Supporting Information

Ru(II)trisbipyridine Functionalized Gold Nanorods. Morphological Changes and Excited-State Interactions

Meghan Jebb[†], P. K. Sudeep, [†] P. Pramod, [#] K. George Thomas, ^{#*} and

Prashant V. Kamat [†]*

Radiation Laboratory, Department of Chemistry and Biochemistry and Department and Chemical and Biomolecular Engineering

University of Notre Dame, Notre Dame, Indiana 46556-0579

and

Photosciences and Photonics, Regional Research Laboratory (CSIR)

Trivandrum 695 019, India

[†] University of Notre Dame (Email: pkamat@nd.edu)

^{*} Regional Research Laboratory, Trivandrum (Email: kgt@vsnl.com)

Estimation of number of thiol and Ru-C₅-SH molecules bound to gold nanorods

The absorbance (O.D) at 453 nm for $Ru(bpy)_3^{2+}$ - C_5 -SH = 0.0065.

The extinction coefficient for $Ru(bpy)_3^{2+}$ - C_5 -SH at 453 nm = 1.49 x 10^4 M⁻¹cm⁻¹.

The concentration of $Ru(bpy)_3^{2+}$ -C₅-SH bound onto Au nanorods = 0.436 μ M.

The absorbance (O.D) at 700 nm for Au nanorods = 0.54

The extinction coefficient for Au nanorods at 700 nm = $0.5 \times 10^{10} \text{ M}^{-1}\text{cm}^{-1}$.

The concentration of Au nanorods used = 0.108 nM

The ratio of Ru(bpy)₃²⁺-C₅-SH to rod =
$$0.436 \times 10^{-6}/0.108 \times 10^{-9} = 4037$$

= 1:4037

The total surface area of Au nanorods (length 40 nm and radius 25 nm)

$$= 3140 \text{ nm}^2 + 1963 \text{ nm}^2$$

 $= 5103 \text{ nm}^2$

Footprint of thiol = 0.214 nm^2

Maximum number of thiols that can be accommodated by Au nanorods

= 14672 (lateral) + 9172 (both ends)

= 23844

The ratio of Ru(bpy)₃²⁺-C₅-SH to dodecane thiol = 4037:(23844-4037) ≈ 1.5