Conserved Mechanism of Copper Binding and Transfer.

A Comparison of the Copper Resistance Proteins PcoC from Escherichia coli

and CopC from Pseudomonas syringae

Karrera Y. Djoko,^{†,+} Zhiguang Xiao,^{†,+} David L. Huffman,[#]

and Anthony G. Wedd^{†,+}

[†]School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia

⁺Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia

[#] Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008-3842, USA.

Supporting Information

No.	Name	Oligomer Sequence
1.	PcoC-R-CopC	5'-GCTTTTTAATTCCGGgtgGGCTTGGGCCAATGC-3'
2.	PcoC-F-PcoC	5'-GCATTGGCCCAAGCCcacCCGGAATTAAAAAGC-3'
3.	PcoC-H1F-F	5'-GCATTGGCCCAAGCCtttCCGGAATTAAAAAGC-3'
4.	PcoC-H1F-R	5'-GCTTTTTAATTCCGGaaaGGCTTGGGCCAATGC-3'
5.	PcoC-M40L-F	5'-GCAAAATTAACGctgACGGGTATGAAAG-3'
6.	PcoC-M40L-R	5'-CTTTCATACCCGTcagCGTTAATTTTGC-3'
7.	PcoC-H49F-F	5'-GGCATGTCATCAtttTCTCCGATGCCG-3'
8.	PcoC-H49F-R	5'-CGGCATCGGAGAaaaTGATGACATGCC-3'
9.	PcoC-H92F-R	5'-GTGGTGGGATCCtcaCTTCACTGTAAAGGTGTAA
		TTACCGGTAATAGGGAACGTATCTGAAGAAAC-3'

Table S1PCR Primer Sequence with mutated bases in bold

Monomeric and dimeric forms of *apo*-PcoC and –nA-PcoC.

nA-PcoC, as isolated after CM-52 cation-exchange chromatography, was confirmed to be a mixture of monomer (~ 90%) and dimer (~ 10%), as observed previously (Huffman, D. L.; Huyett, J.; Outten, F. W.; Doan, P. E.; Finney, L. A.; Hoffman, B. M.; O'Halloran, T. V. *Biochemistry* **2002** *41*, 10046-10055.). The two forms were indistinguishable by SDS-PAGE and ESI-MS but could be separated by gel filtration (Figure S1) or by Mono-S cation exchange chromatographies (Figure S2). While remaining unchanged upon incubation at 4 °C for one week, incubation at 20 and 37 °C overnight converted the dimeric protein to its monomeric form in 50 and 100 % yields, respectively (Figure S1). The nature of the interaction leading to dimer formation is not known. Addition of EDTA had no detectable effect on dimer conversion, excluding the possibility of a metal-bridged form.

As observed for nA-PcoC, a low percentage of dimeric species was detected. This component was separated and excluded from further investigation.

Figure S1. Elution profiles on a Superdex 75 FPLC gel filtration column (HR 10/30; Pharmacia): (a) nA-PcoC as isolated from the cation-exchange column CM-52; (b) dimeric fractions from sample (a). The elution profile remained unchanged after incubation at 4 °C for one week in the presence or absence of EDTA; (c) sample (b) incubated at 20 °C for 20 h; (d) sample (b) incubated at 37 °C for 20 h. The elution profiles of all metalated forms were indistinguishable from the elution profile (d).

Conditions: flow rate, 0.7 mL/min; buffer, KPi (25 mM; pH 7), NaCl (100 mM). The indicated molar masses are the elution positions under the same conditions of the standards albumin (67 kDa), ovalbumin (43 kDa), chymotrypsinogen A (25 kDa) and ribonuclease A (13.7 kDa) from Amersham Pharmacia.

Figure S2 Elution profiles of a mixture of monomeric and dimeric forms of nA-PcoC on the Mono-S HR5/5 cation exchange column under the conditions of Figure 6.

Protein	Molar Mass (Da)					
Trotein	Calculated	Found				
PcoC	10978.6	10979	-			
nA-PcoC	11049.7	11049				
PcoC H1F	10988.6	10988				
PcoC M40L	10960.6	10960				
PcoC H49F	10988.6	10988				
PcoC H92F	10988.6	10988				
PcoC H49F-M40L	10970.6	10970				

Table S2ESI-MS Data of the Isolated PcoC Proteins

Figure S3 ESI-MS spectra of native PcoC (left) and nA-PcoC (right).

Figure S4 Structures of reagents bcs and bca.

Table S3 Estimation of Dissociation Constant $K_D(\Box Cu^{II})$ and $K_D(\downarrow Cu^{II})$ by Competition with Ligand EGTA in 20 mM KPi (pH 7.0), 0.1 M NaCl.^{*a*}

Protei	$[Cu^{II}]_{to}$	ΔF_X	[Cu ^{II} P	[Cu ^{II} L	([P] _{tot} /[CuP]) - 1	([L] _{tot} /[CuL]) - 1	$K_{\rm D}{}^d$
n	t	$/\Delta \Gamma_1$	J	J			$(x10^{-14})$
	(µM)		(µM)	(µM)			`M)
	2.31	0.20	1.01	1.30	3.96	2.83	5.6
	3.24	0.28	1.39	1.85	2.60	1.70	6.1
	4.16	0.36	1.81	2.36	1.77	1.12	6.3
	5.55	0.52	2.61	2.94	0.91	0.70	5.2
	6.94	0.68	3.40	3.53	0.47	0.41	4.5
$\downarrow \Box b$	2.60	0.17	0.84	1.76	4.94	1.84	6.7
	4.68	0.36	1.81	2.87	1.76	0.74	5.9
	6.76	0.58	2.90	3.86	0.72	0.29	6.2
	8.84	0.84	4.19	4.65	0.19	0.08	6.3

^{*a*} $[apo-PcoC]_{total} = [EGTA]_{total} = 5.0 \ \mu M$ in each solution;

^{*b*} $\Box \Box$: wild type *apo*-PcoC; $\downarrow \Box$: M40L/H49F *apo*-PcoC;

^{*c*} See experimental section for details;

^{*d*} At pH 7.0 and 0.1 M ionic strength, $K_A(Cu^{II}\text{-egta}) = 4.0 \times 10^{13} \text{ M}^{-1}$ (Martell, A. E.; Smith, R. M.; Eds *Critical Stability Constants, Vol. 1: Amino Acids*; Plenum: New York, 1974.); the average K_D values obtained from the slopes are 5.8 x 10⁻¹⁴ and 6.8 x 10⁻¹⁴ M⁻¹ for $\Box \Box$ and $\downarrow \Box$, respectively.

Cu^I Dissociation Constants. We have previously estimated the affinity of CopC for Cu⁺ using bathocupröine disulfonate (bcs; Figure S4) as competing ligand (Xiao, Z.; Loughlin, F.; George, G. N.; Howlett, G. J.; Wedd, A. G. J. Am. Chem. Soc. 2004, 126, 3081-3090). However, bcs has a much higher affinity for Cu⁺ ($\beta_2 = 10^{19.8} \text{ M}^{-2}$) than does CopC. Consequently, the experiments could supply only a minimum value of $K_D(Cu^I \Box) \ge 10^{-13}$ M. In the present work, bicinchonic acid (bca; Figure S4), a related ligand of lower affinity, was employed (see Materials and Methods). Its association constant β_2 is not known but is significantly smaller than that of bcs. It is possible to assess the relative Cu affinities for different proteins via estimation of ratios $K_D(Cu^I \Box)/\beta_2$ via eqn 2.

When in excess, bca forms a stable 1:2 purple complex $[Cu^{I}(bca)_{2}]^{3-}$ (Xiao, Z.; Wedd, A. G. unpublished observations). A stepwise increase in total protein concentration induced a proportional decrease in the intensity of the two absorption bands at 358 and 562 nm characteristic of $[Cu^{I}(bca)_{2}]^{3-}$ (Figure S5). Numerical data are listed in Table S4. Over the range of Cu^I occupancies (0.05 – 0.5), estimates of ratio $K_{D}(Cu^{I}\Box)/\beta_{2}$ calculated from eqn 2 for wild type PcoC and CopC were constant within experimental error. The ratio is not sensitive to protein concentration, consistent with minimal influence from Cu^I(PcoC)(bca) termary complexes. The derived ratio $K_{D}(Cu^{I}-CopC)/K_{D}(Cu^{I}-PcoC) \sim 2$, implying that PcoC has a slightly higher affinity for Cu^I.

Figure S5. Decrease in intensity of the absorption spectrum of $[Cu^{I}(bca)_{2}]^{3-}$ with increasing concentration of wild type *apo*-PcoC $\Box\Box$ in MES buffer (20 mM; pH 6; NaCl, 100 mM) and asc (100 μ M) under anaerobic conditions. From top: $[\Box\Box]_{t} = 0$, 10, 25, 50, 100 μ M, respectively.

protein	[bca] _{tota}	[P] _{total}	A ₃₅₈	[Cu(bca) ₂]	[CuP]	K _D (Cu ^I P) x	relative to
	1	(µM)		(µM)	(µM)	$(\beta_2)^{-1} \ge 10^4$	$K_D(Cu^IPcoC)$
	(µM)						
none	36	0	0.62	14.5	0		
wt PcoC	36	10	0.43	10	4.5	4.8	1
$(\Box\Box)$	36	25	0.36	7.8	6.7	5.1	
	36	50	0.26	6.0	8.5	5.1	
	36	100	0.18	4.1	10.4	4.6	
	36	150	0.14	3.2	11.3	4.4	
wt CopC	36	25	0.39	9.1	5.4	10.3	~ 2
$(\Box\Box)$	36	50	0.32	7.5	7.0	10.7	
	36	100	0.24	5.5	9.0	9.0	
	36	150	0.21	4.8	9.7	10.0	
	36	200	0.18	4.1	10.4	9.8	
H1F	40	50	0.30	7.1	7.4	6.0	~1.2
$(\Box X)$	40	100	0.23	5.4	9.1	6.2	
nA-PcoC	40	50	0.29	6.7	7.8	5.0	~1
(□₽)	40	100	0.21	5.0	9.5	5.2	
M40L	40	50	0.43	10.0	4.5	25	~5
$(\downarrow\Box)$	40	100	0.36	8.4	6.1	24	
H49F	40	50	0.44	10.1	4.4	27	~6
$(\downarrow\Box)$	40	100	0.38	8.8	5.7	29	
M40L/H49F	40	50	0.46	10.7	3.8	38	~8
$(\downarrow\Box)$	40	100	0.40	9.2	5.3	35	

Table S4 Estimation of $K_D(Cu^IP)$ for Wild Type PcoC and CopC Proteins and for Variant PcoCProteins by Competition with bca for $Cu^{I,a,b}$

 a MES (20 mM; pH 6), NaCl (100 mM) and asc (100 μ M) under anaerobic conditions.

^{*b*} Total Cu^I concentration in all equilibrium solutions was 14.5 μ M.

Figure S6. Solution spectra of Cu^{II}-nA-PcoC (dashed line) and Cu^{II}-PcoC (solid line) in 20 mM KPi (pH 7) and 100 mM NaCl.

- Figure S7. Oxidation of wild type PcoC protein Cu^I□ by air. Elution profiles of product proteins on a Mono-S HR5/5 cation exchange column under the conditions of Figure 3. The sample was injected:-
 - (a) immediately after preparation (see text);
 - (b) after exposure to air for 2 min;
 - (c) after exposure to air for 80 min;