Supporting Information for

Synthesis of the Tricyclic Core of Colchicine via a Dienyne Tandem Ring-Closing Metathesis Reaction

François-Didier Boyer, ${ }^{a}$ Issam Hanna ${ }^{b}$
a) UMR206 Chimie Biologique, AgroParisTech, INRA, route de Saint-Cyr, F-78026 Versailles, France. b) Laboratoire de Synthèse Organique associé au CNRS, Ecole Polytechnique, F-91128 Palaiseau Cedex, France.
> hanna@poly.polytechnique.fr
\section*{Table of Contents}
General considerations S2
Experimental procedure for the preparation of compounds $\mathbf{5 , 7 , 9 - 1 4 , 1 6 - 1 9}$ S2-S10
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-spectra of compounds $\mathbf{5 , 7 , 9 - 1 4 , 1 6 - 1 9} \quad$ S11-S34

General considerations: Melting points were determined on a Reichert hot stage apparatus. Infrared spectra were recorded on a Perkin-Elmer 1600 FTIR spectrometer or on a Nicolet Avatar 320 FT-IR as neat or in solutions. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AM 400 NMR spectrometer or on a VARIAN Mercury plus 300 instrument as solutions in CDCl_{3}, using residual protic solvent $\mathrm{CHCl}_{3}\left(\delta_{\mathrm{H}}=7.27 \mathrm{ppm}\right)$ or $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{C}}=77.0 \mathrm{ppm}\right)$ as internal reference. Mass spectra were determined on a Hewlett Packard HP 5970B/5890A or on a Micromass (Manchester, United-Kingdom) Quattro LC spectrometer (ESI). All reactions were monitored by TLC carried out on 0.2 mm aluminium silica gel ($60 \mathrm{~F}_{254}$) pre-coated plates using UV light and 5\% ethanolic phosphomolybdic acid and heat as developing agent. Flash chromatography was performed on 40-63 $\mu \mathrm{m}$ (400-230 mesh) silica gel 60 with ethyl acetate (EtOAc)-petroleum ether (PE) (bp. $40-60^{\circ} \mathrm{C}$) or cyclohexane as eluents. Commercially available reagents and solvents were purified and dried when necessary by usual methods. THF and $\mathrm{Et}_{2} \mathrm{O}$ were purified by distillation, under nitrogen, from sodium / benzophenone. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried by distillation from calcium hydride. Unless otherwise mentioned, all other reagents were purchased from commercial sources and were used without further purification.

Aldehyde 7: A solution of acid $6(25 \mathrm{~g}, 111.6 \mathrm{mmol})$ in MeOH $(265 \mathrm{~mL})$ and conc. $\mathrm{HCl}(37 \%)(1.75 \mathrm{~mL})$ was stirred at rt for 24 h . The reaction mixture was neutralized with saturated sodium
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{6}$
Mol. Wt.: 282,29
pressure. The residue was extracted with EtOAc $(3 \times 3 \tilde{0} \mathrm{~mL})$ and the combined organic extracts washed with brine $(200 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to furnish the crude methyl ester as a slightly yellow solid ($25.8 \mathrm{~g}, 101.6 \mathrm{mmol}, 91 \%$). To a solution of the methyl ester ($25.8 \mathrm{~g}, 101.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(254 \mathrm{~mL})$ was added at room temperature under argon α, α dichloromethyl methyl ether ($27.43 \mathrm{~mL}, 304.8 \mathrm{mmol}$). This mixture was cooled to $-70^{\circ} \mathrm{C}$ and neat $\mathrm{SnCl}_{4}(11.68 \mathrm{~mL}, 101.6 \mathrm{mmol})$ was added dropwise. The resulting yellow reaction mixture was warmed slowly to $0^{\circ} \mathrm{C}(2 \mathrm{~h})$ and water was added dropwise. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ and neutralized with saturated sodium bicarbonate solution and solid NaHCO_{3}. The phases were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 500 \mathrm{~mL})$. The combined organic extracts were washed with brine $(500 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The crude product
was purified by chromatography on silica gel (cyclohexane/EtOAc 4:1) to give 27 g (95.7 $\mathrm{mmol}, 85 \%$) of $\mathbf{7}$ as a white solid. $\mathbf{R}_{\mathrm{f}} 0.4$ (cyclohexane/EtOAc 4:1). M.p. $54-55^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR: $\delta=10.36(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.22$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR: $\delta=190.6(\mathrm{CH}), 173.4(\mathrm{C}), 158.6$ $(\mathrm{C}), 157.9(\mathrm{C}), 140.2(\mathrm{C}), 140.1(\mathrm{C}), 120.0(\mathrm{C}), 110.2(\mathrm{CH}), 62.3\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{3}\right), 56.0$ $\left(\mathrm{CH}_{3}\right), 51.4\left(\mathrm{CH}_{3}\right), 35.0\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right)$. IR (neat): 2946, 2850, 1735, 1678, $1590 \mathrm{~cm}^{-1} . \mathbf{C I}$ MS: $\mathrm{NH}_{3} \mathrm{~m} / \mathrm{z}(\%) 283\left(\mathrm{M}^{+}+1\right)(100), 300\left(\mathrm{M}^{+}+18\right)(5)$. HMRS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}, 282.11034$, found 282.11049.

6-Bromo-2-methyl-hex-2-ene: $\mathrm{TsCl}(7.49 \mathrm{~g}, 38.97 \mathrm{mmol})$ was added portionswise to a solution of 5-methyl-4-hexen-1-ol ${ }^{1}(4.04 \mathrm{~g}, 35.43 \mathrm{mmol})$
$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{Br}$
Mol. Wt.: 177,08 an 4-DMAP ($45 \mathrm{mg}, 0.40 \mathrm{mmol}$) in anhydrous pyridine $(35 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred for 2 h 30 at $0^{\circ} \mathrm{C}$ poured in a mixture water/ice $(100 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The combined organic layers were washed with aq. $10 \% \mathrm{HCl}$, sat. aq. NaHCO_{3}, brine, dried over MgSO_{4} and evaporated under reduced pressure to give $8.32 \mathrm{~g}(31.0 \mathrm{mmol})$ of crude tosylate. A solution of this crude tosylate $(8.32 \mathrm{~g}, 31.0 \mathrm{mmol})$ with $\operatorname{LiBr}(9.33 \mathrm{~g}, 107.4 \mathrm{mmol})$ in acetone (73 mL) was stirred for 1 h at reflux, cooled to room temperature, diluted with pentane $(300 \mathrm{~mL})$ and washed with water $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, evaporated under reduced pressure and the residue distilled under vacuum to give the pure 6-Bromo-2-methyl-hex-2-ene $(4.827 \mathrm{~g}, 27.27 \mathrm{mmol}, 77 \%$ from 5-methyl-4-hexen-1-ol) as a colorless liquid $\left(90^{\circ} \mathrm{C}, 10 \mathrm{~mm} \mathrm{Hg}\right) .{ }^{1} \mathbf{H}$ NMR: $\delta=5.08(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.90$ (quin., $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.71(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR: $\delta=133.1(\mathrm{C}), 122.5(\mathrm{CH}), 33.4\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right)$, $26.5\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right)$.

$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{6}$
Mol. Wt.: 380,48

Alcool 9: To $680 \mathrm{mg}(27.64 \mathrm{mmol})$ of magnesium turnings in THF (2 mL) was added a solution of 6-bromo-2-methyl-hex-2-ene ($4.91 \mathrm{~g}, 27.72 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(38 \mathrm{~mL})$. At the beginning to initiate the reaction 4 drops of neat 6-bromo-2-methyl-hex-

[^0]2-ene were added to the mixture and the remainder of the bromide derivative solution was added dropwise over 15 min at a rate sufficient to maintain reflux without heating. The resulting solution of Grignard reagent $\mathbf{8}$ was stirred under reflux for 2 h , cooled to $-10^{\circ} \mathrm{C}$ and a solution of aldehyde $7(3.5 \mathrm{~g}, 12.41 \mathrm{mmol})$ in THF (73 mL) was added dropwise at this temperature. The reaction mixture was stirred for 2 h at $-10^{\circ} \mathrm{C}$ under argon and quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100$ $\mathrm{mL})$. The combined organic extracts were washed with brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The crude product was purified by chromatography on silica gel (EtOAc/cyclohexane 2:8) to give $3.85 \mathrm{~g}(10.13 \mathrm{mmol}, 81 \%)$ of 9 as a colorless oil. $\mathbf{R}_{\mathbf{f}} 0.33$ (cyclohexane/EtOAc 7:3). ${ }^{1} \mathbf{H}$ NMR: $\delta=6.46(\mathrm{~s}, 1 \mathrm{H}), 5.46-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.74-4.68$ (m, 1 H), $3.97(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.94-2.82 (m, 2 H), 2.64-2.52 (m, 2 H), 2.05-1.98 (m, 2H), 1.93-1.81 (m, 1 H$), 1.70-1.54(\mathrm{~m}$, $2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) 1.43-1.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta=173.1(\mathrm{C}), 152.3(\mathrm{C})$, 152.2 (C), 140.7 (C), 133.0 (C), 131.5 (C), 127.9 (C), 124.4 (CH), 108.5 (CH), 70.6 (CH), $61.1\left(\mathrm{CH}_{3}\right), 60.5\left(\mathrm{CH}_{3}\right), 55.9\left(\mathrm{CH}_{3}\right), 51.6\left(\mathrm{CH}_{3}\right), 38.4\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 27.8$ $\left(\mathrm{CH}_{2}\right)$, $26.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right)$.

$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}$
Mol. Wt.: 352,47

Diol 10: A solution of $\mathrm{LiAlH}_{4}(1.16 \mathrm{~g}, 30.52 \mathrm{mmol})$ in THF $(32 \mathrm{~mL})$ was added dropwise under argon to a solution of ester 9 ($3.85 \mathrm{~g}, 10.13 \mathrm{mmol}$) in THF $(152 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at this temperature and quenched by successive addition of $\mathrm{H}_{2} \mathrm{O}(1.16 \mathrm{~mL}), 15 \%$ aqueous NaOH solution $(1.16 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3.48 \mathrm{~mL})$ and the mixture stirred for 30 min at room temperature. The solution was filtered and the granular inorganic precipitate rinsed with THF (200 mL). The combined organic layers were evaporated under reduced pressure to give $3.56 \mathrm{~g}(10.13 \mathrm{mmol}, 100 \%)$ of crude diol $\mathbf{1 0}$ used in the next step without further purification. $\mathbf{R}_{\mathrm{f}} 0.26$ (cyclohexane/EtOAc 1:1). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}: \delta=6.46(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{tt}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.80(\mathrm{dd}, J=8.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2$ H), 2.74-2.62 (m, 4 H), 2.03-1.97 (m, 2 H), 1.91-1.77 (m, 3 H), 1.71-1.53 (m, 2 H), 1.66 (s, 3 H), 1.58 ($\mathrm{s}, 3 \mathrm{H}$) 1.40-1.27 (m, 1 H). ${ }^{13} \mathbf{C}$ NMR: $\delta=152.1$ (C), 151.9 (C), 140.1 (C), 134.5 (C), $131.3(\mathrm{C}), 127.5(\mathrm{C}), 124.3(\mathrm{CH}), 108.5(\mathrm{CH}), 70.4(\mathrm{CH}), 61.5\left(\mathrm{CH}_{3}\right), 60.9\left(\mathrm{CH}_{3}\right), 60.4$ $\left(\mathrm{CH}_{3}\right), 55.7\left(\mathrm{CH}_{3}\right), 38.2\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{3}\right)$,
$17.5\left(\mathrm{CH}_{3}\right)$. IR (neat): $3376,2942,2865,1598 \mathrm{~cm}^{-1}$. HMRS (EI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}$, 352.22497 , found 352.22478 .

Mol. Wt.: 348,43

Ketoaldehyde 11: A solution of Dess-Martin reagent (48.3 $\mathrm{mL}, 14.55 \mathrm{mmol}, 0.3 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added dropwise to a solution of crude diol $\mathbf{1 0}(1.0 \mathrm{~g}, 2.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (29 mL) and dry pyridine (88 drops) at $-10^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred for 2 h at room temperature and cooled for 18 h at $6^{\circ} \mathrm{C}$. A mixture of aq. sat. NaHCO_{3} and aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1)(200 \mathrm{~mL})$ was added at the reaction mixture warmed to room temperature and the resulting mixture stirred for 30 min . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure (18 mm Hg and $10^{-1} \mathrm{~mm} \mathrm{Hg}$) to give the crude product $11(0.95 \mathrm{~g}, 2.72$ mmol, 96%) used in the next step without further purification. $\mathbf{R}_{\mathbf{f}} 0.60$ (cyclohexane/EtOAc 1:1). ${ }^{1}$ H NMR: $\delta=6.51(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{bt}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83$ ($\mathrm{s}, 3 \mathrm{H}$), 2.82-2.70 (m, 5 H$), 2.04(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.60$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13}$ C NMR: $\delta=206.8$ (C), 201.2 (C), 154.2 (C), 150.8 (C), 140.0 (C), 133.3 (C), $132.1(\mathrm{C}), 128.7(\mathrm{C}), 123.8(\mathrm{CH}), 108.7(\mathrm{CH}), 61.4\left(\mathrm{CH}_{3}\right), 60.8\left(\mathrm{CH}_{3}\right), 56.0\left(\mathrm{CH}_{3}\right), 46.1$ $\left(\mathrm{CH}_{2}\right)$, $44.5\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{2}\right), 17.6\left(\mathrm{CH}_{3}\right)$. HMRS (EI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}, 348.19367$, found 348.19370.

5

Mol. Wt.: 346,46

Ketone 5: n-Butyllithium ($2.7 \mathrm{~mL}, 4.32 \mathrm{mmol}, 1.6 \mathrm{M}$ solution in hexane) was added dropwise under argon at room temperature to a solution of methyltriphenylphosphonium bromide ($1.6 \mathrm{~g}, 4.47 \mathrm{mmol}$) in dry THF (13.5 mL). The resulting yellow-orange solution was stirred for 45 min at room temperature and cooled to $0^{\circ} \mathrm{C}$; a solution of crude aldehyde $\mathbf{1 1}(950 \mathrm{mg}, 2.72 \mathrm{mmol})$ in dry THF (10 mL) solution was added dropwise under argon to the resulting ylide solution maintained at $15^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at room temperature and water (50 mL) added. The biphasic mixture was separated and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was extracted with pentane $(3 \times 100 \mathrm{~mL})$, filtered and evaporated under reduced pressure. The crude product was
purified by chromatography on silica gel (cyclohexane/EtOAc 95:5 to 8:2) to give 407 mg ($1.17 \mathrm{mmol}, 41 \%$ from alcohol 9) of ketone 5 as a colorless oil. $\mathbf{R}_{\mathbf{f}} 0.75$ (cyclohexane/EtOAc 7:3). ${ }^{1} \mathbf{H}$ NMR: $\delta=6.51(\mathrm{~s}, 1 \mathrm{H}), 5.87-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{bt}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dq}, J=$ $17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.98(\mathrm{dd}, J=10.4,2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{t}, J=7.8$ Hz, 2 H), 2.55-2.51 (m, 2 H), 2.34-2.28 (m, 2 H), 2.08-2.02 (m, 2 H), 1.74-1.68 (m, 2 H), 1.69 ($\mathrm{s}, 3 \mathrm{H}$), $1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR: $\delta=207.0(\mathrm{C}), 154.0(\mathrm{C}), 150.4(\mathrm{C}), 139.8(\mathrm{C}), 137.8(\mathrm{CH})$, $134.4(\mathrm{C}), 132.2(\mathrm{C}), 129.1$ (C), $124.0(\mathrm{CH}), 115.2\left(\mathrm{CH}_{2}\right), 108.6(\mathrm{CH}), 61.6\left(\mathrm{CH}_{3}\right), 60.9$ $\left(\mathrm{CH}_{3}\right), 56.0\left(\mathrm{CH}_{3}\right), 44.8\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{2}\right)$, $17.8\left(\mathrm{CH}_{3}\right)$. IR (neat): $3075,2935,2855,1696,1640,1595 \mathrm{~cm}^{-1}$. HMRS (EI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}, 346.21441$, found 346.21407 .

$\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{Si} 12$
Mol. Wt.: 445,67

Nitrile 12 : To a solution of ketone $5(200 \mathrm{mg}, 0.57 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added dropwise TMSCN ($550 \mu \mathrm{~L}, 4.12 \mathrm{mmol}$) and $\mathrm{ZnI}_{2}{ }^{2}(260 \mathrm{mg}, 0.81 \mathrm{mmol})$ at room temperature under argon. The reaction mixture was stirred for 3 h 30 at room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with water $(15 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and the combined organic layers washed with brine (15 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure. The residue was purified by purified by chromatography on silica gel (cyclohexane/EtOAc 97.5:2.5 to 95:5) to give $225 \mathrm{mg}(0.50 \mathrm{mmol}, 87 \%)$ of nitrile $\mathbf{1 2}$ as a colorless oil. $\mathbf{R}_{\mathbf{f}} 0.25$ (cyclohexane/EtOAc 95:5). ${ }^{\mathbf{1}} \mathbf{H}$ NMR: $\delta=6.48(\mathrm{~s}, 1 \mathrm{H}), 5.92-5.85(\mathrm{~m}, 1$ H), 5.09-5.01 (m, 3 H), 4.00 (s, 3 H), 3.86 (s, 3 H), 3.83 (s, 3 H), 3.02-2.93 (m, 2 H), 2.45$2.18(\mathrm{~m}, 3 \mathrm{H}), 2.10-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) 1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.24(\mathrm{~s}, 9$ H). ${ }^{13}$ C NMR: $\delta=152.6$ (C), 150.5 (C), 139.8 (C), 138.2 (CH), 136.5 (C), 132.0 (C), 123.9 $(\mathrm{CH}), 123.7(\mathrm{C}), 125.5(\mathrm{C}), 114.8\left(\mathrm{CH}_{2}\right), 110.2(\mathrm{CH}), 73.9(\mathrm{C}), 60.9\left(\mathrm{CH}_{3}\right), 60.4\left(\mathrm{CH}_{3}\right), 55.7$ $\left(\mathrm{CH}_{3}\right), 43.3\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 24.0\left(\mathrm{CH}_{2}\right), 17.7\left(\mathrm{CH}_{3}\right)$, $1.2\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$. IR (neat): 3077, 2939, 2865, 1639, $1592 \mathrm{~cm}^{-1}$. CI MS: $\mathrm{NH}_{3} \mathrm{~m} / \mathrm{z}(\%) 310$ (30), $352(100), 419(20), 446\left(\mathrm{M}^{+}{ }^{+}+1\right)(1), 463\left(\mathrm{M}^{+}{ }^{+}+18\right)(0.5)$. HMRS (EI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{Si}, 445.2648$, found 445.2651.

[^1]
$\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si} 13$
Mol. Wt.: 448,67

Aldehyde 13: To a solution of the nitrile $\mathbf{1 2}(225 \mathrm{mg}, 0.50$ mmol) in dry $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ cooled at $-70^{\circ} \mathrm{C}$ and stirred under argon was added dropwise a solution of DIBAL-H 1.0 M in hexane (2.5 mL). After being stirred at this temperature for 1 h $30 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\mathrm{EtOAc}(410 \mu \mathrm{~L})$ were added, followed by $\mathrm{SiO}_{2}(3.7 \mathrm{~g})$ and the mixture was slowly warmed up $0^{\circ} \mathrm{C}$ and stirred for 2 h at this temperature. The mixture was filtered and concentrated under reduced pressure. The residue was purified by purified by chromatography on silica gel (cyclohexane/EtOAc 95:5) to give $180 \mathrm{mg}(0.40 \mathrm{mmol}, 80 \%)$ of aldehyde $\mathbf{1 3}$ as a colorless oil. $\mathbf{R}_{\mathbf{f}} 0.25$ (cyclohexane/EtOAc 95:5). ${ }^{1}$ H NMR: $\delta=9.42(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.05-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.02(\mathrm{~m}, 3 \mathrm{H}), 3.86$ ($\mathrm{s}, 3 \mathrm{H}$), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.08-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.10-1.87(\mathrm{~m}, 3$ $\mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) 1.53-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.15-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta=193.4$ (C), 152.3 (C), 149.6 (C), 138.9 (C), 138.4 (CH), 138.0 (C), 131.7 (C), $126.1(\mathrm{C}), 124.2(\mathrm{CH}), 114.6\left(\mathrm{CH}_{2}\right), 110.5(\mathrm{CH}), 83.4(\mathrm{C}), 60.4\left(\mathrm{CH}_{3}\right), 60.2\left(\mathrm{CH}_{3}\right), 55.8$ $\left(\mathrm{CH}_{3}\right)$, $37.1\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{2}\right), 17.7\left(\mathrm{CH}_{3}\right)$, $2.3\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$. IR (neat): 3077, 2937, 2856, 1729, 1640, $1594 \mathrm{~cm}^{-1}$. CI MS: $\mathrm{NH}_{3} \mathrm{~m} / \mathrm{z}(\%)$ 355 (100), 420 (10), $449\left(\mathrm{M}^{+}+1\right)$ (5). HMRS (EI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}, 448.2645$, found 448.2630.

1-Alkyne 14: To a solution of aldehyde 13 ($180 \mathrm{mg}, 0.40 \mathrm{mmol}$) and dimethyl 1-diazo-2-oxopropylphosphonate ${ }^{3}$ ($112 \mathrm{mg}, 0.60$ mmol) in anhydrous $\mathrm{MeOH}(3.2 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(112 \mathrm{mg}$, 0.81 mmol) and stirring was continued under argon for 3 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with an aq solution of saturated NaHCO_{3}. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20$ $\mathrm{mL})$ and the combined organic phases washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvents followed by chromatography on silica gel (cyclohexane/EtOAc 9:1) gave 46 mg of 1-alkyne $\mathbf{1 4}(0.123 \mathrm{mmol}, 31 \%)$ as a colorless oil. $\mathbf{R}_{\mathbf{f}} 0.22$ (cyclohexane/EtOAc 9:1). ${ }^{1} \mathbf{H}$ NMR: $\delta=6.53(\mathrm{~s}, 1 \mathrm{H}), 5.98-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.12-5.00(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3$ H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.14$ (ddd, $J=16.5,11.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ (ddd, $J=16.5$, $10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 2.59-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.91(\mathrm{~m}, 4 \mathrm{H})$,

[^2]1.70-1.53 (m, 2 H), 1.67 ($\mathrm{s}, 3 \mathrm{H}$), 1.58 ($\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR: $\delta=152.0$ (C), 151.9 (C), 140.4 $(\mathrm{C}), 138.3(\mathrm{CH}), 135.6(\mathrm{C}), 131.7(\mathrm{C}), 126.3(\mathrm{C}), 124.5(\mathrm{CH}), 114.7\left(\mathrm{CH}_{2}\right), 110.6(\mathrm{CH}), 83.8$ (C), $73.8(\mathrm{C}), 72.6(\mathrm{C}), 61.9\left(\mathrm{CH}_{3}\right), 60.7\left(\mathrm{CH}_{3}\right), 55.8\left(\mathrm{CH}_{3}\right), 44.7\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 33.7$ $\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{2}\right), 17.8\left(\mathrm{CH}_{3}\right)$. IR (neat): 3437, 3309, 3076, 2930, 2855, 1639, $1596 \mathrm{~cm}^{-1}$. CI MS: $\mathrm{NH}_{3} \mathrm{~m} / \mathrm{z}(\%) 355\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}+1\right)(100), 372\left(\mathrm{M}^{+}+1\right)(1)$. HMRS (EI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4}, 372.23006$, found 372.22964.

Trimethyl silyl ether \boldsymbol{i} : A solution of alcohol $\mathbf{1 4}(65 \mathrm{mg}, 0.174$ mmol) in 1-(trimethylsilyl)imidazole ($1.6 \mathrm{~mL}, 10.9 \mathrm{mmol}$) was stirred at $50^{\circ} \mathrm{C}$ for 1 h under argon, cooled to room temperature and stirred for 2 h at this temperature. The reaction mixture was diluted with hexane (15 mL), washed with brine $(2 \times 5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure to give 72 mg of trimethyl silyl ether $\boldsymbol{i}(0.162 \mathrm{mmol}, 93 \%)$ used in the next step without further purification. $\mathbf{R}_{\mathbf{f}} 0.60$ (cyclohexane/EtOAc 9:1). ${ }^{1} \mathbf{H}$ NMR: $\delta=6.42(\mathrm{~s}, 1 \mathrm{H}), 5.98-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.98(\mathrm{~m}, 3$ $\mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~s}$, $1 \mathrm{H}), 2.45-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.05-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 1 \mathrm{H})$, 1.33-1.15 (m, 1 H$), 0.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR: $\delta=151.7(\mathrm{C}), 151.5(\mathrm{C}), 140.5(\mathrm{C}), 139.0(\mathrm{CH})$, $136.5(\mathrm{C}), 131.3(\mathrm{C}), 127.8(\mathrm{C}), 124.8(\mathrm{CH}), 114.3\left(\mathrm{CH}_{2}\right), 110.6(\mathrm{CH}), 90.0(\mathrm{C}), 74.8(\mathrm{C})$, $71.9(\mathrm{C}), 60.6\left(\mathrm{CH}_{3}\right), 60.3\left(\mathrm{CH}_{3}\right), 55.7\left(\mathrm{CH}_{3}\right), 44.4\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 27.8$ $\left(\mathrm{CH}_{2}\right)$, $25.6\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{2}\right), 17.7\left(\mathrm{CH}_{3}\right), 2.20\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

Tricyclic compound 16: A degassed solution of the trimethyl silyl ether $\boldsymbol{i}(72 \mathrm{mg}, 0.162 \mathrm{mmol})$ in dry methylene chloride (150 mL) under argon was treated with Grubbs catalyst $\mathbf{1 5}$ ($27 \mathrm{mg}, 20 \% \mathrm{~mol})$. The mixture was heated at reflux for 4 h . The solvent was removed and the residue submitted to chromatography on silica gel (cyclohexane/EtOAc 9:1) to isolate the pure tricyclic compound $\mathbf{1 6}(47 \mathrm{mg}, 0.121 \mathrm{mmol}, 74 \%)$ as a colorless oil. $\mathbf{R}_{\mathbf{f}} 0.46$ (cyclohexane/EtOAc 95:5). ${ }^{1} \mathbf{H}$ NMR: $\delta=6.49(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{t}, J$ $=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dt}, J=12.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{td}, J=13.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.04(\mathrm{~m}, 6 \mathrm{H}), 1.76-$ $1.68(\mathrm{~m}, 1 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR: $\delta=151.53(\mathrm{C}), 151.51(\mathrm{C}), 143.6(\mathrm{C}), 141.2(\mathrm{CH})$, $137.9(\mathrm{C}), 136.2(\mathrm{CH}), 133.4(\mathrm{C}), 133.2(\mathrm{CH}), 127.0(\mathrm{CH}), 110.7(\mathrm{CH}), 82.7(\mathrm{C}), 61.0\left(\mathrm{CH}_{3}\right)$,
$60.7\left(\mathrm{CH}_{3}\right)$, $55.9\left(\mathrm{CH}_{3}\right), 39.7\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right), 1.88$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$. IR (neat): 2928, 2852, $1590 \mathrm{~cm}^{-1}$. HMRS (EI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}$, 388.2069 , found 388.2054.

$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}$
17 Mol. Wt.: 316,39

Alcohol 17: A solution of TBAF ($400 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added to a solution of $\mathbf{1 6}(37 \mathrm{mg}, 0.095 \mathrm{mmol})$ and the mixture was stirred for 3 h at room temperature. The solvent was evaporated under reduced pressure and the residue purified by chromatography on silica gel (cyclohexane/EtOAc 9:1, 8:2 and 7:3) to give the pure alcohol 17 (22 $\mathrm{mg}, 0.069 \mathrm{mmol}, 73 \%$) as a colorless oil. M.p. $102-103^{\circ} \mathrm{C} . \mathbf{R}_{\mathbf{f}} 0.33$ (cyclohexane/EtOAc 8:2). ${ }^{1}$ H NMR: $\delta=7.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{br} \mathrm{d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.78(\mathrm{~m}, 1$ H), 5.39 (ddd, $J=10.2,6.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.98(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.11-3.01$ $(\mathrm{m}, 1 \mathrm{H}), 2.60-1.88(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR: $\delta=152.2(\mathrm{C}), 151.5(\mathrm{C}), 142.0(\mathrm{C}), 140.9(\mathrm{C}), 136.4$ (C), $133.3(\mathrm{CH}), 131.9(\mathrm{C}), 129.5(\mathrm{CH}), 127.6(\mathrm{CH}), 109.7(\mathrm{CH}), 82.8(\mathrm{C}), 62.3\left(\mathrm{CH}_{3}\right), 60.7$ $\left(\mathrm{CH}_{3}\right), 55.9\left(\mathrm{CH}_{3}\right), 47.3\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right)$. IR (neat): 3440, 3010, 2933, 2833, 1664, $1596 \mathrm{~cm}^{-1}$. ESI MS: $m / z(\%) 299\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}\right)(100), 339$ $\left(\mathrm{MNa}^{+}\right)(5), 380\left(\mathrm{MNa}^{+}+\mathrm{CH}_{3} \mathrm{CN}\right)(10)$. HMRS (EI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4}, 316.1674$, found 316.1686.

Methyl ether 18: A solution of silyl ether 16 ($6 \mathrm{mg}, 0.015 \mathrm{mmol}$) and PPTS $(2 \mathrm{mg})$ in a mixture $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}(1: 1,2 \mathrm{~mL})$ was stirred for 18 h at room temperature. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, washed with water (2 mL), dried over MgSO_{4} and evaporated under reduced pressure. The residue was purified by chromatography on silica gel (cyclohexane/EtOAc 95:5 to 9:1) to give $4 \mathrm{mg}(0.0123$ $\mathrm{mmol}, 80 \%$) of methyl ether $\mathbf{1 8}$ as a colorless oil. $\mathbf{R}_{\mathbf{f}} 0.30$ (cyclohexane/EtOAc 9:1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR: $\delta=6.51(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dt}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3$ H), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{dd}, J=12.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.61-1.89(\mathrm{~m}$, $10 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR: $\delta=152.3$ (C), 151.1 (C), 141.1 (C), 136.9 (C), 135.6 (C), 134.5 (C), 134.2 $(\mathrm{CH}), 128.8(\mathrm{C}), 124.1(\mathrm{CH}), 107.4(\mathrm{CH}), 80.2(\mathrm{CH}), 61.0\left(\mathrm{CH}_{3}\right), 60.7\left(\mathrm{CH}_{3}\right), 57.4\left(\mathrm{CH}_{3}\right)$, $56.0\left(\mathrm{CH}_{3}\right), 38.7\left(\mathrm{CH}_{2}\right), 34.9\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right)$. IR (neat): 2930,

2854, $1595 \mathrm{~cm}^{-1}$. ESI MS: $m / z(\%) 353\left(\mathrm{MNa}^{+}\right)(100), 369\left(\mathrm{MK}^{+}\right)$(25). HMRS (EI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}, 330.18311$, found 330.18310 .

Ketone 19: A solution of alcohol $17(8 \mathrm{mg}, 0.025 \mathrm{mmol})$, PCC (10 $\mathrm{mg}, 2.74 \mathrm{mmol}$) and molecular sieves 4 A (powder) (10 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mu \mathrm{~L})$ was stirred at room temperature under argon for 2 h. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and was purified by chromatography on Florisil® and eluted (cyclohexane/EtOAc 8:2) to give $3 \mathrm{mg}(0.0095 \mathrm{mmol}, 38 \%)$ of ketone 19 as a colorless oil and $1 \mathrm{mg}(0.003 \mathrm{mmol}, 12 \%)$ of epoxides 20 as a colorless oil. 19: $\mathbf{R}_{\mathrm{f}} 0.27$ (cyclohexane/EtOAc 8:2). ${ }^{1} \mathbf{H}$ NMR: $\delta=6.52(\mathrm{~s}, 1 \mathrm{H}), 6.11-6.01(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85$ (s, 3 H), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), 3.18-3.31 (br t, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.50-2.83 (br m, 5 H), 2.48-2.40 (m, 2 H), 2.20-1.90 (br m, 2 H). ${ }^{13}$ C NMR: $\delta=208.1$ (C), 152.8 (C), 152.5 (C), 145.1 (C), 141.6 (C), $136.6(\mathrm{C}), 135.5(\mathrm{CH}), 135.0(\mathrm{C}), 127.6(\mathrm{C}), 125.2(\mathrm{CH}), 106.6(\mathrm{CH}), 61.0\left(2 \mathrm{CH}_{3}\right), 56.1$ $\left(\mathrm{CH}_{3}\right), 49.1\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right)$. IR (neat): 2932, 1680, $1594 \mathrm{~cm}^{-1}$. ESI MS: $m / z(\%) 315\left(\mathrm{MH}^{+}\right)(80), 337\left(\mathrm{MNa}^{+}\right)(90), 380\left(\mathrm{MK}^{+}\right)(100)$. HMRS (EI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}, 314.1518$, found 314.1547.
${ }^{1}$ H-NMR spectrum (400 MHz) of compound 7

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (100 MHz) of compound 7

${ }^{13} \mathrm{C}$-NMR spectrum (75 MHz) of compound 9

${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $(300 \mathrm{MHz})$ of compound 10

${ }^{13} \mathrm{C}$-NMR spectrum (75 MHz) of compound $\mathbf{1 0}$

${ }^{1} \mathrm{H}$-NMR spectrum (300 MHz) of compound $\mathbf{1 1}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (75 MHz) of compound $\mathbf{1 1}$

${ }^{13} \mathrm{C}$-NMR spectrum (100 MHz) of compound 5

${ }^{13} \mathrm{C}$-NMR spectrum (100 MHz) of compound $\mathbf{1 3}$

${ }^{1} \mathrm{H}$-NMR spectrum $(300 \mathrm{MHz})$ of compound 16

${ }^{13} \mathrm{C}$-NMR spectrum (75 MHz) of compound 16

${ }^{1} \mathrm{H}$-NMR spectrum $(300 \mathrm{MHz})$ of compound 19

[^0]: ${ }^{1}$ 5-Methyl-4-hexen-1-ol was prepared according to the procedure of Corey et al (Corey, E. J. ; Cheng, H. ; Baker, C. H. ; Matsuda, S. P. T. ; Li, D. ; Song, X. J. Am. Chem. Soc. 1997, 119, 1277) from γ-butyrolactone but using isopropyltriphenylphosphonium iodide prepared in our hands by the procedure of Kinney et al. (Kinney, R. J. ; Jones, W. D. ; Bergman, R. G. J. Am. Chem. Soc. 1977, 100, 7902).

[^1]: ${ }^{2} \mathrm{ZnI}_{2}$ was dried overnight under vacuum $\left(10^{-2} \mathrm{~mm} \mathrm{Hg}\right)$.

[^2]: ${ }^{3}$ Ohira, S. Synth. Commun. 1989, 19, 561. For a review see: Eymery, F.; Iorga, B.; Savignac, P. Synthesis, 2000, 185.

