Asymmetric Synthesis of *syn*-α-Substituted β-Amino ketones using Sulfinimines and Prochiral Weinreb Amide Enolates.

Franklin A. Davis and Minsoo Song Department of Chemistry, Temple University Philadelphia, PA 19122 <u>fdavis@temple.edu</u>

General Information: All reagents were used as received unless otherwise noted. Tetrahydrofuran (THF), diethyl ether, dichloromethane, and toluene were purified by filtration on a GlassContour Seca solvent purification system. Unless otherwise mentioned, all reactions were carried under argon atmosphere. Column chromatography was performed on silica gel, Merck grade 60 (230-400 mesh). TLC plates were visualized with UV, in an iodine chamber, or with phosphomolybdic acid, unless otherwise noted. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 and a Varian 300 MHz NMR spectrometer. Sulfinimines were prepared by condensing the appropriate aldehyde with (S)-(+)-*tert*-butanesulfinamide (TB),¹ (S)-(+)-2,4,6-trimethylphenylsulfinamide (TMP),^{2,3} and (S)-(+)-2,4,6-triisopropylphenylsulfinamide (TIPP).³

Typical procedure for the preparation of sulfinimines.⁴ (*S*)-(+)-*N*-(propylidene)-2,4,6-trimethylbenzenesulfinamide (6a). In a 15 mL, flame-dried, single-necked round-bottomed flask equipped with a magnetic stirring bar, and rubber septum was placed (*S*)-(+)-2,4,6-trimethylphenylsulfinamide² (0.04 g, 0.219 mmol), propionaldehyde (0.024 mL, 0.329 mmol) in CH₂Cl₂ (6 mL). To the mixture was addedTi(OEt)₄ (0.224 mL, 1.095 mmol) at 0 °C, and the reaction mixture was stirred for 1 h under argon. At this time the reaction was quenched with water (5 mL), filtered through a Celite and washed the Celite with CH₂Cl₂ (100 mL). The combined organic layers were concentrated and flash chromatography (20% Et₂O/hexane) provided 0.046 g (94%) of a colorless oil; $[\alpha]^{20}_{D}$ +138.0 (*c* 1.7, CHCl₃); IR (KBr) 3144, 2972, 1086 cm⁻¹; ¹H NMR (CDCl₃) δ 8.24 (t, *J* = 4.7 Hz, 1H), 6.77 (s, 2H), 2.48 (dq, *J* = 4.8, 7.5 Hz, 2H), 2.39 (s, 6H), 2.20 (s, 3H), 1.11 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (CDCl₃) δ 169.2, 142.0, 138.6, 135.7, 131.2, 29.7, 21.4, 19.1, 10.1. HRMS calcd for C₁₂H₁₈NOS (M+H) 224.33448. Found 224.1110.

(*S*)-(+)-*N*-(**Benzylidene**)-2,4,6-trimethylbenzenesulfinamide (6b). Chromatography (10% Et₂O/hexanes) gave 0.1 g (60%) of a colorless oil; $[\alpha]^{20}{}_{D}$ +103.2 (*c* 1.2, CHCl₃); IR (KBr) 3025, 2968, 2919, 1091 cm⁻¹; ¹H NMR (CDCl₃) δ 8.76 (s, 1H), 7.77 (m, 2H), 7.41 (m, 3H), 6.78 (s, 2H), 2.43 (s, 6H), 2.2 (s, 3H); ¹³C NMR (CDCl₃) δ 162.0, 142.0, 138.8, 135.8, 134.3, 132.8, 131.2, 129.9, 129.3, 21.4, 19.2. HRMS calcd for C₂₂H₁₈NOS (M+H) 272.37728. Found 272.1108.

(*S*)-(+)-*N*-Propylidene-2,4,6-triisopropylbenzenesulfinami-de (7a). Flash chromatography (20% Et₂O/hexane) provided 0.052 g (85%) of a colorless oil; $[\alpha]^{20}_{D}$ +237.6 (*c* 1.0, CHCl₃); IR (KBr) 2963, 2870, 1083 cm⁻¹; ¹H NMR (CDCl₃) δ 8.27 (t, *J* = 4.8 Hz, 1H), 7.0 (s, 2H), 3.70 (pentet, *J* = 6.9 Hz, 2H), 2.82 (pentet, *J* = 6.9 Hz, 1H), 2.49 (dq, *J* = 4.8, 7.3 Hz, 2H), 1.09 – 1.23 (m, 21H); ¹³C NMR (CDCl₃) δ 169.0, 153.0, 150.0,

135.0, 123.3(2C), 34.9, 30.0, 28.1, 24.7, 24.3, 24.1, 9.9. HRMS calcd for $C_{18}H_{30}NOS$ (M+H) 308.20481. Found 308.2046.

(*S*)-(+)-*N*-(**Benzylidene**)-2,4,6-triisopropylbenzenesulfinamide (7b). Flash chromatography (10% Et₂O/hexane) provided 0.179 g (77%) of a colorless oil; $[\alpha]_{D}^{20}$ +58.7 (*c* = 1.0, CHCl₃); IR (KBr) 2961, 2870, 1087 cm⁻¹; ¹H NMR (CDCl₃) δ 8.89 (s, 1H), 7.89 (m, 2H), 7.50 (m, 3H), 7.12 (s, 2H), 3.89 (pentet, *J* = 6.8 Hz, 2H), 2.92 (pentet, *J* = 6.9 Hz, 1H), 1.33 (d, *J* = 6.9 Hz, 3H), 1.28 (d, *J* = 6.7 Hz, 3H), 1.18 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (CDCl₃) δ 161.5, 153.0, 150.0, 134.9, 134.6, 132.5, 129.5, 129.1, 123.2, 34.6, 28.2, 24.6, 24.2, 24.0. HRMS calcd for C₂₂H₃₀NOS (M+H) 356.204812. Found 356.2062.

Typical procedure for the preparation of N-sulfinyl α -alkyl β -amino $(S_s, 2R, 3R)$ -(+)-N-methoxy-N-2-dimethyl-3-(p-Weinreb amides. toluenesulfinylamino)-3-phenylpropanamide (9). In a 15 mL, flame-dried, single-neck round-bottomed flask equipped with a magnetic stirring bar, and rubber septum was placed LiHMDS (0.34 mL, 0.338 mmol, 1.0 M solution in THF) under argon. A solution of N-methoxy-N-methylpropylamide (0.04 g, 0.338 mmol) in THF (0.7 mL) was added at -78 °C via cannula, and the solution was stirred for 2 h at this temperature. To the reaction mixture was added a solution of (S)-(+)-4a (0.041 g, 0.169 mmol) in THF (1.0 mL) and the reaction was monitored for completion by TLC (typically less than 30 min). At this time the reaction mixture was quenched with sat. aqueous NH₄Cl (1 mL) at -78 °C, warmed to rt, and extracted with EtOAc (2 x 10 mL). The combined organic phases were washed with brine (2 x 5 mL), dried (MgSO₄), and concentrated. Chromatography (50% EtOAc/hexanes) gave 0.077 g (99%) of a colorless oil as an inseparable mixture of diastereomers in a ratio of 87:13:1:<0.5 based on crude ¹H NMR. $[\alpha]_{D}^{20} + 91.9$ (c 6.0, CHCl₃); ¹H NMR (CDCl₃) major compound δ 7.54 (m, 2H), 7.19 – 7.4 (m, 7H), 5.13 (d, J = 3.2 Hz, 1H), 4.74 (m, 1H), 3.53 (s, 3H), 3.2 (m, 1H), 3.02 (s, 3H), 2.34 (s, 3H), 1.04 (d, J = 7.2 Hz, 3H); minor compound δ 7.49 (m, 2H), 7.0-7.4 (m, 7H), 5.92 (bd, J = 6.8 Hz, 1H), 4.42 (t, J = 6.4 Hz, 1H), 3.0 (s, 3H), 2.97 (m, 1H), 2.24 (s, 3H), 1.12 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃) major isomer δ 175.7, 143.2, 141.7, 140.2, 129.9, 128.8, 128.5, 125.6, 61.9, 59.1, 41.4, 32.4, 21.7, 12.2. Minor compound & 142.2, 141.4, 129.7, 129.5, 127.6, 127.58, 126.0, 62.0, 58.7, 41.6, 21.6, 16.5. HRMS calcd for $C_{10}H_{25}N_2O_3S$ (M+H) 361.1586. Found 361.1584.

(S_s,2R,3S)-(+)-N-Methoxy-N,2-dimethyl-3-(*p*-toluenesulfinylamino)-3-

pentanamide (10). Chromatography (50% Et₂O/hexanes) provided 0.056 g (78%) of product as a colorless oil as an inseparable mixture of diastereomers in a ratio of 83:10:4:3; $[\alpha]^{20}{}_{\rm D}$ +126.8 (*c* 0.933, CHCl₃); IR (KBr) 3236, 2968, 1654 cm⁻¹; ¹H NMR (CDCl₃) major compound δ 7.52 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 4.41 (d, *J* = 7.2 Hz, 1H), 3.60 (s, 3H), 3.35 (m, 1H), 3.06 (s, 3H), 2.33 (s, 3H), 1.75 (m, 1H), 1.58 (m, 2H), 1.09 (d, *J* = 6.8 Hz, 3H), 0.94 (t, *J* = 7.2 Hz, 3Hz); ¹³C NMR (CDCl₃). Major compound δ 176.8, 143.9, 142.1, 130.5, 126.5, 62.4, 60.0, 38.8, 33.1, 26.9, 22.3, 14.0, 11.8. HRMS calcd for C₁₅H₂₅N₂O₃S (M+H) 313.15860. Found 313.1587.

(S_s,2R,3R)-(+)-N-methoxy-N,2-dimethyl-3-(2,4,6-trimethylphenylsulfinyl-

amino)-3-phenylpropanamide (11) Chromatography (50% Et₂O/hexanes) provided 0.064 g (99%) of a colorless oil as a separable mixture of diastereomers in a ratio of 96:4: $[\alpha]_{D}^{20}$ +80.2 (*c* 2.3, CHCl₃); IR (KBr) 3239, 2970, 1652 cm⁻¹; ¹H NMR (CDCl₃) major compound δ 7.29 (m, 5H), 6.79 (s, 2H), 5.81 (s, 1H), 4.80 (d, *J* = 2.8 Hz, 1H), 3.60 (s, 3H), 3.19 (m, 1H), 3.10 (s, 3H), 2.47 (s, 6H), 2.2 (s, 3H), 0.99 (d, 6.8 Hz, 3H). ¹³C NMR (CDCl₃) major compound δ 176.2, 141.0, 139.9, 138.7, 137.3, 131.1, 128.7, 128.5, 128.2, 62.0, 58.3, 40.9, 32.5, 21.4, 19.6, 11.1. HRMS calcd for C₂₁H₂₉N₂O₃S (M+H) 389.18990. Found 389.1897.

(*S*₈,2*R*,3*S*)-(+)-*N*-methoxy-*N*,2-dimethyl-3-(2,4,6-trimethylphenylsulfinylamino)-3-pentanamide (12). Chromatography (50% EtOAc/hexanes) provided 0.048 g (72%) of a colorless oil as an inseparable mixture of diastereomers in a ratio of 80:17:3; $[\alpha]^{20}_{D}$ +80.2 (*c* 2.3, CHCl₃); IR (KBr) 3239, 2970, 1652 cm⁻¹; ¹H NMR (CDCl₃) major compound δ 6.76 (s 2H), 5.03 (d, *J* = 6.0 Hz, 1H), 3.66 (s, 3H), 3.37 (m, 1H), 3.2 (m, 1H), 3.11 (s, 3H), 2.49 (s, 6H), 2.19 (s, 3H), 1.78 (m, 1H), 1.54 (octet, *J* = 7.1 Hz, 1H), 1.05 (d, *J* = 7.2 Hz, 3H), 0.88 (t, *J* = 7.4 Hz, 3H); minor compound δ 4.3 (d, *J* = 8.0 Hz, 1H), 3.61 (s, 3H), 3.45 (m, 1H), 2.96 (m, 1H), 2.52 (s, 6H), 1.61 (m, 1H), 1.1 (d, *J* = 7.2 Hz, 3H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (CDCl₃) major compound δ 176.4, 140.6, 139.2, 136.6, 131.0, 61.9, 59.2, 38.5, 32.4, 25.0, 21.3, 19.7, 12.5, 11.1 minor compound δ 139.8, 136.4, 131.1, 61.8, 60.8, 40.5, 27.3, 19.9 14.3, 10.8. HRMS calcd for C₁₇H₂₉N₂O₃S (M+H) 341.1899. Found 341.190.

($S_{\rm s}$,2R,3R)-(+)-*N*-Methoxy-*N*-2-dimethyl-3-(2,4,6-triisopropylphenylsulfinylamino)-3-pentanamide (13). Chromatography provided 0.066 g (68%) of an oil; [α]²⁰_D +45.0 (*c* 0.6, CHCl₃); IR (KBr) 3248, 2962, 1649, 1461 cm⁻¹; ¹H NMR (CDCl₃) δ 6.9 (s, 2H), 4.97 (d, *J* = 6.0 Hz, 1H), 3.83 (m, 2H). 3.30 (s, 3H); 3.31 (M, 1H), 3.23, 1H), 3.36 (s, 3H), 2.02 (quint, *J* = 6.9 Hz, 1H), 1.77 (m, 1H), 1.49 (m, 1H) 1.17 (d, *J* = 6.8 Hz, 6H), 1.09 (dd, *J* = 2.2 Hz, 112 H)m 1.01 (d, *J* = 7.2 Hz, 3H), 0.81 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (CDCl₃) δ 179.1, 152.1, 148.5, 140.0, 138.0, 128.7, 128.6, 128.2, 123.3, 62.0, 59.4, 41.2, 34.7, 32.4, 28.6, 24.9, 24.7, 24.1, 11.8. HRMS calcd for C₂₇H₄₁N₂O₃S (M+H) 473.283790. Found 473.2821.

 $(S_s,2R,3S)$ -(+)-*N*-methoxy-*N*,2-dimethyl-3-(2,4,6-triisopropylphenylsulfinylamino)pentanamide (14). Chromatography (50% Et₂O/hexanes) provided 0.125 g (80%) of an oil; $[\alpha]^{20}_{D}$ +81.2 (*c* 0.97, CHCl₃); IR (KBr) 2962, 2870, 1653, 1457 cm⁻¹; ¹H NMR (CDCl₃) Major compound δ 6.91 (s, 2H), 4.97 (d, *J* = 6.0 Hz, 1H), 3.83 (m, 2H), 3.61 (s, 3H) 3.31 (m, 1H), 3.23 (m, 1H), 3.06 (s, 3H), 2.72 (pentet, *J* = 6.9 Hz, 1H), 1.77 (m, 1H), 1.49 (m, 1H), 1.17 (d, *J* = 6.8 Hz, 6H), 1.09 (dd, *J* = 2.2 6.6 Hz, 12 H), 1.01 (d, *J* = 7.2 Hz, 3H), 0.81 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (CDCl₃) δ 176.4, 151.7, 147.7, 138.9, 123.2, 61.9, 60.3, 39.1, 34.6, 32.4, 28.7, 24.7, 24.6 24.5, 24.1, 12.9, 11.3. HRMS calcd for C₂₇H₄₁N₂O₃S (M+H) 425.28380. Found 425.2840.

(R_s ,2S,3S)-(+)-N-methoxy-N,2-dimethyl-3-(2,4,6-triisopropylphenylsulfinylamio)pentanamide (14). Chromatography (50% Et₂O/hexanes) gave 0.031 g (20%) of a oil; $[\alpha]_{D}^{20}$ +56.2 (c 0.5, CHCl₃); IR (KBr) 2962, 2871, 1654, 1459 cm⁻¹; ¹H NMR (CDCl₃) δ 6.91 (s, 2H), 4.26 (d, J = 7.6 Hz, 1H), 3.89 (m, 2H), 3.52 (s, 3H), 3.43 (m, 1H), 3.02 (s, 3H), 2.87 (m, 1H), 2.71 (pentet, J = 6.9 Hz, 1H), 1.58 (m, 2H), 1.05 – 1.17 (m, 18H), 1.02 (d, J = 6.8 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃) δ 176.5, 151.8, 147.5, 139.6, 123.4, 61.8, 61.3, 40.1, 34.6, 28.7, 27.5, 24.9, 24.5, 24.1, 23.9, 14.4, 10.6. HRMS calcd for C₂₇H₄₁N₂O₃S (M+H) 425.28380. Found 425.2840.

(2*R*,3*R*)-(-)-3-Amino-*N*-methoxy-*N*,2-dimethyl-3-phenylpropanamide (15a). In a 15 mL, flame-dried, single-necked round-bottomed flask equipped with a magnetic stirring bar, and rubber septum was placed compound (+)-13 (0.057 g, 0.121 mmol) in anhydrous MeOH (6.0 mL) and the solution was cooled to 0 °C. To the solution was added HCl (0.480 mL, 0.480 mmol, 1.0 M solution in Et₂O) via syringe and the resulting mixture was stirred for 30 min. At this time the reaction mixture was brought to pH 9 using 1.0 N aqueous NaOH and concentrated. Chromatography (5% MeOH/CH₂Cl₂ with < 1% Et₃N) provided 0.026 g (97%) of a colorless oil; $[\alpha]^{20}_{D}$ -28.2 (*c* 1.0, CHCl₃); IR (KBr) 3445, 2963, 1655, 1458, 1124 cm⁻¹; ¹H NMR (CDCl₃) δ 7.13 – 7.32 (m, 5H), 4.19 (d, *J* = 6.4 Hz, 1H), 3.42 (s, 3H), 3.1 (m, 1H), 2.89 (s, 3H), 1.76 (s, 2H), 1.13 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃) δ 176.8, 144.7, 128.6, 127.5, 127.2, 61.7, 57.5, 43.3, 32.4, 13.0. HRMS calcd for C₁₂H₁₉N₂O₂ (M+H) 223.14466. Found 223.1446.

(2R,3S)-(-)-3-Amino-N-methoxy-N, 2-dimethylpentanamide (15b). Chromatography (10% MeOH/CH₂Cl₂, < 1% Et₃N) provided 0.041 g (99%) of product as a white solid, mp 160-161 °C; $[\alpha]^{20}_{D}$ -17.85 (*c* 1.025, CHCl₃); IR (KBr) 3378, 2965, 1658, 1463 cm⁻¹; ¹H NMR (CDCl₃) δ 6.33 (bs, 2H), 3.73 (s, 3H), 3.21 (s, 3H), 3.22 (m, 2H), 1.78 (m, 2H), 1.30 (d, *J* = 6.9 Hz, 3H), 1.07 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (CDCl₃) δ 140.4, 115.0, 54.0, 47.1, 31.9, 24.7, 20.5, 4.2, 3.4. HRMS calcd for C₈H₁₉N₂O₂ (M+H) 175.14466. Found 175.1448.

(2R,3R)-(+)-N-Methoxy-N,2-dimethyl-3-(p-toluenesulfonamido)-3-phenyl**propanamide** (16a). In a 5 mL, flame-dried, single-necked round-bottomed flask equipped with a magnetic stirring bar, and rubber septum was placed (-)-15a (0.026 g, 0.117 mmol) in CH₂Cl₂ (1.5 mL) and the solution was cooled to 0 °C. To the solution was added Et₃N (0.032 mL, 0.234 mmol), a catalytic amount of DMAP, and the mixture was stirred for 15 min at which time *p*-toluenesulfonyl chloride (0.034 g, 0.178 mmol) was added. After stirring for 2 h at 0 °C, the reaction mixture was quenched with water (6.5 mL) and diluted with CH₂Cl₂ (5 mL). The aqueous phase was extracted with CH₂Cl₂ (5 mL x 2), and the combined organic phases were washed with brine, dried (MgSO₄), and concentrated. Chromatography (50% Et₂O/hexanes to Et₂O) gave 0.030 g (68%) of a white solid, mp 170-171 °C; $[\alpha]_{D}^{20}$ +73.4 (*c* 0.5, CHCl₃); IR (KBr) 3248, 2979, 1327, 1160 cm⁻¹; ¹H NMR (CDCl₃) δ 7.49 (m, 2H), 7.05 (m, 5H), 5.57 (bd, J = 4.4 Hz, 1H), 4.4 (t, J = 6.8 Hz, 1H), 3.41 (s, 3H), 3.17 (t, J = 6.4 Hz, 1H), 2.83 (s, 3H), 2.28 (s, 3H), 1.07(d, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 174.8, 143.3, 139.9, 137.4, 129.6, 128.5, 127.8, 127.7, 127.4, 61.8, 59.7, 41.7, 32.3, 21.2, 13.5. HRMS calcd for C₁₉H₂₅N₂O₄S (M+H) 377.1535. Found 377.1534.

(2*R*,3*S*)-(+)-*N*-methoxy-*N*,2-dimethyl-3-(4-methylphenylsulfonamidopentanamide (16b). Chromatography (50% Et₂O/hexane) gave 0.057 g (76%) of a white solid, mp 118 °C; $[\alpha]_{D}^{20}$ +0.75 (*c* 0.933, CHCl₃); IR (KBr) 3247, 2971, 2937, 1658, 1159 cm⁻¹; ¹H NMR (CDCl₃) δ 7.69 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 4.85 (bd, *J* = 6.8 Hz, 1H), 3.55 (s, 3H), 3.26 (m, 1H), 3.06 (m, 1H), 3.0 (s, 3H), 2.34 (s, 3H), 1.48 (m, 2H), 0.99 (d, *J* = 7.2 Hz, 3H), 0.63 (t, J = 7.6 Hz, 3H); ¹³C NMR (CDCl₃) δ 175.6, 134.4, 129.4, 120.8, 118.6, 52.8, 48.9, 37.3, 29.8, 23.4, 16.8, 12.8, 4.6, 1.5. HRMS calcd for C₁₅H₂₄N₂O₄S (M+H) 329.15351. Found 329.1537.

(2*R*,3*R*)-(+)-2-Methyl-3-(4-methylphenylsulfonamido)-3-phenylpropanoic acid (17). In a 5 mL, flame-dried, single-necked round-bottomed flask equipped with a magnetic stirring bar, reflux condenser, and rubber septum was placed (+)-16a (0.009 g, 0.024 mmol) and aqueous KOH (1 mL) in EtOH (1.0 mL). The reaction mixture was refluxed for 48 h at 80 °C, the solution cooled to rt, acidified to pH <2 using conc. HCl, and diluted with CH₂Cl₂ (10 mL). The solution was vigorously stirred for 30 min at which time the aqueous phase was extracted with CH₂Cl₂ (2 X 10 mL), and the combined organic phases were dried (MgSO₄), and concentrated. Chromatography (35% EtOAc/hexanes to MeOH) provided 0.008 g (99%) of a white solid, mp 145 °C; $[\alpha]^{20}_{D}$ +46.5 (c 0.23, EtOAc); ¹H NMR (CD₃OD) δ 7.45 (m, 2H), 7.09 (m, 2H), 4.47 (d, *J* = 9.6 Hz, 1H), 2.71 (m,1H), 2.32 (s, 3H), 1.24 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CD₃OD) δ 180.7, 144.3, 142.0, 140.3, 130.5, 129.2, 129.1, 128.4, 128.3, 62.4, 21.7, 16.2 HRMS calcd for C₁₇H₂₀NO₄S (M+H) 334.1113. Found 334.1113.

(2*R*,3*S*)-(-)-2-Methyl-*N*-(*p*-tolutenesulfsulfonyl)-3-aminopentanal (18b). In a 5 mL, flame-dried, single-necked round-bottomed flask equipped with a magnetic stirring bar and rubber septum was placed (+)-16b (0.019 g, 0.058 mmol) in THF (1.0 mL). The solution was cooled to -78 °C and DIBAL-H (0.290 mL, 0.29 mmol, 1.0 M solution in CH₂Cl₂) was added via syringe. After stirring for 10 min, the reaction mixture was quenched with Rochell salt at -78 °C, and warmed up to rt. The reaction mixture was diluted with EtOAc (5 mL) and stirred vigorously until two layers were obtained. The organic phases were separated, dried (MgSO₄), and concentrated. Flash chromatography (50% Et₂O/hexanes) gave 0.011 g (71%) of a white solid, mp 84-85 °C; $[\alpha]^{20}_{D}$ -47.2 (*c* 1.0, CHCl₃); IR (KBr) 3282, 2972, 1718, 1162 cm⁻¹; ¹H NMR (CDCl₃) δ 9.48 (s, 1H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 7.6 Hz, 2H), 4.66 (d, *J* = 9.2 Hz, 1H), 3.45 (m, 1H), 2.44 (m, 1H), 2.36 (s, 3H), 1.38 (m, 2H), 1.01 (d, *J* = 7.2 Hz, 3H), 0.68 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃) δ 203.9, 143.9, 138.3, 130.0, 127.4, 56.3, 49.7, 25.7, 21.9, 10.9, 9.8. HRMS calcd for C₁₃H₂₀NO₃S (M+H) 270.11639. Found 270.1163.

(2*R*,3*S*)-(-)-2-Methyl-*N*-(*p*-toluenesulfonyl)-3-aminopentanol (19). In a 5 mL, flame-dried, single-necked round-bottomed flask equipped with a magnetic stirring bar, and rubber septum was placed (-)-18 (0.010 g, 0.037 mmol) in CH₂Cl₂ (2.0 mL). The solution was cooled to 78 °C and LiEt₃BH (0.19 mL, 0.186 mmol, 1.0 M solution in THF) was added. After stirring for 1.5 h at this temperature, the reaction mixture was quenched with sat. aqueous NH₄Cl (1.0 mL) at -78 °C, and warmed up to rt. The solution was extracted with EtOAc (2 x 10 mL) and the combined organic phases were dried (MgSO₄) and concentrated. Flash chromatography (50% EtOAc/hexanes) provided 0.010 g (99%) of a colorless oil, $[\alpha]^{20}_{D}$ -33.2 (*c* 0.37, CHCl₃). [lit.⁴ $[\alpha]^{20}_{D}$ -35.0 (*c* 0.6, CHCl₃)]. NMR data and the physical data were identical with the reported data.⁴

(2S,3S)-(-)-N-Methoxy-N,2-dimethyl-3-(4-methylphenylsulfonamido)-

pentanamide (20). In a 10 mL, flame-dried, single-necked round-bottomed flask equipped with a magnetic stirring bar, and rubber septum was placed anti-(+)-14 (0.070 g, 0.165 mmol) in MeOH (8.0 mL). The solution was cooled to 0 °C, HCl (0.66 mL, 1.0 M solution in Et₂O) was added via syringe and the reaction mixture was stirred for 30 min. At this time the solution was brought to pH 9 using 1.0 N aqueous NaOH and concentrated. The triisopropylphenylsulfinyl by-products were removed by a short pad of silica gel chromatography (5% MeOH/CH₂Cl₂ with < 1% Et₃N), and the crude amine was concentrated and placed in a 5 mL, flame-dried, single-necked round-bottomed flask equipped with a magnetic stirring bar and rubber septum. To the flask was added CH₂Cl₂ (2.0 mL), Et₃N (0.045 mL, 0.33 mmol), and catalytic amount of DMAP and the solution was cooled to 0 °C. The mixture was stirred for 15 min and *p*-toluenesulfonyl chloride (0.047 g, 0.248 mmol) was added. After stirring for 2 h at 0 °C, the reaction mixture was quenched with water (0.5 mL) and diluted with CH₂Cl₂ (5 mL). The aqueous phase was extracted with CH₂Cl₂ (5 mL x 2), and the combined organic phases were washed with brine (3 mL), dried (MgSO₄), and concentrated. Chromatography $(50\% \text{ Et}_2\text{O}/\text{hexanes to Et}_2\text{O})$ gave 0.036 g (67%) of a white solid mp 115-6 °C, $[\alpha]_{D}^{20}$ -1.5 $(c 1.2, CHCl_3)$; IR (KBr) 3245, 2967, 2963, 1638 cm⁻¹; ¹H NMR (CDCl_3) δ 7.69 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 4.85 (d, J = 8.0 Hz, 1H), 3.55 (s, 3H), 3.24 (pentet, J = 6.6 Hz, 1H), 2.98 (s, 3H), 2.34 (s 3H), 1.48 (m, 2H), 0.99 (d, J = 6.8 Hz, 3H), 0.63 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃) δ 175.6, 143.4, 138.4, 129.8, 127.6, 61.8, 57.9, 38.9, 32.4, 25.7, 21.8 13.6, 10.5. HRMS calcd for C₁₅H₂₄N₂O₄S (M+H) 329.15351. Found 329.1537.

(2*S*,3*S*)-(+)-2-Methyl-3-(4-methylphenylsulfonamido)pentanoic acid (21). Chromatography (35% EtOAc/hexanes to CH₂Cl₂) gave 0.029 g (95%) of a colorless oil; $[\alpha]^{20}_{D}$ +51.7 (*c* 0.35, CHCl₃); IR (KBr) 3278, 2973, 2937, 1733 cm⁻¹; ¹H NMR (CDCl₃) δ 7.69 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 5.06 (d, *J* = 10.0 Hz, 1H), 3.25 (heptet, *J* = 4.67 Hz, 1H), 2.53 (m, 1H), 2.35 (s 3H), 1.46 (m, 1H), 1.30 (m, 1H), 1.03 (d, *J* = 6.8 Hz, 3H), 0.71 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 179.0, 143.7, 138.6, 130.0, 127.4, 58.0, 43.4, 24.7, 21.9 13.5, 10.9. HRMS calcd for C₁₃H₂₀NO₄S (M+H) 286.1113. Found 286.1114.

(3S,4S)-(-)-4-Ethyl-3-methyl-1-tosylazetidin-2-one (22). In a 5 mL, flamedried, single-necked round-bottomed flask equipped with a magnetic stirring bar, and rubber septum was placed (-)-21 (0.008 g, 0.028 mmol), DCC (0.007 g, 0.034 mmol), and 4-pyrrolidinopyridine (0.001 g, 0.007 mmol) in CH₂Cl₂ (1.0 mL). The reaction mixture was stirred for 18 h at rt, filtered through Celite washing with CH₂Cl₂ (10 mL). The filtrate was washed with water (3 mL), 5% aqueous AcOH (2 mL), and H₂O (2 mL). The combined organic phases were dried (MgSO₄) and concentrated. Chromatography (10% Et₂O/hexanes) gave 0.005 g (67%) of a white solid mp 85 °C; $[\alpha]^{20}_{D}$ -37.3 (*c* 0.33, CHCl₃); IR (KBr) 3291, 2974, 2935, 1777 cm⁻¹; ¹H NMR (CDCl₃) δ 7.81 (m, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 3.93 (ddd, *J* = 4.4, 6.4, 9.9 Hz, 1H), 3.25 (dq, *J* = 7.6, 6.4 Hz 1H), 2.38 (s, 3H), 2.02 (m, 1H), 1.55 (m, 1H), 1.15 (d, *J* = 7.6 Hz, 3H), 0.88 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (CDCl₃) δ 168.3, 145.4, 136.7, 130.3, 127.7, 60.6, 47.7 22.5, 22.0, 10.8, 8.6. HRMS calcd for C₁₃H₁₈NO₃S (M+H) 268.10074. Found 268.1005. Upon irradiation of the C-3 proton H at δ 3.25, a positive NOE was observed on the C-4 methyl at δ 0.89 (4.5%).

(S_s,3S,4R)-(+)-N-(2,4,6-Triisopropylbenzenesulfinyl)-3-amino-4-methyl **nonan-5-one** (23a). In a 5 mL, flame-dried, single-necked round-bottomed flask equipped with a magnetic stirring bar, and rubber septum was placed Weinreb amide 14 (0.017 g, 0.04 mmol) in THF (0.6 mL). To the solution was added *n*-butylmagnesium chloride (0.11 mL, 0.212 mmol, 2.0 M solution in THF) at 0 °C via syringe and the resulting mixture was stirred for 8 h at rt. The reaction mixture was quenched by addition of sat. aqueous NH₄Cl (1 mL) at 0 °C and extracted with Et₂O (2 x 10 mL). The combined organic phases were dried (MgSO₄) and concentrated. Chromatography (20%Et₂O/hexanes) provided 0.014 g (83%) of a colorless oil; $[\alpha]_{D}^{20}$ +98.6 (c 0.7, CHCl₃); IR (KBr) 3584, 2961, 2871, 1734 cm⁻¹; ¹H NMR (CDCl₃) δ 6.99 (s, 2H), 4.87 (d, J = 7.6 Hz, 1H), 3.87 (bs, 2H), 3.33 (m, 1H), 3.02 (m, 1H), 2.8 (quint, J = 6.9 Hz, 1H), 2.43 (m, 2H), 1.65 (m, 1H), 1.48 (m, 4H), 1.26 (m, 1H), 1.24 (d, *J* = 7.2 Hz, 6H), 1.17 (d, *J* = 6.8 Hz, 12H), 1.09 (d, J = 7.2 Hz, 3H), 0.87 (t, J = 7.8 Hz, 3H), 0.85 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃) & 206.6, 144.1, 139.9, 131.0, 115.5, 53.2, 42.2, 34.1, 26.9, 21.0, 18.2, 16.9, 16.8, 16.7, 16.3, 14.9, 6.5, 5.2, 3.7. HRMS calcd for C₂₅H₄₄NO₂S (M+H) 422.309277. Found 422.3086.

(S_s, 2*R*, 3*S*)-(+)-*N*-(2,4,6-Triisopropylbenzenesulfinyl)-3-amino-2-methyl-1phenylpentan-1-one (23b). Chromatography (20% Et₂O/hexanes) provided 0.012 g (72%) of a colorless oil; $[\alpha]^{20}_{D}$ +99.6 (*c* 0.25, CHCl₃); IR (KBr) 3266, 2963, 2871, 1676 cm⁻¹; ¹H NMR (CDCl₃) δ 7.91 (m, 2H), 7.52 (m, 1H), 7.42 (m, 2H), 7.0 (s, 2H), 7.2 (d, *J* = 6.8 Hz, 1H), 3.96 (m, 1H), 3.84 (m, 2H), 3.52 (m, 1H), 2.79 (quintet, *J* = 7.0 Hz, 1H), 1.8 (m, 1H), 1.63 (m, 1H), 1.12 – 1.19 (m, 21H), 0.92 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (CDCl₃) δ 204, 151.9, 147.7, 138.9, 137.1, 133.6, 129.1, 128.9, 123.3, 60.7, 44.5, 34.6, 28.7, 24.9, 24.6, 24.5, 24.1, 14.0, 11.5. HRMS calcd for C₂₇H₄₀NO₂S (M+H) 442.277977. Found 442.280.

(S_s,2*R*,3*S*)-(+)-2-Ethyl-*N*-methoxy-3-(*p*-toluenesulfinylamino)-3-hexanamide (25). In a 25 mL, flame-dried, single-necked round-bottomed flask equipped with a magnetic stirring bar, rubber septum was placed LiHMDS (0.96 mL, 0.958 mmol, 1.0 M solution in THF) under argon, the solution was cooled to -78 °C, and N-methoxy-Nmethylbutyramide 24 (0.126 g, 0.958 mmol) in THF (1.5 mL) was added at -78 °C via cannula. After stirring for 2 h at this temperature, a solution of (S)-(+)-N-(butylidene) ptoluenesulfinamide $(1)^5$ (0.100 g, 0.479 mmol) in THF (3.5 mL) was added. On consumption of starting material as judged by TLC (typically less than 30 min.), the reaction mixture was quenched with sat. aqueous NH₄Cl (2 mL) at -78 °C, warmed up to rt, and extracted with EtOAc (2 x 20 mL). The combined organic phases were washed with brine (2 x 10 mL), dried (MgSO₄), and concentrated. Chromatography (35%) EtOAc/hexanes) provided 0.124 g (75%) of a colorless oil as a mixture of diastereomers in a ratio of 71:12:10:7 that required two chromatographies (35% EtOAc/hexanes) to give 0.061 g (36%) of a colorless oil. This material slowly epimerizes on standing due to trace amount of acid in CDCl₃ and was immediately taken on to the next step; $[\alpha]_{D}^{20} + 121.1$ (c 0.9, CHCl₂); IR (KBr) 3465, 3242, 2962, 1652 cm⁻¹; ¹H NMR (CDCl₂) δ 7.61 (m, 2H),

7.31 (m, 2H), 4.49 (bd, J = 6.0 Hz, 1H), 3.71 (s, 3H), 3.54 (m, 1H), 3.18 (s, 3H), 3.09 (m, 1H), 2.43 (s, 3H), 1.36 – 1.82 (m, 6H), 0.99 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃) δ 175.4, 143.4, 141.5, 129.9, 125.8, 61.7, 57.1, 47.0, 35.5, 32.4, 21.6, 21.4, 19.9, 14.2, 12.5. HRMS calcd for C₁₇H₂₉N₂O₃S (M+H) 341.1899. Found 341.1898.

 $(S_{\rm s},4S,5R)$ -(+)-*N*-(*p*-Toluenesulfinyl)-6-amino-5-ethylnonan-4-one (3). In a 5 mL, flame-dried, single-necked round-bottomed flask equipped with a magnetic stirring bar, rubber septum was placed crude (+)-25 (0.018 g, 0.05 mmol) in THF (1.0 mL) and the solution was cooled to 0 °C. Propylmagnesium chloride (0.13 mL, 0.266 mmol, 2.0 M solution in Et₂O) at 0 °C was added to the reaction mixture via syringe and the solution was stirred for 16 h at rt. The reaction mixture was quenched by sat. aqueous NH₄Cl (1 mL) at 0 °C and extracted with EtOAc (2 x 10 mL). The combined organic phases were dried (MgSO₄) and concentrated. Chromatography (35% Et₂O/hexanes) provided 0.015 g (93%) of product as a colorless oil; $[\alpha]_{D}^{20}$ +70.75 (*c* 0.8, CHCl₃) [lit.⁵ $[\alpha]_{D}^{20}$ +63.7 (*c* 0.67, CHCl₃)]. ¹H and ¹³C NMR spectra were identical to literature values.⁵

References

(1) Weix, D. J.; Ellman, J. A. Org. Synth. 2005, 82, 157.

(2) Ramachandar, T.; Wu, Y.; Zhang, J.; Davis, F. A. Org. Synth. 2006, 83, 131.

(3) (a) Han, Z.; Krishnamurthy, D.; Grover, P.; Fang, Q. K.; Su, X.; Wilkinson, H. S.;

Lu, Z.-H.; Magiera, D.; Senanayake, C. H. Tetrahedron 2005, 61, 6386. (b)) Han, Z.;

Krishnamurthy, D.; Grover, P.; Fang, Q. K.; Pflum, D. A.; Senanayake, C. H. *Tetrahedron Lett.* **2003**, *44*, 4195.

(4) Davis, F. A.; Reddy, G. V.; Liang, C.-H. Tetrahedron Lett. 1997, 38, 5139.

(5) Davis, F. A.; Yang, B. J. Am. Chem. Soc. 2005, 127, 8398.