SUPPORTING MATERIAL

The photoinduced electron transfer between the cationic complexes $Ru(NH_3)_5pz^{2+}$ and *trans*-[RuCl([15]aneN_4)NO]^{2+} mediated by phosphate ion. Visible light generation of nitric oxide for biological targets

Roberto S. da Silva,* Mario S. P. Marchesi, Chosu Khin, Claure Lunardi, Lusiane M. Bendhack, and Peter C. Ford*

Supplementary Figures

Figure S1: Franz cell utilized for measuring the diffusion rate of ruthenium complexes from a water/oil emulsion containing **RuNO**²⁺, **Rupz**²⁺ or a mixture of the two in 10 mM pH7.4 phosphate buffer solution. Concentration of each complex in the emulsion is 1 mM.

Figure S2: Chamber utilized for the pharmacological assays.

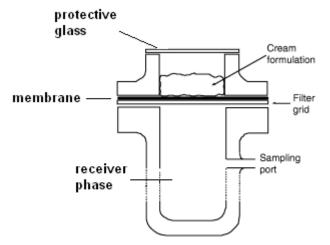

Figure S3: Electronic spectrum of *trans*-[RuCl([15]aneN₄)(NO][BF₄]₃ (0.15 mM) in aqueous phosphate buffer solution (10 mM, pH 7.4).

Figure S4: *Dashed line:* Electronic spectrum of $[Ru(NH_3)_5(pz)][BF_4]_2$ (2.7 x 10⁻⁵ M) in aqueous solution. *Solid line:* Aqueous solution containing *trans*- $[RuCl([15]aneN_4)(NO][BF_4]_3$ (8 x 10⁻⁵ M) and $[Ru(NH_3)_5(pz)][BF_4]_2$ (2.7 x 10⁻⁵ M) with no phosphate added.

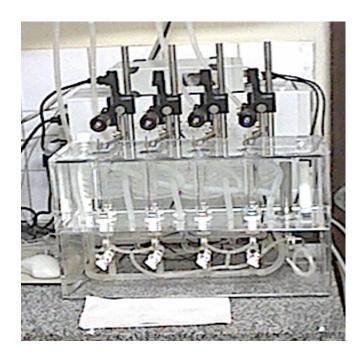
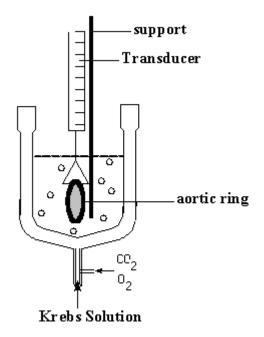
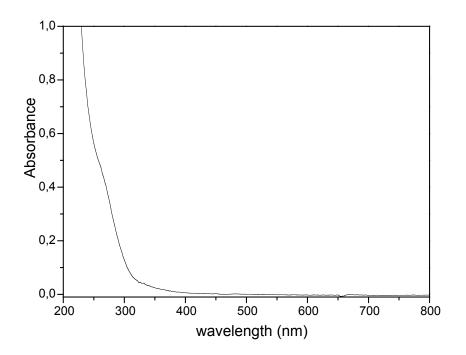
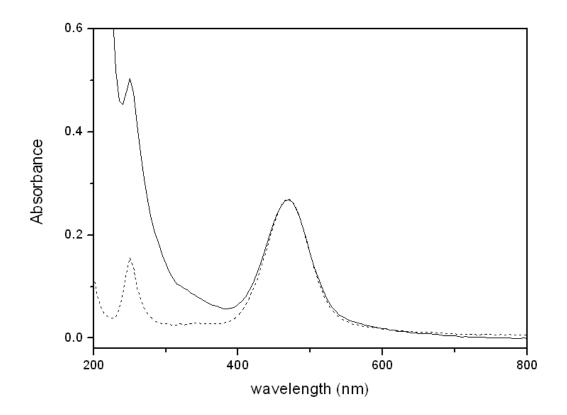
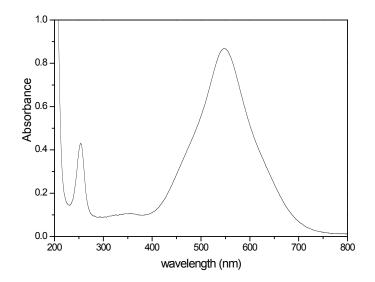

Figure S5: Electronic spectrum of $[Ru(NH_3)_5(pz)Ru([15]aneN_4)Cl]^{4+}$ in aqueous solution prepared by reacting $Ru(NH_3)_5(pz)^{3+}$ with *trans*-RuCl([15]aneN_4)(H_2O)^{2+}.

Figure S6: Time course of NO release from $RuNO^{2+}:Rupz^{2+}$ (1 mM) entrapped in a *w*/o emulsion under 436 nm light irradiation, in 10 mM phosphate buffer solution pH 7.4. Mass membrane = 0.200 g.

Figure S1: Franz cell utilized for measuring the the diffusion rate of ruthenimum complexes from a water/oil emulsion containing **RuNO**²⁺, **Rupz**²⁺ or a mixture of the two in 10 mM pH 7.4 phosphate buffer solution. Concentration of each complex in the emulsion is 1 mM.


Figure S2: Chamber utilized for the pharmacological assays.

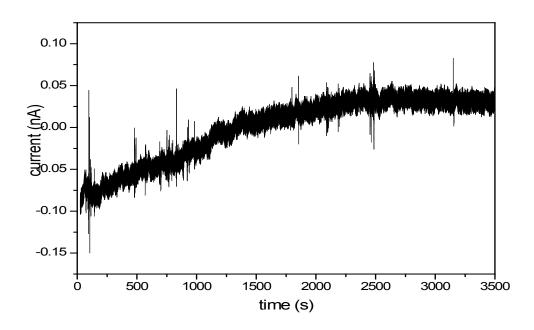

Figure S3: Electronic spectrum of *trans*-[RuCl([15]aneN₄)(NO][BF₄]₃ (0.15 mM) in aqueous phosphate buffer solution (10 mM, pH 7.4).

Figure S4: *Dashed line:* Electronic spectrum of $[Ru(NH_3)_5(pz)][BF_4]_2$ (2.7 x 10⁻⁵ M) in aqueous solution. *Solid line:* Aqueous solution containing *trans*- $[RuCl([15]aneN_4)(NO][BF_4]_3$ (8 x 10⁻⁵ M) and $[Ru(NH_3)_5(pz)][BF_4]_2$ (2.7 x 10⁻⁵ M) with no phosphate added.

Figure S5: Electronic spectrum of $[Ru^{III}(NH_3)_5(pz)Ru^{II}([15]aneN_4)CI]^{4+}$ in aqueous solution as prepared by reaction of $Ru(NH_3)_5(H_2O)^{3+}$ with *trans*-RuCl([15]aneN_4)pz⁺ in aqueous solution.

Figure S6: Time course of NO release from $RuNO^{2+}:Rupz^{2+}$ (1 mM) entrapped in a *w/o* emulsion under 436 nm light irradiation, in 10 mM phosphate buffer solution pH 7.4. Mass membrane = 0.200 g.