## SUPPORTING INFORMATION

## Cytochrome c and Organic Molecules: the Solution Structure of the Para-Aminophenol Adduct<sup>†</sup>

Michael Assfalg, Ivano Bertini, Rebecca Del Conte, Andrea Giachetti, Paola Turano

| Table S1. | Acquisition | parameters      | for the l | NMR experiments |
|-----------|-------------|-----------------|-----------|-----------------|
|           | 1090101011  | p m m m o voi o | 101 0110  |                 |

| Experiments                                 | Dimension of acquired data (nucleus) |                       | Spectral width (ppm) |      |      | Ref  |     |
|---------------------------------------------|--------------------------------------|-----------------------|----------------------|------|------|------|-----|
|                                             | t1                                   | t2                    | t3                   | F1   | F2   | F3   |     |
| Water-LOGSY <sup>a</sup>                    | 16384( <sup>1</sup> H)               | -                     | -                    | 9.7  | -    | -    | (1) |
| <sup>15</sup> N-HSQC <sup>b</sup>           | 1024( <sup>1</sup> H)                | 128( <sup>15</sup> N) | -                    | 15.0 | 40.0 | -    | (2) |
| <sup>15</sup> N-NOESY-<br>HSQC <sup>c</sup> | 1024( <sup>1</sup> H)                | 40( <sup>15</sup> N)  | 256( <sup>1</sup> H) | 20.0 | 40.0 | 20.0 | (3) |

<sup>a</sup> Data acquired on a Bruker Avance 700 spectrometer equipped with a sample changer

<sup>b</sup> Data acquired on a Bruker Avance 900 and 800 spectrometers both equipped with a cryoprobe

<sup>c</sup> Data acquired on a Bruker Avance 800 spectrometer equipped with a cryoprobe

**Table S2.** Statistical analysis of the energy-minimized family of conformers and the mean structure

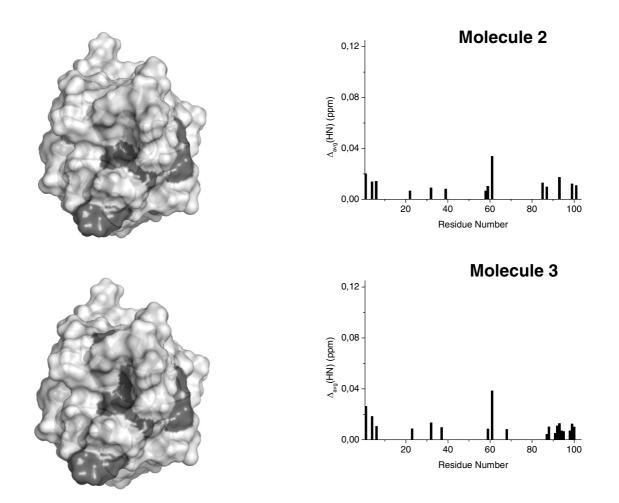
 of *S. cerevisiae* iso-1-cytochrome *c*

|                                                                   | REM <sup>a</sup> (35 structures) | $<$ REM $>^a$ (mean) |  |
|-------------------------------------------------------------------|----------------------------------|----------------------|--|
| RMS violations per meaningful distance restraint $(\text{\AA})^b$ |                                  |                      |  |
| intraresidue (438)                                                | $0.0099 \pm 0.0016$              | 0.0076               |  |
| sequential (389)                                                  | $0.0114 \pm 0.0017$              | 0.0093               |  |
| medium-range (369) <sup>C</sup>                                   | $0.0068 \pm 0.0017$              | 0.0050               |  |
| long-range (474)                                                  | $0.0049 \pm 0.0016$              | 0.0056               |  |
| total (1670)                                                      | $0.0086 \pm 0.0010$              | 0.0070               |  |
| RMS violations per meaningful dihedral angle                      |                                  |                      |  |
| restraints $(deg)^b$                                              |                                  |                      |  |
| <b>\$</b> (49)                                                    | $0.00 \pm 0.00$                  | 0.86                 |  |
| Ψ(49)                                                             | $0.00 \pm 0.00$                  | 1.90                 |  |
| average number of restraints per residue                          | 15                               | 15                   |  |
| average number of violations per structure                        |                                  |                      |  |
| intraresidue (438)                                                | 7.5143 ± 1.4613                  | 6                    |  |
| sequential (389)                                                  | 8.2000 ± 1.9094                  | 7                    |  |
| medium-range $(369)^{C}$                                          | 4.1429 ± 1.6413                  | 3                    |  |
| long-range (474)                                                  | 3.1429 ± 1.6758                  | 5                    |  |
| total (1670)                                                      | $23.000 \pm 3.7264$              | 21                   |  |
| <b>\$</b> (49)                                                    | 8.9714 ± 3.0283                  | 12                   |  |
| Ψ (49)                                                            | 3.7714 ± 1.3541                  | 4                    |  |
| average number of NOE violations larger than 0.3 ${\rm \AA}$      | $0.00 \pm 0.00$                  | 0.00                 |  |

|                                              | REM <sup><math>a</math></sup> (35 structures) | <rem><sup>a</sup> (mean)</rem> |
|----------------------------------------------|-----------------------------------------------|--------------------------------|
| average number of NOE violations             | 2.3 ± 1.5                                     | 1                              |
| between 0.1 and 0.3 Å                        |                                               |                                |
| Average distance penalty function (kcal/mol) | 8.145 ± 1.3                                   | 5.968                          |
| structural analysis <sup>d</sup>             |                                               |                                |
| % of residues in most favorable regions      | 73.7                                          | 72.2                           |
| % of residues in allowed regions             | 23.5                                          | 25.6                           |
| % of residues in generously allowed regions  | 2.2                                           | 2.2                            |
| % of residues in disallowed regions          | 0.5                                           | 0.0                            |

<sup>*a*</sup> REM indicates the energy-minimized family of 35 structures, and  $\langle \text{REM} \rangle$  is the energyminimized mean structure obtained from the coordinates of the individual REM structures.

<sup>b</sup> The number of meaningful restraints for each class is reported in parentheses.


<sup>*c*</sup> Medium-range distance restraints are those between residues *i* and i + 2, *i* and i + 3, *i* and i + 4, and *i* and i + 5.

<sup>d</sup> As it results from the Ramachandran plot analysis.

**Table S3.** Number of intramolecular NOEs involving the side chains of residues in the paminophenol binding site, detected in the <sup>15</sup>N-NOESY-HSQC maps of bound and unbound cytochorme c. For unbound cytochrome c the total number of intramolecular NOEs involving the side chains of the same residues detected in all the NOESY maps acquired is provided in paranthesis.

| Residue | unbound cyt c            | bound cyt c              |  |
|---------|--------------------------|--------------------------|--|
|         | # of intramolecular NOEs | # of intramolecular NOEs |  |
| Glu61   | 5 (17)                   | 5                        |  |
| Asn62   | 6 (6)                    | 6                        |  |
| Asn63   | 27 (12)                  | 12                       |  |
| Lys99   | 11 (9)                   | 9                        |  |

**Fig. S1** Residues on cytochrome c surface experiencing CSP upon binding of molecules 2 (up), and 3 (down) are highlighted in grey. The plots of the observed CSP, extrapolated to 100% bound, as a function of the residue number are also reported.



## REFERENCES

1. Dalvit, C., Fogliatto, G., Stewart, A., Veronesi, M., and Stockman, B. J. (2001) WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability, *J. Biomol. NMR 21*, 349-359.

2. Sklenar, V., Piotto, M., Leppik, R., and Saudek, V. (1993) Gradient-tailored water suppression for <sup>1</sup>H-<sup>15</sup>N HSQC experiments optimized to retain full sensitivity, *J. Magn. Reson. Ser.* A *102*, 241-245.

3. Wider, G., Neri, D., Otting, G., and Wüthrich, K. (1989) A Heteronuclear Three-Dimensional NMR Experiment for Measurements of Small Heteronuclear Coupling Constants in Biological Macromolecules, *J. Magn. Reson.* 85, 426-431.