CH*HCH₂), 2.04-1.95 (1H, m, CHHC*H*H), 1.83-1.63 (2H, m, *CH*HC*H*H), 1.19 [9H, s, C(CH₃)₃]; $\delta_{\rm c}$ (100.5 MHz, CDCl₃) 143.3 (s), 137.0 (s), 135.4 (s), 133.9 (s), 129.8 (d), 128.9 (d), 127.6 (d), 127.2 (d), 57.2 (s), 50.3 (d), 45.5 (d), 42.4 (t), 28.0 (t), 25.6 (t), 22.3 (q), 21.6 (q); MS (ESI): *m*/*z* (%) 491 (M + Na⁺, 17%) and 469 (MH⁺, 100%); HRMS (ESI) found 469.1384 C₂₂H₂₉N₂O₃S₂Cl requires 469.1380 (Found: C, 56.68%; H, 6.00%; N, 5.74%. C₂₂H₂₉N₂O₃S₂Cl requires C, 56.33%; H, 6.23%; N, 5.97%); [α]_D²³-133 (*c* 0.75, CH₂Cl₂).

<u>N-{3-[3-(4-Chlorophenyl)-1-(2-methylpropane-2-sulfinyl)-aziridin-2-yl]-propyl}-</u>

benzenesulfonamide (13b minor:14b) (trans:cis) as a colourless oil (2:1) (19 mg, 16%); R_f (EtOAc:pet. ether, 1:1) 0.50; IR (film), 1599 (Ar), 1329 (SO₂), 1161 (SO₂), 1091 (SO), 815 (*p*-substitution), 661 (C-Cl) cm⁻¹; trans $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.72 (2H, d, J 8.3 Hz, ArH), 7.33-7.26 (4H, m, ArH), 7.12 (2H, d, J 8.3 Hz, ArH), 4.86 (1H, t, J 6.2 Hz, NH), 3.34 (1H, d, J 3.7 Hz, NCHPh), 2.99-2.93 (2H, m, NCH₂), 2.41-2.35 (4H, m, CH₃ and NCHCH₂), 1.94-1.88 (1H, m, CHHCH₂), 1.71-1.68 (3H, m, CHHCHH), 1.19 [9H, s, C(CH₃)₃]; δ_c (100.5 MHz, CDCl₃) 143.5 (s), 136.9 (s), 135.4 (s), 132.5 (s), 129.8 (d), 128.9 (d), 127.6 (d), 127.2 (d), 57.7 (s), 48.2 (d), 42.7 (d), 42.6 (t), 28.1 (t), 25.2 (t), 22.3 (q), 21.6 (q); $cis \delta_{\rm H}$ (400 MHz, CDCl₃) 7.69 (2H, d, J 8.3 Hz, ArH), 7.33-7.26 (4H, m, ArH), 7.19 (2H, d, J 8.3 Hz, ArH), 4.52 (1H, t, J 6.3 Hz, NH), 3.75 (1H, d, J 7.0 Hz, NCHPh), 2.87-2.79 (2H, m, NCH₂), 2.41-2.35 (4H, m, CH₃ and NCHCH₂), 1.94-1.88 (1H, m, CHHCH₂), 1.71-1.68 (3H, m, CHHCHH), 1.19 [9H, s, C(CH₃)₃]; δ_c (100.5 MHz, CDCl₃) 143.5 (s), 136.9 (s), 135.4 (s), 132.5 (s), 129.8 (d), 128.9 (d), 127.6 (d), 127.2 (d), 58.1 (s), 48.0 (d), 42.6 (t), 39.9 (d), 28.0 (t), 25.2 (t), 22.3 (q), 21.6 (q); MS (CI): m/z (%) 469 (MH⁺, 62%) and 224 (M⁺-NHSOBu^t-CHPhCl, 100%); HRMS (CI) found 469.1385 C₂₂H₂₉N₂O₃S₂Cl requires 469.1380.

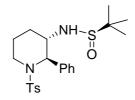

Reaction of aminal 4 with achiral sulfonium salt 11

To a solution of N2-1-[(4-methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2methyl-2-propanesulfinamide 4 (0.10 g, 0.29 mmol) in THF (4 mL) at 0 °C was added P₂ base (0.10 mL, 0.3 mmol) and the reaction mixture was left stirring for 30 min. 1-Allyltetrahydrothiophenium tetrafluoroborate 12 (0.09 g, 0.44 mmol) was added at 0 ^oC followed by P₂ base (0.10 mL, 0.3 mmol). The reaction mixture was then stirred for 3.5 hours at 0 °C, diluted with CH₂Cl₂ (20 mL) and H₂O (20 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried (MgSO₄). The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with 1:1 pet. ether:EtOAc to give: $(R)_{s}$ -(2S)-(3R)-4-methyl-N-{3-[1-(2-methyl-propane-2-sulfinyl)-3-vinyl-aziridin-2-<u>yl]-propyl}-benzenesulfonamide</u> (13c) as a colourless oil (45 mg, 41%); $R_{\rm f}$ (EtOAc:pet. ether, 1:1) 0.45; IR (film) 3054 (NH), 1161 (SO₂), 1093 (SO), 903 (C=CH₂), 896 (C=CH₂) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.79 (2H, d, J 8.3 Hz, ArH), 7.32 (2H, d, J 8.3 Hz, ArH), 5.79 (1H, ddd, J 17.1, 10.2 and 7.9 Hz, CH=CH₂), 5.38 (1H, d, J 17.1 Hz, CH=CHH), 5.20 (1H, d, J 10.2 Hz, CH=CHH), 4.81 (1H, t, J 6.2 Hz, NH), 3.05-2.97 (2H, m, NCH₂), 2.78 (1H, dd, J 7.9 and 3.9 Hz, NCHC=C), 2.41-2.35 (4H, m, CH₃ and NCHCH₂), 1.77-1.58 (4H, m, CH₂CH₂), 1.23 [9H, s, C(CH₃)₃]; δ_c (100.5 MHz, CDCl₃) 149.7 (d), 143.5 (s), 135.8 (s), 129.8 (d), 127.2 (d), 120.2 (t), 57.4 (s), 50.2 (d), 42.7 (t), 41.9 (d), 28.8 (t), 26.2 (t), 22.6 (g), 21.6 (g); MS (CI): m/z(%) 385 (MH⁺, 59%) and 224 (M⁺-HNSOBu^t-CHCH=CH₂, 100%); HRMS (CI) found 385.1619. $C_{18}H_{28}N_2O_3S_2$ requires 385.1613; $[\alpha]_D^{23}$ -160 (*c* 0.1, CH₂Cl₂). $(R)_{s}$ -(2S)-(3S)-4-methyl-N-{3-[1-(2-methyl-propane-2-sulfinyl)-3-vinyl-aziridin-2-y]propyl}-benzenesulfonamide (14c) as a colourless oil (always obtained as a mixture

with trans) (35 mg, 32%); R_f (EtOAc:pet. ether, 1:1) 0.50; IR (film) 1163 (SO₂), 903

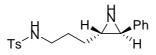
(C=CH₂), 896 (C=CH₂) cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.73 (2H, d, *J* 8.3 Hz, ArH), 7.27 (2H, d, *J* 8.3 Hz, ArH), 5.79 (1H, ddd, *J* 17.2, 10.3 and 7.4 Hz, CH=CH₂), 5.37 (1H, d, *J* 17.2 Hz, CH=C*H*H), 5.31 (1H, d, *J* 10.3 Hz, CH=C*H*H), 4.68 (1H, t, *J* 6.3 Hz, NH), 3.16 (1H, t, J 7.4 Hz, NCHC=C), 3.01-2.92 (2H, m, NCH₂), 2.41 (3H, s, CH₃), 2.20 (1H, td, *J* 7.4 and 5.5 Hz, NC*H*CH₂), 1.62-1.42 (4H, m, CH₂CH₂), 1.17 [9H, s, C(CH₃)₃]; $\delta_{\rm c}$ (100.5 MHz, CDCl₃) 143.4 (d), 135.9 (s), 131.5 (s), 129.8 (d), 127.1 (d), 120.9 (t), 56.8 (s), 42.6 (t), 38.6 (d), 35.9 (d), 27.2 (t), 24.3 (t), 22.7 (q), 21.5 (q); MS (ESI): *m/z* (%) 407 (M+ Na⁺, 42%) and 385 (MH⁺, 100%); HRMS (ESI) found 407.1435. C₁₈H₂₈N₂O₃S₂Na requires 407.1434.

Reaction of sulfinylimine 4 with achiral sulfonium salt 12


To a solution of *N*2-1-[(4-methylphenyl)sulfonyl]tetrahydro-1H-2-pyrrolyl-2methyl-2-propanesulfinamide **4** (0.10 g, 0.29 mmol) in THF (4 mL) at 0 °C was added P₂ base (0.10 mL, 0.3 mmol) and the reaction mixture was left stirring for 30 min. 1-Phenylcarbamoylmethyltetrahydrothiophenium bromide **12** (0.13 g, 0.44 mmol) was added at 0 °C followed by P₂ base (0.10 mL, 0.3 mmol). The reaction mixture was stirred for 3.5 hours at 0 °C. If the reaction is stopped and quenched, a mixture of all three compounds is obtained (aziridines 63% 1:4 *trans:cis* and 29% pyrrolidine **15**). The reaction was diluted with CH₂Cl₂ (20 mL) and H₂O (20 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were washed with brine (20 mL), and dried (MgSO₄). The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with 1:1 pet. ether:EtOAc. carboxylic acid phenylamide (13d:14d) (trans:cis) (1:4) as a colourless oil (87 mg, 63%); R_f (EtOAc:pet. ether, 1:1) 0.30; IR (film) 3055 (NH), 1693 (NHCO), 1600 (Ar), 1526 (NHCO), 1327 (SO₂), 1160 (SO₂), 1027 (SO) cm⁻¹; trans $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.66 (1H, s, NHCO), 7.73 (2H, d, J 8.3 Hz, ArH), 7.50 (2H, dd, J 7.8 and 1.6 Hz, ArH), 7.35-7.21 (4H, m, ArH), 7.07 (1H, tt, J 7.8 and 1.6 Hz, ArH), 5.25 (1H, t, J 6.3 Hz, NH), 3.23 (1H, d, J 3.7 Hz, NCHCO), 3.02-2.91 (2H, m, NCH₂), 2.82 (1H, ddd, J 6.9, 5.5 and 3.7 Hz, CHNCHCO), 2.39 (3H, s, CH₃), 1.91-1.82 (1H, m, CHHCH₂), 1.78-1.69 (3H, m, CHHCHH), 1.30 [9H, s, C(CH₃)₃]; δ_c (100.5 MHz, CDCl₃) 165.1 (s), 143.5 (s), 137.2 (s), 136.9 (s), 129.8 (d), 129.2 (d), 127.1 (d), 124.9 (d), 119.9 (d), 57.6 (s), 46.1 (d), 44.0 (d), 42.3 (t), 27.4 (t), 24.4 (t), 22.5 (q), 21.6 (q); cis $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.36 (1H, s, NHCO), 7.68 (2H, d, J 8.3 Hz, ArH), 7.56 (2H, dd, J 8.6 and 1.1 Hz, ArH), 7.33 (2H, t, J 8.6 Hz, ArH), 7.24 (2H, d, J 8.3 Hz, ArH), 7.14 (1H, tt, J 8.6 and 1.1 Hz, ArH), 5.08 (1H, t, J 6.3 Hz, NH), 3.42 (1H, d, J 7.3 Hz, NCHCO), 3.08-2.95 (2H, m, NCH₂), 2.43 (1H, ddd, J 7.3, 6.8 and 4.9 Hz, CHNCHCO), 2.39 (3H, s, CH₃), 1.75-1.63 (4H, m, CHHCHH), 1.28 [9H, s, $C(CH_3)_3$; δ_c (100.5 MHz, CDCl₃) 164.5 (s), 143.5 (s), 137.0 (s), 136.9 (s), 129.8 (d), 129.2 (d), 127.1 (d), 125.0 (d), 119.9 (d), 57.6 (s), 42.3 (t), 39.5 (d), 35.8 (d), 27.2 (t), 23.9 (t), 22.6 (q), 21.6 (q); MS (CI): m/z (%) 478 (MH⁺, 20%), 253 (MH⁺-TsNHCH₂CH₂CH₂CH, 48%), 224 (M⁺-HNSOBu^t-CHCONHPh, 71%) and 57 (Bu^{t+}, 100%); cis isomer: HRMS (CI) found 478.1834 C₂₃H₃₁N₃O₄S₂ requires 478.1833; $[\alpha]_{D}^{23}$ -110 (*c* 0.1, CH₂Cl₂).

1-(2-Methyl-propane-2-sulfinyl)-3-[3-(toluene-4-sulfonylamino)propyl]-aziridine-2-

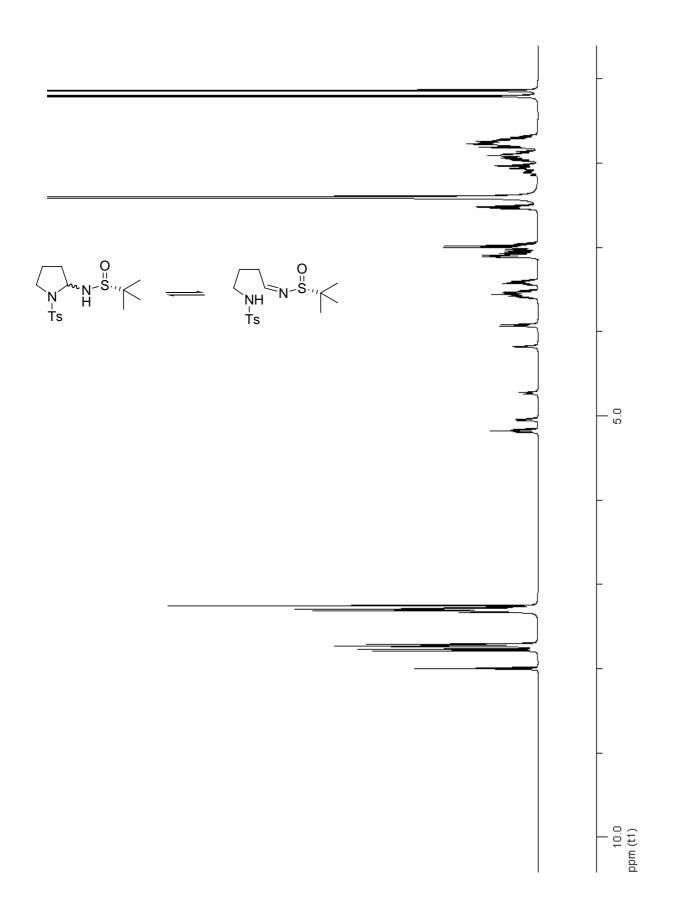
If the reaction is left stirring for 2 more days, then a mixture of *cis* aziridine **14d** and pyrrolidine **15** is obtained (*cis* aziridine 45% and 47% pyrrolidine **15**): (*R*)_{*s*}-(*R*)- α -(*2R*)-2-(2-Methyl-propane-2-sulfinylamino)-N_phenyl-2-[1-(toluene-4-sulfonyl)-pyrrolodon-2-yl]-acetamide (**15**) as a yellow oil (65 mg, 47%); *R*_f (EtOAc:pet. ether, 1:1) 0.30; IR (film) 3055 (NH), 1693 (NHCO), 1600 (Ar), 1526 (NHCO), 1327 (SO₂), 1160 (SO₂), 1027 (SO) cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.53 (1H, s, NHCO), 7.73 (2H, d, *J* 8.3 Hz, ArH), 7.50 (2H, dd, *J* 7.8 and 1.6 Hz, ArH), 7.35-7.21 (4H, m, ArH), 7.14 (1H, tt, *J* 7.8 and 1.6 Hz, ArH), 5.84 (1H, d, *J* 6.4 Hz, NH), 4.20 (1H, dd, *J* 6.4 and 2.1 Hz, NCHCO), 3.41-3.27 (2H, m, NCH₂), 2.45-2.41 (4H, m, NCHCHCO and CH₃), 1.91-1.69 (4H, m, CH₂CH₂), 1.39 [9H, s, C(CH₃)₃]; $\delta_{\rm c}$ (100.5 MHz, CDCl₃) 168.2 (s), 144.4 (s), 137.3 (s), 133.7 (s), 129.8 (d), 129.0 (d), 127.8 (d), 124.7 (d),

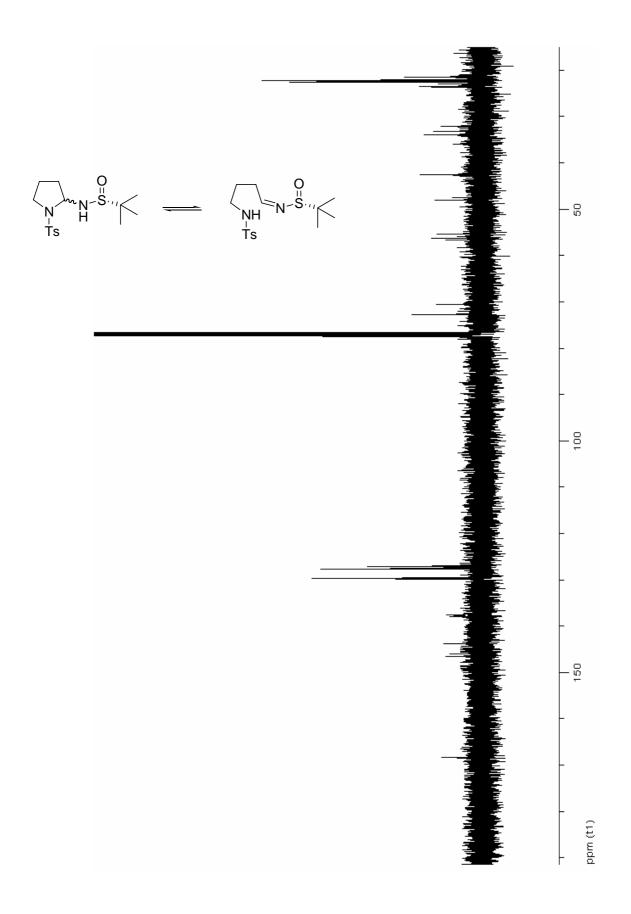

119.7 (d), 64.7 (d), 62.9 (d), 56.7 (s), 51.3 (t), 30.1 (t), 26.0 (t), 22.9 (q), 21.7 (q); MS (CI): m/z (%) 478 (MH⁺, 20%), 253 (MH⁺-TsNHCH₂CH₂CH₂CH, 48%), 224 (M⁺-HNSOBu^t-CHCONHPh, 71%) and 57 (Bu^{t+}, 100%). HRMS (CI) found 478.1838 C₂₃H₃₁N₃O₄S₂ requires 478.1833; [α]_D²³ -40 (*c* 1.0, CH₂Cl₂).

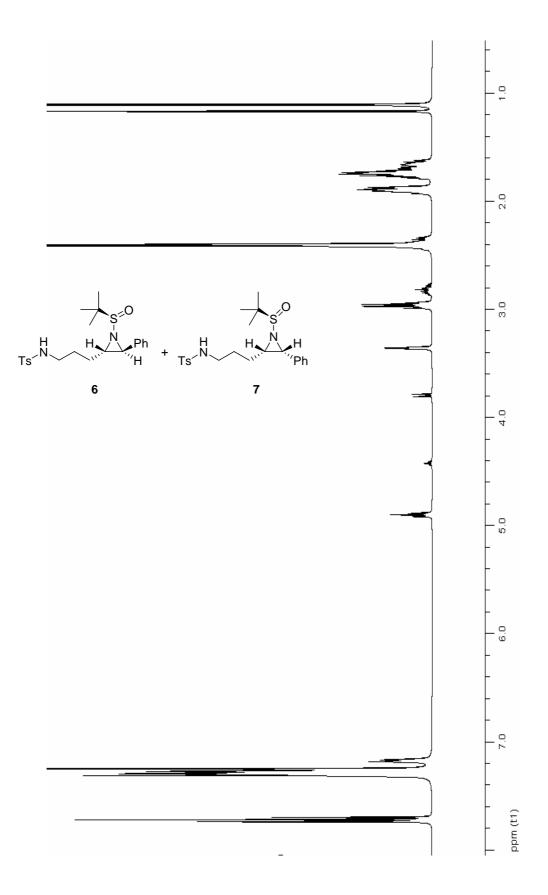
(*R*)_s-(2*S*)-(3*S*)-2-Methylpropane-2-sulfinic acid [2-phenyl-1-(toluene-4-sulfonyl)piperidin-3-yl]-amide (16)

To a solution of 4-methyl-N-{3-[3-phenyl-1-(propane-2-sulfinyl)-aziridin-2yl]propyl}benzenesulfonamide 7 (30 mg, 0.07 mmol) in CH₂Cl₂ (2 mL) at room temperature was added Yb(OTf)₃ (50 mg, 0.02 mmol). After 48 h the reaction was diluted with CH₂Cl₂ (10 mL) and H₂O (10 mL). The aqueous layer was washed with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with brine (20 mL), dried (MgSO₄) and the solvents were removed in vacuo. The crude product purified by column chromatography, eluting with 1:1 pet. ether: EtOAc to give the product as a white solid (25 mg, 93%) mp 79-82 °C (pet. ether); $R_{\rm f}$ (EtOAc:pet. ether, 1:1) 0.25; IR (film) 1599 (Ar), 1326 (SO₂), 1159 (SO₂), 1058 (SO) cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.69 (2H, d, J 8.3 Hz, ArH), 7.30-7.19 (5H, m, ArH), 7.04 (2H, d, J 8.3 Hz, ArH), 5.21 (1H, br s, NCHPh), 4.17 (1H, d, J 8.2 Hz, NH), 3.84 (1H, ddd, J 9.8, 8.2 and 2.0 Hz, NHCHCHPh), 3.05 (1H, td, J 13.1 and 2.5 Hz, NCHH), 2.87 (1H, dt, J 13.1 and 6.9 Hz, NCHH), 2.41 (3H, s, CH₃), 1.92-1.75 (3H, m, CHHCH₂), 1.64-1.52 (1H, m, CHHC*H*H), 1.24 [9H, s, C(CH₃)₃]; δ_c (100.5 MHz, CDCl₃) 143.3 (s), 138.2 (s), 136.5 (s), 129.8 (d), 128.8 (d), 127.4 (d), 127.0 (d), 126.8 (d), 61.2 (d), 59.1 (d), 56.0 (s), 50.6 (t), 24.3 (t), 23.8 (t), 22.8 (q), 21.5 (q); MS (CI): *m/z* (%) 435 (MH⁺, 89%) and 224 (M⁺-NSOBu^t-CH₂Ph, 100%); HRMS (CI) found 435.1776. C₂₂H₃₀N₂O₃S₂ requires 435.1769; $[\alpha]_D^{23}$ -32 (*c* 1.0, CH₂Cl₂).

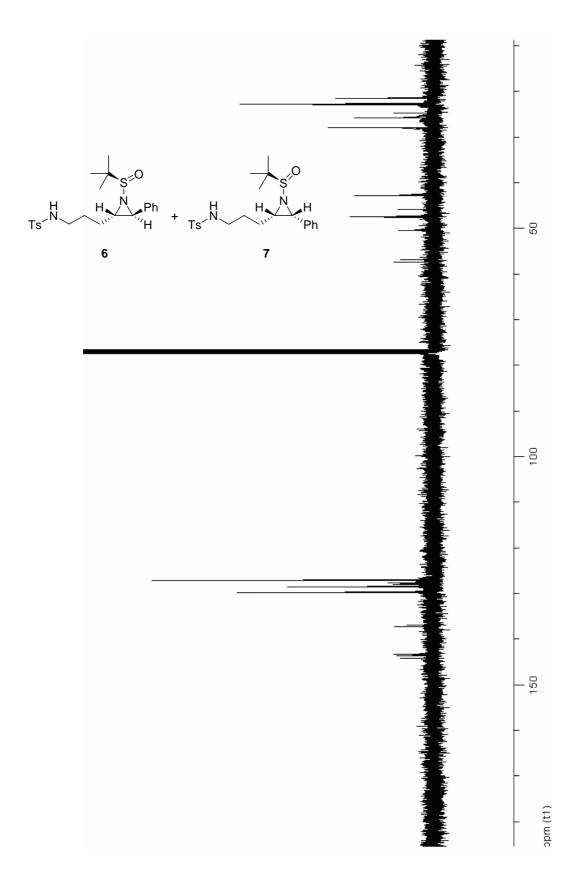
(2R)-(3S)-trans 4-Methyl-N-[3-(3-phenylaziridin-2-yl)-propyl] benzenesulfonamide (17)

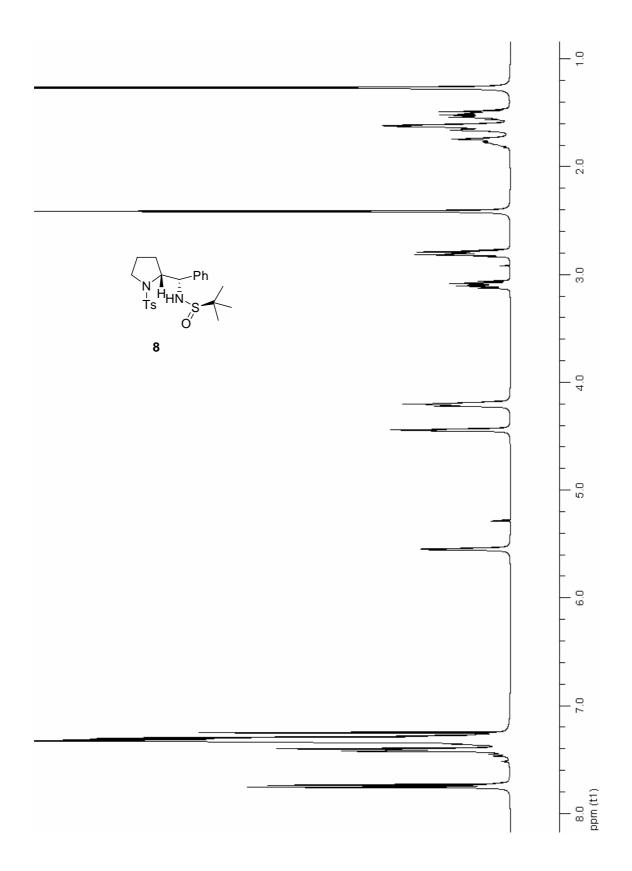


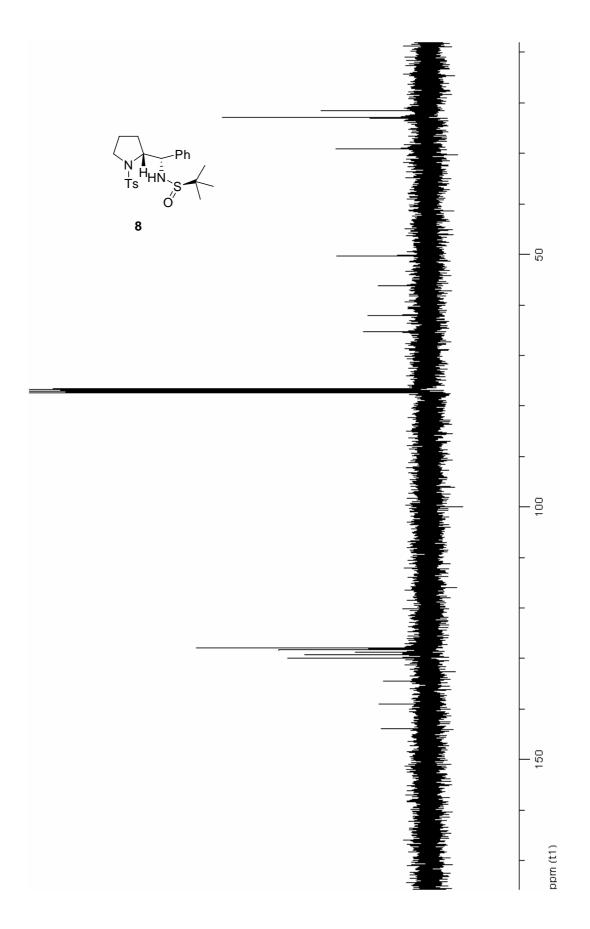

To a solution of 4-methyl-N-{3-[3-phenyl-1-(propane-2-sulfinyl)-aziridin-2yl]-propyl}-benzenesulfonamide 6 (20 mg, 0.04 mmol) in anhydrous 1,4-dioxane (1 mL) at r.t. was added a solution of HCl (1.25 M) in EtOH. The reaction was monitored by TLC and the amount of HCl was determined by the reaction progress. Once all starting material was consumed, the reaction mixture was concentrated. The reaction mixture was diluted with Et_2O (4 mL) and washed with H_2O (3 × 4 mL). The combined aqueous layers were basified with NH₃ (1 N, 30 mL), extracted with Et₂O $(3 \times 25 \text{ mL})$ and dried (MgSO₄). The solvents were removed in vacuo to afford the product as a white solid (11 mg, 81%) mp 122-124 °C (CH₂Cl₂); $R_{\rm f}$ (CH₂Cl₂:MeOH, 9:1) 0.10; IR (film) 3379 (NH), 3324 (NH), 1597 (Ar), 1330 (SO₂), 1163 (SO₂) cm⁻¹; δ_H (400 MHz, CDCl₃) 7.68 (2H, d, J 8.3 Hz, ArH), 7.28-7.19 (5H, m, ArH), 7.17 (2H, d, J 8.3 Hz, ArH), 4.91 (1H, d, J 2.9 Hz, NCHPh), 3.69 (1H, dt, J 13.3 and 3.9 Hz, NCHH), 3.54 (1H, dd, J 7.6 and 2.9 Hz, NCHCH₂), 3.19 (1H, ddd, J 13.3, 11.8 and 3.4 Hz, NCHH), 2.41 (3H, s, CH₃), 1.85-1.74 (1H, m, CHHCH₂), 1.68-1.57 (3H, m, CHHCHH and 2 x NH), 1.53-1.47 (1H, m, CHHCHH), 1.43-1.39 (1H, m, CHHCHH); δ_c (100.5 MHz, CDCl₃) 143.3 (s), 143.2 (s), 132.8 (s), 129.7 (d), 128.7 (d), 128.0 (d), 127.2 (d), 126.3 (d), 53.2 (d), 50.4 (d), 42.5 (t), 28.2 (t), 25.8 (t), 21.4 (q); MS (CI): m/z (%) 331 (MH⁺, 98%), 314 (MH⁺-NH₃, 100%) and 175 (M⁺-Ts, 75%); HRMS (CI) found 331.1480. C₁₈H₂₂N₂O₂S requires 331.1473; (Found: C, 65.51%; H, 6.61%; N, 8.34%. C₁₈H₂₂N₂O₂S requires C, 65.42%; H, 6.71%; N, 8.48%) $[\alpha]_{D}^{23}$ +40 (c 0.1, CH₂Cl₂).

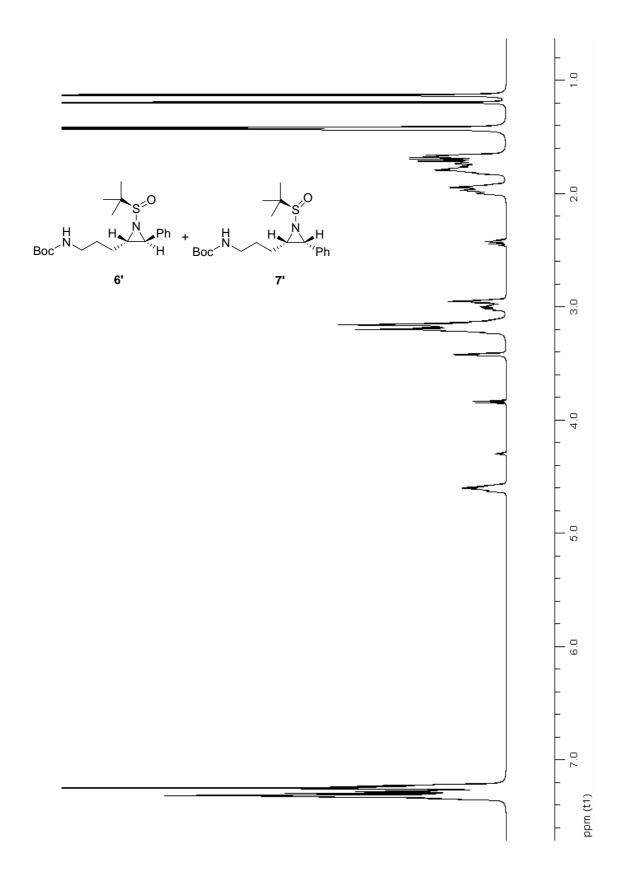


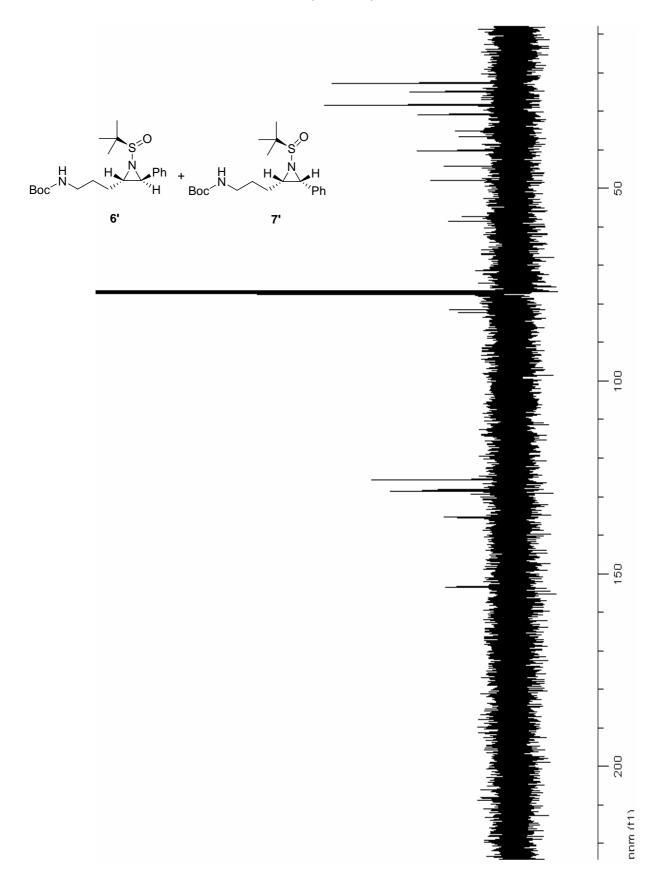
To a solution of 2-methylpropane-2-sulfinic acid [2-phenyl-1-(toluene-4sulfonyl)-piperidin-3-yl]-amide 16 (10 mg, 0.02 mmol) in anhydrous 1,4-dioxane (1 mL) at room temperature was added a solution of HCl (1.25 M) in EtOH. The reaction was monitored by TLC and the amount of HCl was determined by the reaction progress. Once all starting material was consumed, the reaction mixture was concentrated. The reaction mixture was diluted with Et₂O (4 mL) and washed with H_2O (3 × 4 mL). The combined aqueous layers were basified with NH₃ (1 N, 30 mL), extracted with Et₂O (3×25 mL) and dried (MgSO₄). The solvents were removed in vacuo to afford the product as a colourless oil (6 mg, 88%); $R_{\rm f}$ (CH₂Cl₂:MeOH, 9:1) 0.15; IR (film) 3496 (NH), 1387 (SO₂), 1160 (SO₂) cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.68 (2H, d, J 8.2 Hz, ArH), 7.43-7.19 (7H, m, ArH), 4.89 (1H, d, J 2.6 Hz, NCHPh), 3.84 (1H, ddd, J 7.7, 7.6 and 2.6 Hz, NH₂CH), 3.26-3.18 (2H, m, NCH₂), 2.41 (3H, s, CH₃), 1.78-1.52 (6H, m, CH₂CH₂ and NH₂); δ_c (100.5 MHz, CDCl₃) 145.0 (s), 136.9 (s), 136.8 (s), 129.8 (d), 128.7 (d), 127.5 (d), 127.4 (d), 127.2 (d), 60.4 (d), 57.9 (d), 41.9 (t), 29.8 (t), 25.2 (t), 21.6 (q); MS (ESI): m/z (%) 331 (MH⁺, 100%); HRMS (ESI) found 331.1476 C₁₈H₂₂N₂O₂S requires 331.1474; (Found: C, 65.53%; H, 6.62%; N, 8.34%. $C_{18}H_{22}N_2O_2S$ requires C, 65.42%; H, 6.71%; N, 8.48%); $[\alpha]_D^{23}$ +40 (c 0.2, CH_2Cl_2).

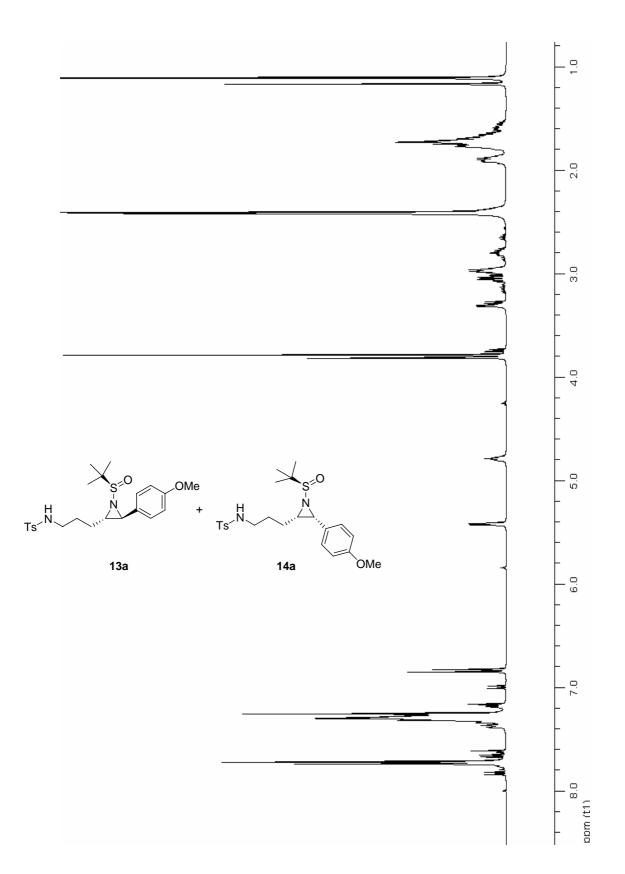

¹H NMR (CDCl₃) Aminal 4

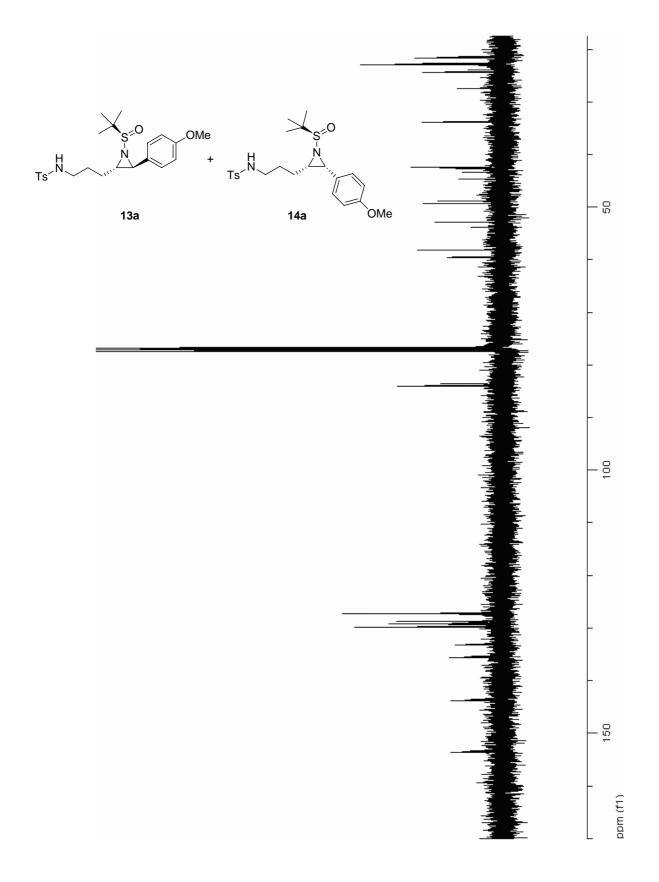


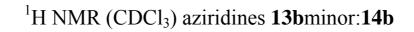

¹H NMR (CDCl₃) aziridines **6** minor: aziridine **7**

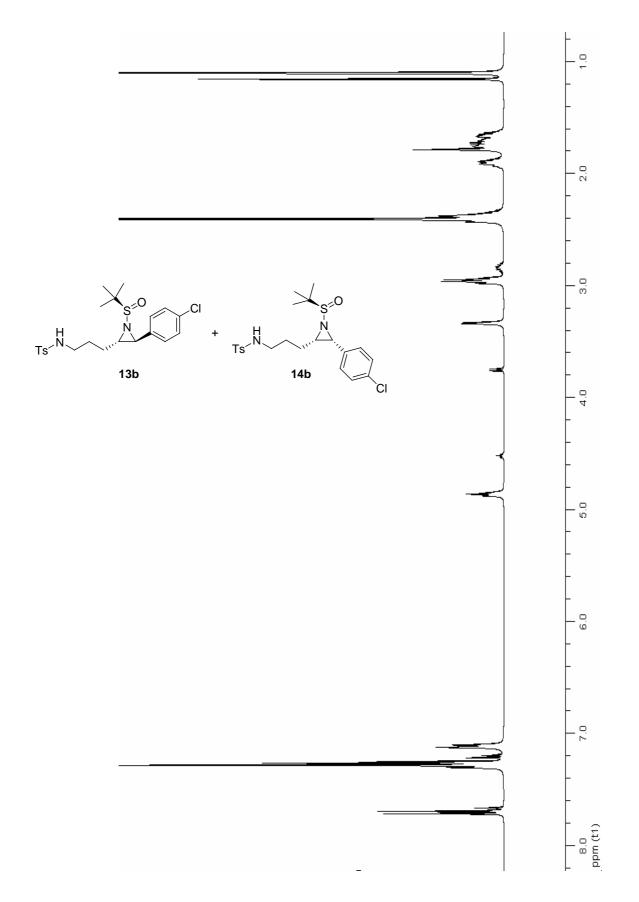

¹H NMR (CDCl₃) pyrrolidine 8



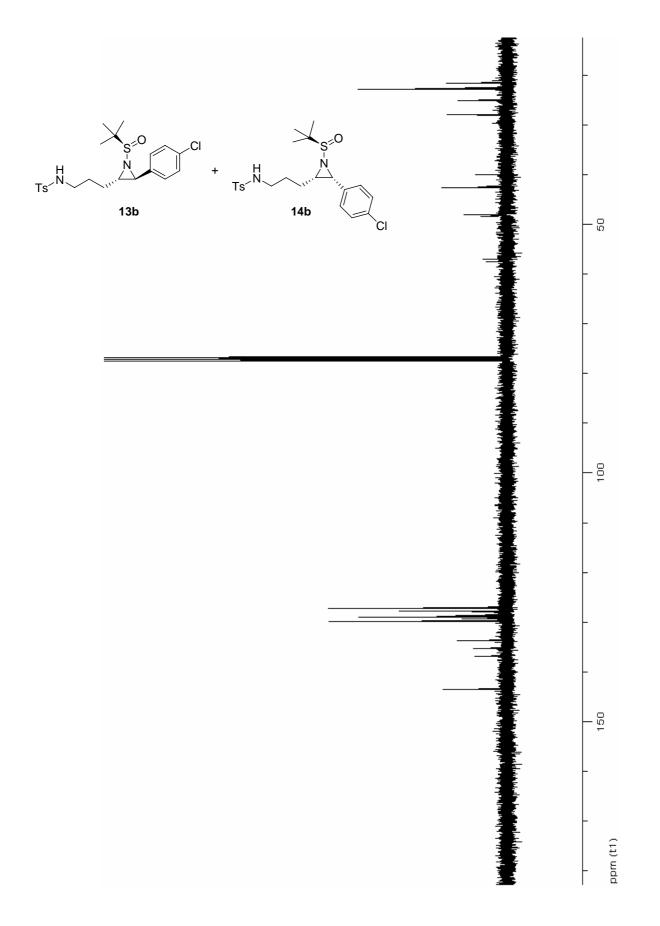

¹³C NMR (CDCl₃) pyrrolidine 8


¹H NMR (CDCl₃) aziridines 6':7'

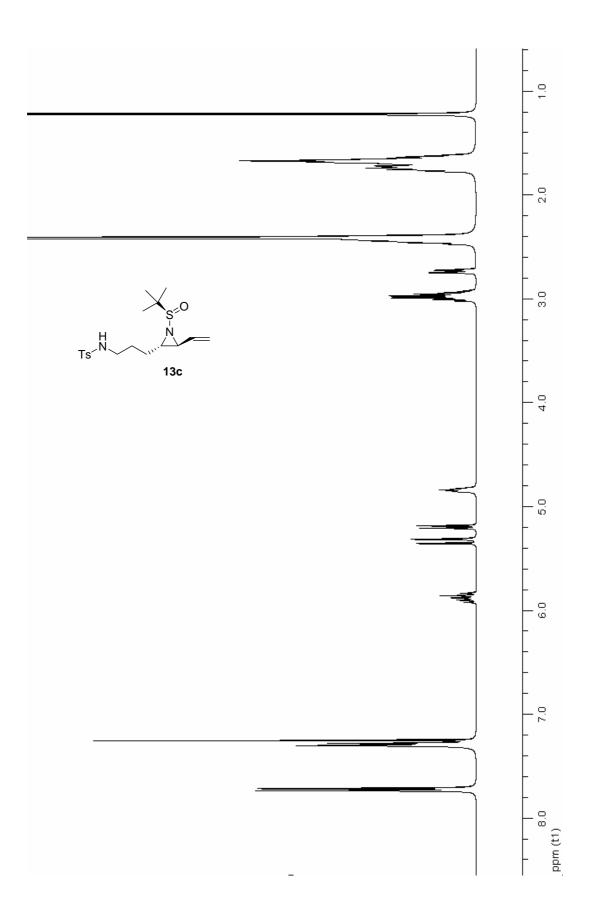


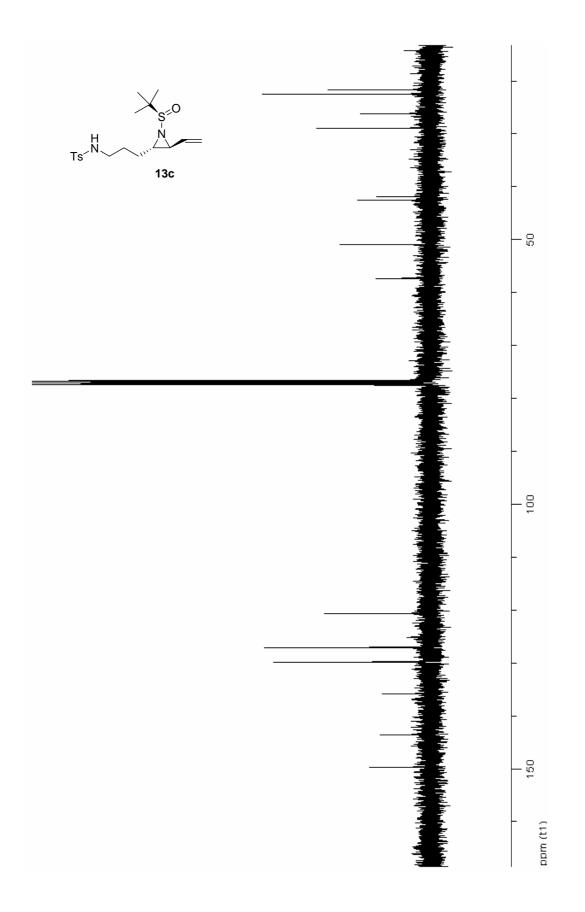


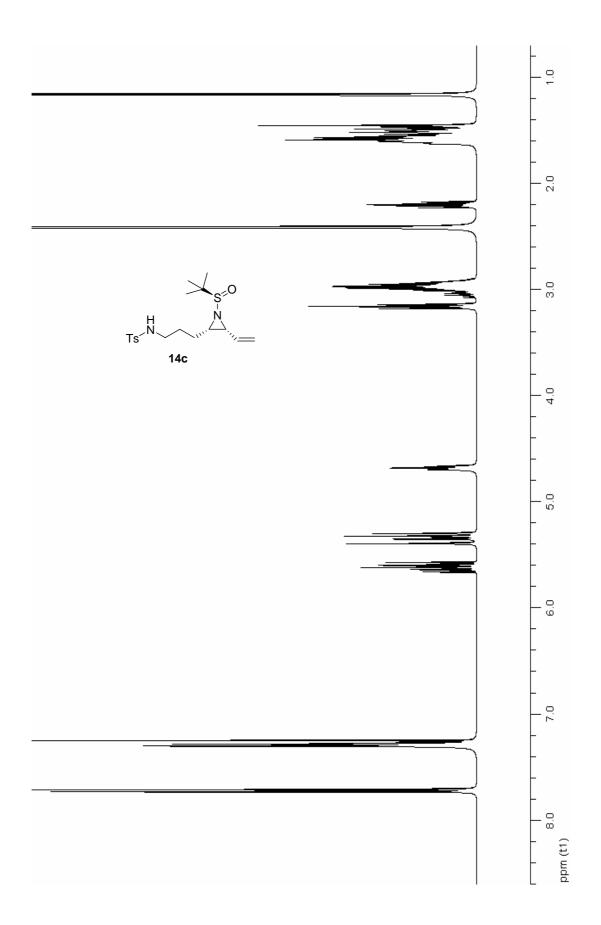
¹H NMR (CDCl₃) aziridines **13a**major:**13a**minor:**14a**

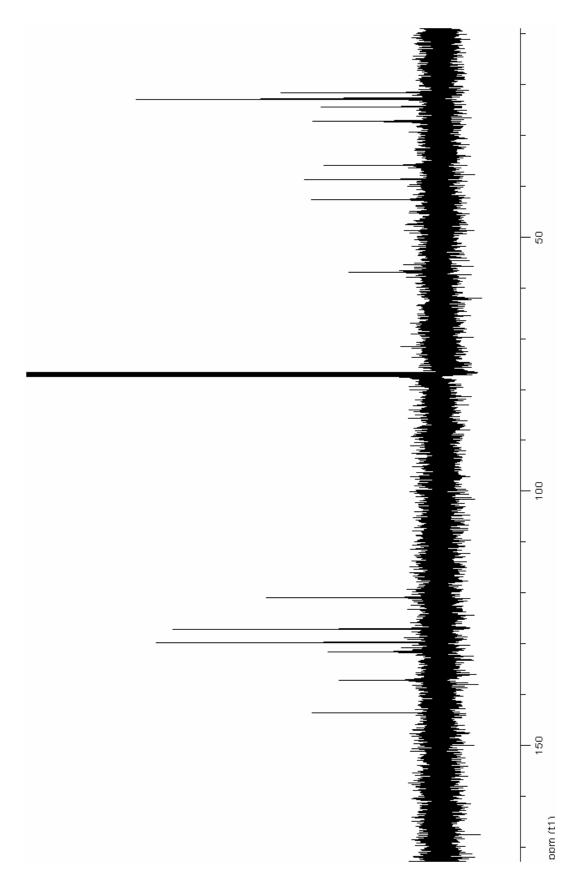


¹³C NMR (CDCl₃) aziridines **13a**major:**13a**minor:**14a**

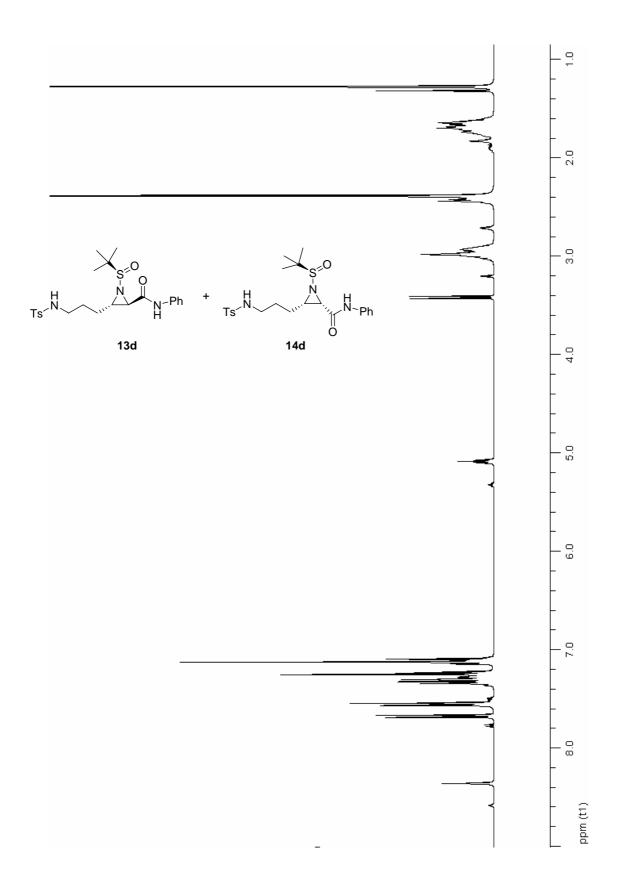



¹³C NMR (CDCl₃) aziridines **13b**minor:**14b**

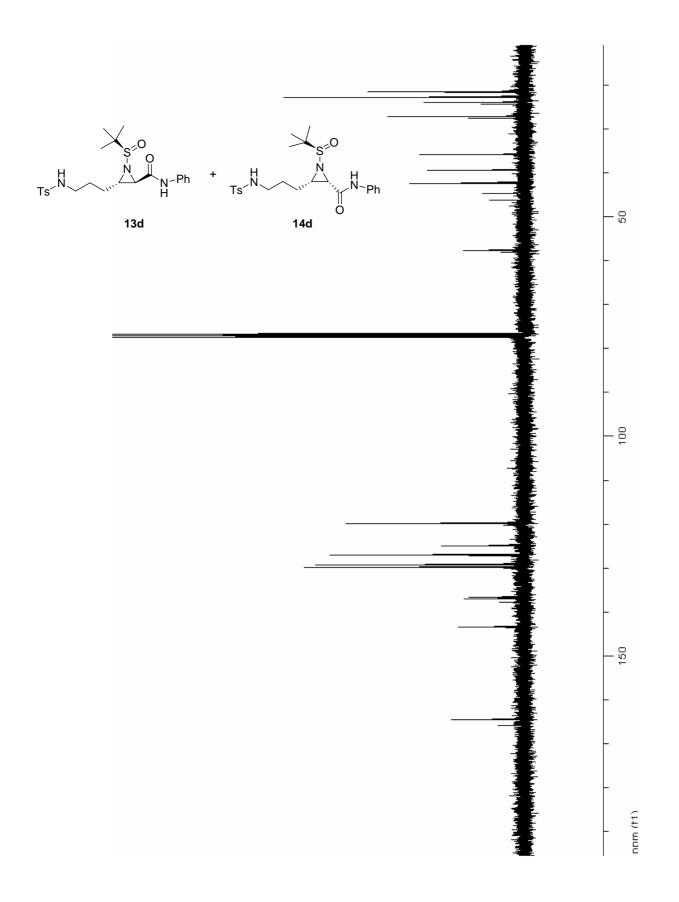

¹H NMR (CDCl₃) aziridine **13c**


¹³C NMR (CDCl₃) aziridine **13c**

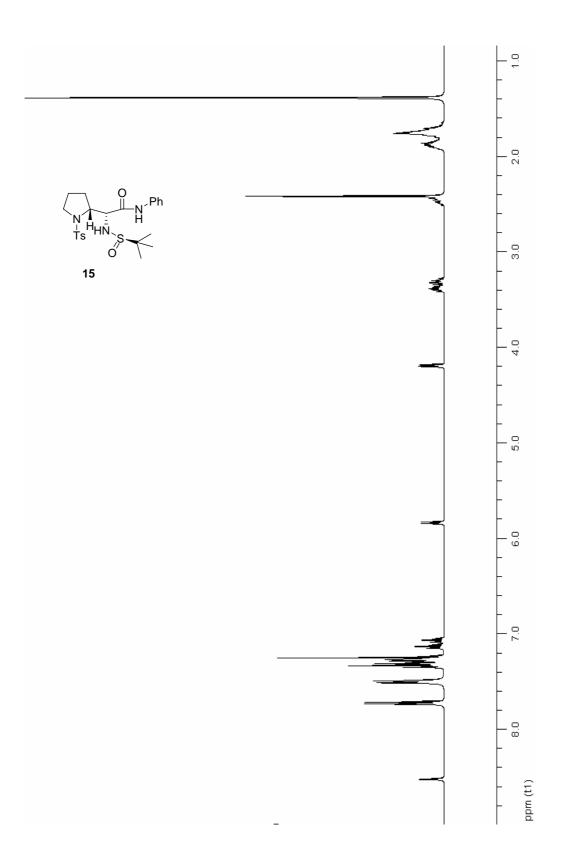
¹H NMR (CDCl₃) aziridine **14c**

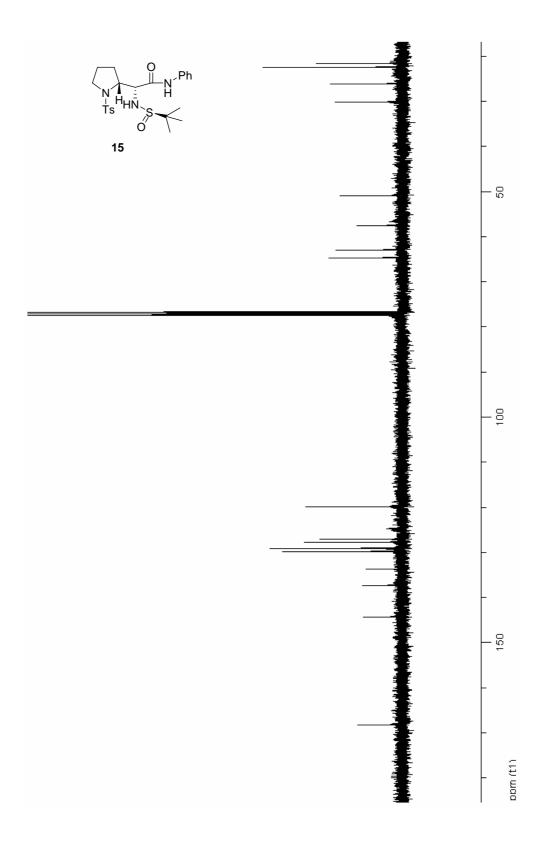


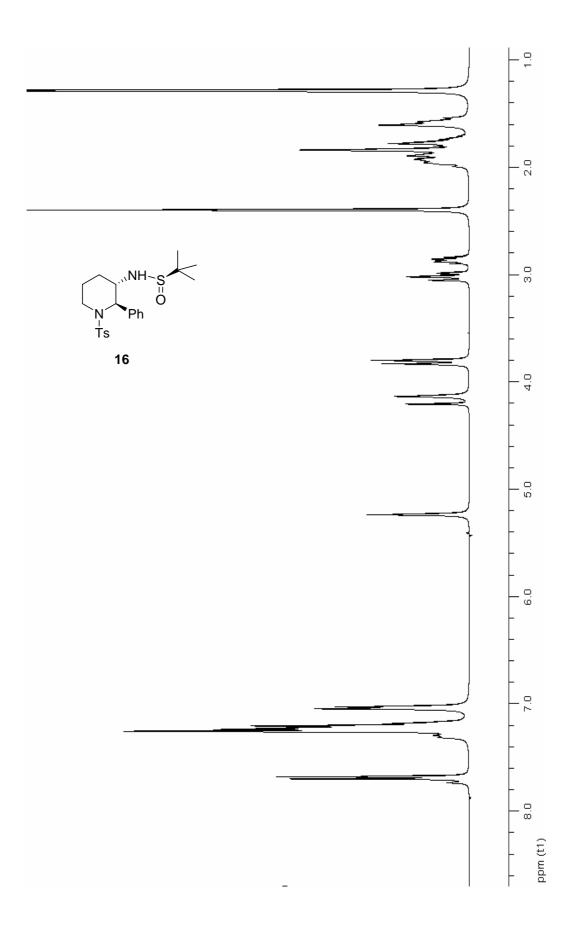
¹³C NMR (CDCl₃) aziridine **14c**

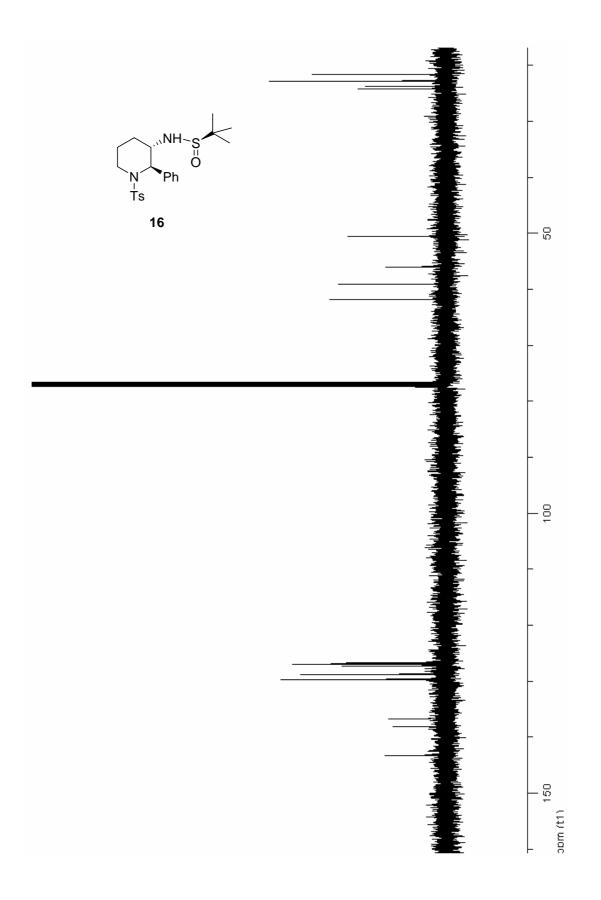


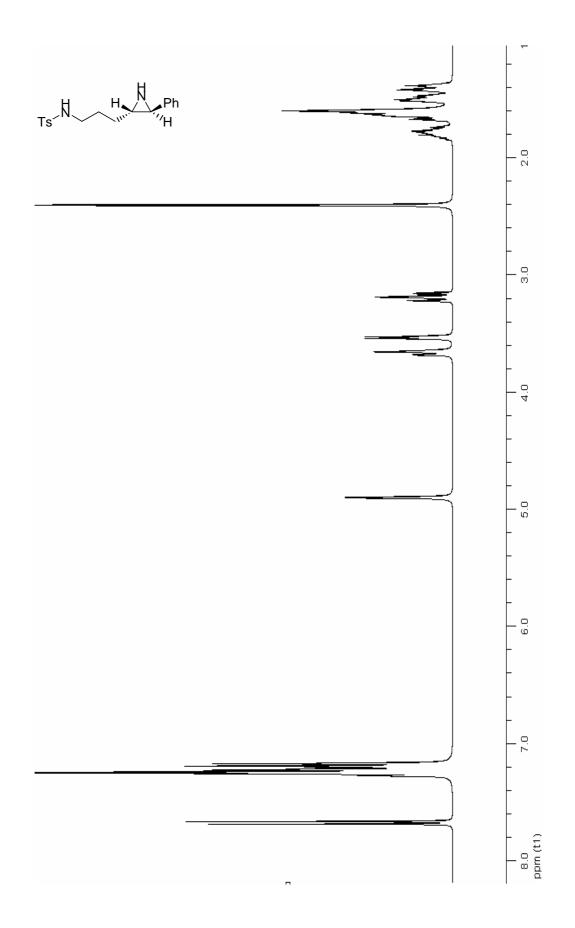
1

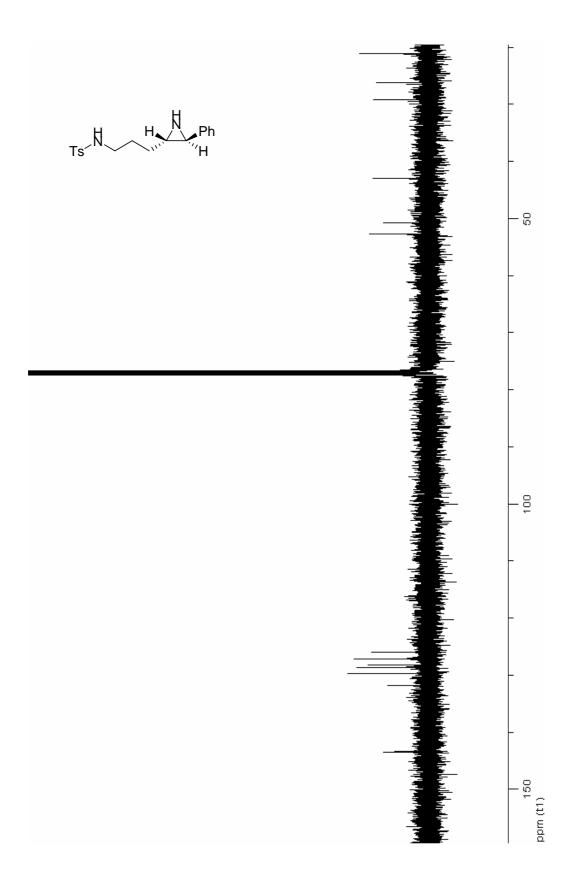

¹H NMR (CDCl₃) aziridines **13d**:**14d**


¹³C NMR (CDCl₃) aziridines **13d**:**14d**


¹H NMR (CDCl₃) pyrrolidine **15**


¹³C NMR (CDCl₃) pyrrolidine **15**


¹H NMR (CDCl₃) piperidine **16**


¹³C NMR (CDCl₃) piperidine **16**

¹H NMR (CDCl₃) aziridine **17**

¹³C NMR (CDCl₃) aziridine **17**

References

(1) Unthank, M. G.; Husain, N.; Aggarwal, V. K. Angew. Chem. Int. Ed., **2006**, 45, 7066.