## **Supplementary material**

# Enhanced silver ion binding to a rigid bisarene molecular cleft with formation of nonpolar pleated sheets through nonionic intermolecular forces

Adolf Gogoll, Prasad Polavarapu, and Helena Grennberg\*

Dept. of Biochemistry and Organic Chemistry, Uppsala University, Box 576, S-75123 Uppsala, Sweden

Figure S1: Scott plot from titration of **1** (H-3 monitored).

Figure S2: <sup>1</sup>H NMR spectra of **1** in the presence of varying amounts of Ag<sup>+</sup>.

Figure S3: Spectral simulation for aromatic protons of 1 in the absence of Ag<sup>+</sup>.

Figure S4: Spectral simulation for aromatic protons of 1 in the presence of Ag<sup>+</sup>.

Figure S5: IR spectra of 1 and of  $[1 (AgCF_3SO_3)_2]_2$ .

Tables of X-ray crystallographic parameters.

NMR Titration of **1**: 1.76 mg (5.78  $\mu$ mol) in THF-d<sub>8</sub> solution. Aliquots of a solution of AgCF<sub>3</sub>SO<sub>3</sub> in THF-d<sub>8</sub> added, monitoring the chemical shifts of protons of **1** (500 MHz, 25°C).



| [Ag], M | [ <b>Ag</b> ]/δ∆ | δch,<br>aliph | Δδ,<br>ppb | $\delta_{\text{H-2}}$ | Δδ <sub>H-2</sub> ,<br>ppb | δ <sub>H-3</sub> | Δδ <sub>H-3</sub> ,<br>ppb | $\delta_{\text{H-4}}$ | Δδ <sub>H-4</sub> ,<br>ppb |
|---------|------------------|---------------|------------|-----------------------|----------------------------|------------------|----------------------------|-----------------------|----------------------------|
| 0.000   | 0.0000           | 4.822         | 0          | 7.004                 | 0                          | 7.074            | 0                          | 7.117                 | 0                          |
| 0.081   | 0.0011           | 4.859         | 37         | 7.068                 | 64                         | 7.148            | 74                         | 7.179                 | 62                         |
| 0.153   | 0.0014           | 4.878         | 56         | 7.099                 | 95                         | 7.181            | 107                        | 7.208                 | 91                         |
| 0.215   | 0.0017           | 4.886         | 64         | 7.117                 | 113                        | 7.202            | 128                        | 7.227                 | 110                        |
| 0.321   | 0.0021           | 4.900         | 78         | 7.143                 | 139                        | 7.228            | 154                        | 7.251                 | 134                        |
| 0.407   | 0.0024           | 4.907         | 85         | 7.157                 | 153                        | 7.243            | 169                        | 7.266                 | 149                        |
| 0.477   | 0.0027           | 4.912         | 90         | 7.167                 | 163                        | 7.253            | 179                        | 7.276                 | 159                        |
| 0.537   | 0.0029           | 4.914         | 92         | 7.175                 | 171                        | 7.259            | 185                        | 7.282                 | 165                        |
| 0.563   | 0.0030           | 4.916         | 94         | 7.178                 | 174                        | 7.262            | 188                        | 7.286                 | 169                        |



Figure S1: Scott plot for titration of 1 with monitoring of H-3.



Figure S2: <sup>1</sup>H NMR spectra of 1 in the presence of (a) 0 M Ag<sup>+</sup>, (b) 0.321 M Ag<sup>+</sup>, (c) 0.563 M Ag<sup>+</sup> (400 MHz, THF- $d_8$  solution, 25°C).



Figure S3: Expansion from the <sup>1</sup>H NMR spectrum of **1** in the absence of Ag<sup>+</sup>, top: observed (400 MHz, THF-d<sub>8</sub> solution, 25°C), bottom: simulated. Parameters:  $\delta$  = 7.114 (dd, J = 0.5, 8.2 Hz, 4H, H-4), 7.073 (dd, J = 6.9, 8.2 Hz, 4H, H-3), 7.005 (dd, J = 0.5, 6.9 Hz, 4H, H-2), 4.822 (s, 4H, cyclobutyl, not shown).



7.330 7.320 7.310 7.300 7.290 7.280 7.270 7.260 7.250 7.240 7.230 7.220 7.210 7.200 7.190 7.180 7.170 7.160 7.150 7.140 7.130 7.120

Figure S4: Expansion from the <sup>1</sup>H NMR spectrum of **1** in the presence of 0.563 M Ag<sup>+</sup>, top: observed (400 MHz, THF-d<sub>8</sub> solution, 25°C), bottom: simulated. Parameters:  $\delta = 7.279$  (dd, J = 0.7, 8.1 Hz, 4H, H-4), 7.263 (dd, J = 6.9, 8.1 Hz, 4H, H-3), 7.178 (dd, J = 0.7, 6.9 Hz, 4H, H-2), 4.916 (s, 4H, cyclobutyl, not shown).



Figure S5: IR spectra of 1 and of  $[1 (AgCF_3SO_3)_2]_2$  (neat, UATR accessory).

#### Tables of X-ray crystallographic parameters

#### CRYSTAL STRUCTURE DETERMINATION

Data were collected at room temperature using a Siemens SMART CCD diffractometer with Mo–K<sub> $\alpha$ </sub> radiation ( $\lambda$ = 0.71073 Å, graphite monochromator). Full sphere of reciprocal lattices were scanned by 0.3° steps in  $\omega$  with a crystal–to–detector distance of 3.97 cm, 30 seconds exposure time per frame. Preliminary orientation matrix was obtained from the first frames using SMART [1]. The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the positions of 8192 reflections with I > 10 $\sigma$ (I) after integration of all the frames using SAINT [1]. The data were empirically corrected for absorption and other effects using SADABS [2]. The structures were solved by Patterson technique and refined by full-matrix least squares on all F<sup>2</sup> data using SHELXTL [3]. There is one acenaphthylene cis-dimer (its structure has been described earlier by Welberry [4]) and two crystallografically independent molecules of silver trifluoromethanesulfonate AgSO<sub>3</sub>CF<sub>3</sub> in the asymmetric unit, forming a complex quadruple (see figures). Hydrogen atoms were constrained to the ideal geometry using an appropriate riding model. The C-H distances were fixed for 0.93Å for aromatic and 0.98Å for tertiary hydrogens. The non-H atoms were refined anisotropically, while the H atoms were refined isotropically. Molecular graphics were obtained using Diamond [5].

### RESULTS

The crystallographic and refinement data are summarized in Table 1. Atomic coordinated for non-hydrogen atoms are given in Table 2. Bond lengths and angles are given in Table 3. Anisotropic displacement parameters for non-hydrogen atoms are given in Table 4. Coordinates for hydrogen atoms, together with their isotropic displacement factors are summarized in Table 5. Torsion angles are given in Table 5. The geometry of hydrogen bonds is in Table 7.

The title compound crystallizes in the monoclinic system with space group C2/c. The asymmetric unit contains a complex between one organic acenaphthylene cis-dimer and two crystallographicaly independent silver trifluoromethanesulfonates (see Fig. 1 and 2). The complex quadruple with square-planar configuration is shown on Fig. 3

- SMART & SAINT: Area Detector Control and Integration Software, Siemens AXS, Madison, WI, USA, 1995.
- [2] G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detectors, University of Göttingen, Germany, 1996.
- [3] G. M. Sheldrick, SHELXTL (Version 5.10), Structure Determination Programs, Bruker AXS Inc., Madison, Wisconsin, USA, 1997.
- [4] T.R.Welberry, Acta Crystallogr., Sect. B, 27, 360 (1971).
- [5] K. Brandenburg, *Diamond: Visual Crystal Structure Information System* (Version 2.1d), Crystal Impact GbR, Bonn, Germany, 2000.



Fig.1. Numbering scheme.



Fig.2. Numbering scheme with thermal ellipsoids at 30% probability level.



Fig.3a,b. The complex in projection along a-axis.

Table 1. Crystal data and structure refinement for  $[1 \cdot (AgCF_3SO_3)_2]_2$ .

| Empirical formula                       | $C_{26}H_{16}\ Ag_2F_6\ O_6\ S_2$  |                         |
|-----------------------------------------|------------------------------------|-------------------------|
| Formula weight                          | 818.25                             |                         |
| Temperature                             | 297(2) K                           |                         |
| Wavelength                              | 0.71073 Å                          |                         |
| Crystal system                          | Monoclinic                         |                         |
| Space group                             | C2/c                               |                         |
| Unit cell dimensions                    | a = 16.6087(2)  Å                  |                         |
|                                         | b = 17.43310(10) Å                 | $\beta$ = 102.5420(10)° |
|                                         | c = 18.4130(2)  Å                  |                         |
| Volume                                  | 5204.10(9) Å <sup>3</sup>          |                         |
| Z                                       | 8                                  |                         |
| Density (calculated)                    | 2.089 Mg/m <sup>3</sup>            |                         |
| Absorption coefficient                  | 1.752 mm <sup>-1</sup>             |                         |
| F(000)                                  | 3200                               |                         |
| Crystal size                            | 0.14 x 0.10 x 0.08 mm <sup>3</sup> |                         |
| Theta range for data collection         | 1.90 to 25.35°.                    |                         |
| Index ranges                            | -19<=h<=19, -20<=k<=20             | , -22<=l<=22            |
| Reflections collected                   | 27629                              |                         |
| Independent reflections                 | 4767 [R(int) = 0.0603]             |                         |
| Completeness to theta = $25.35^{\circ}$ | 99.9 %                             |                         |
| Absorption correction                   | multi-scan                         |                         |
| Max. and min. transmission              | 0.8725 and 0.7915                  |                         |
| Refinement method                       | Full-matrix least-squares o        | n F <sup>2</sup>        |
| Data / restraints / parameters          | 4767 / 0 / 395                     |                         |
| Goodness-of-fit on F <sup>2</sup>       | 0.991                              |                         |
| Final R indices [I>2sigma(I)]           | R1 = 0.0465, wR2 = 0.128           | 2                       |
| R indices (all data)                    | R1 = 0.0787, wR2 = 0.150           | 4                       |
| Largest diff. peak and hole             | 1.119 and -0.637 e.Å <sup>-3</sup> |                         |
|                                         |                                    |                         |

|              | X       | У       | Z       | U(eq)  |
|--------------|---------|---------|---------|--------|
| C(1A)        | 3649(4) | 7306(3) | 3040(3) | 45(1)  |
| C(2A)        | 3971(4) | 8137(3) | 3230(3) | 46(1)  |
| C(3A)        | 4885(4) | 8067(4) | 3541(3) | 47(2)  |
| C(4A)        | 5493(5) | 8594(5) | 3794(4) | 64(2)  |
| C(5A)        | 6302(5) | 8335(5) | 4032(5) | 73(2)  |
| C(6A)        | 6514(4) | 7568(5) | 4036(4) | 69(2)  |
| C(7A)        | 5910(4) | 7017(4) | 3788(3) | 52(2)  |
| C(8A)        | 6015(5) | 6209(5) | 3758(4) | 65(2)  |
| C(9A)        | 5348(5) | 5743(4) | 3496(4) | 62(2)  |
| C(10A)       | 4548(4) | 6030(4) | 3253(4) | 53(2)  |
| C(11A)       | 4410(4) | 6809(3) | 3278(3) | 43(1)  |
| C(12A)       | 5097(3) | 7283(4) | 3548(3) | 43(1)  |
| C(1B)        | 3387(4) | 8217(3) | 3795(3) | 45(1)  |
| C(2B)        | 3039(3) | 7403(3) | 3579(3) | 40(1)  |
| C(3B)        | 3170(3) | 6957(3) | 4298(3) | 39(1)  |
| C(4B)        | 2968(4) | 6226(3) | 4475(4) | 45(1)  |
| C(5B)        | 3167(4) | 5997(4) | 5237(4) | 48(2)  |
| C(6B)        | 3552(4) | 6476(4) | 5795(3) | 48(2)  |
| C(7B)        | 3772(3) | 7230(3) | 5633(3) | 38(1)  |
| C(8B)        | 4158(4) | 7798(4) | 6144(4) | 52(2)  |
| C(9B)        | 4314(4) | 8510(4) | 5894(4) | 58(2)  |
| C(10B)       | 4109(4) | 8717(3) | 5130(4) | 49(2)  |
| C(11B)       | 3727(3) | 8185(3) | 4614(3) | 41(1)  |
| C(12B)       | 3574(3) | 7447(3) | 4869(3) | 37(1)  |
| Ag(1)        | 4360(1) | 5753(1) | 4514(1) | 55(1)  |
| <b>S</b> (1) | 6056(1) | 6225(1) | 5759(1) | 50(1)  |
| O(11)        | 6805(4) | 5995(5) | 5609(4) | 127(3) |
| O(12)        | 5430(3) | 5646(3) | 5612(3) | 70(1)  |
| O(13)        | 5736(5) | 6940(3) | 5482(3) | 103(2) |
| C(1)         | 6267(6) | 6336(5) | 6765(5) | 74(2)  |
| F(11)        | 6807(6) | 6854(5) | 6974(4) | 169(4) |
| F(12)        | 5606(5) | 6536(6) | 6980(3) | 168(4) |
| F(13)        | 6522(6) | 5717(4) | 7104(3) | 153(3) |
| Ag(2)        | 5571(1) | 8280(1) | 5177(1) | 65(1)  |

Table 2. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for  $[1 \cdot (AgCF_3SO_3)_2]_2$ . U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| S(2)  | 6624(1) | 9477(1) | 6340(1) | 53(1)  |
|-------|---------|---------|---------|--------|
| O(21) | 7332(3) | 9950(3) | 6376(3) | 75(2)  |
| O(22) | 6698(4) | 8712(3) | 6081(4) | 86(2)  |
| O(23) | 5841(3) | 9828(3) | 6028(3) | 84(2)  |
| C(2)  | 6585(6) | 9338(5) | 7295(5) | 78(2)  |
| F(21) | 7287(5) | 9058(4) | 7676(4) | 140(3) |
| F(22) | 5985(5) | 8860(4) | 7361(4) | 141(3) |
| F(23) | 6482(6) | 9996(4) | 7624(4) | 152(3) |
|       |         |         |         |        |

| Table 3. | Bond lengths [A | Å] and angles | [°] for | $[1 \cdot (\text{AgCF}_3\text{SO}_3)_2]_2.$ |
|----------|-----------------|---------------|---------|---------------------------------------------|
|----------|-----------------|---------------|---------|---------------------------------------------|

| C(1A)-C(2A)   | 1.559(9)  |
|---------------|-----------|
| C(1A)-C(2B)   | 1.573(8)  |
| C(1A)-C(11A)  | 1.518(8)  |
| C(1A)-H(1A)   | 0.9800    |
| C(2A)-C(3A)   | 1.506(9)  |
| C(2A)-C(1B)   | 1.576(8)  |
| C(2A)-H(2A)   | 0.9800    |
| C(3A)-C(12A)  | 1.410(9)  |
| C(3A)-C(4A)   | 1.371(10) |
| C(4A)-C(5A)   | 1.395(11) |
| C(4A)-Ag(2)   | 2.580(7)  |
| C(4A)-H(4A)   | 0.9300    |
| C(5A)-C(6A)   | 1.383(12) |
| C(5A)-Ag(2)   | 2.654(8)  |
| C(5A)-H(5A)   | 0.9300    |
| C(6A)-C(7A)   | 1.394(10) |
| C(6A)-H(6A)   | 0.9300    |
| C(7A)-C(8A)   | 1.420(10) |
| C(7A)-C(12A)  | 1.406(8)  |
| C(8A)-C(9A)   | 1.375(11) |
| C(8A)-H(8A)   | 0.9300    |
| C(9A)-C(10A)  | 1.399(10) |
| C(9A)-H(9A)   | 0.9300    |
| C(10A)-C(11A) | 1.379(9)  |
| C(10A)-Ag(1)  | 2.456(6)  |
| C(10A)-H(10A) | 0.9300    |
| C(11A)-C(12A) | 1.408(8)  |
| C(1B)-C(11B)  | 1.492(9)  |
| C(1B)-C(2B)   | 1.550(8)  |
| C(1B)-H(1B)   | 0.9800    |
| C(2B)-C(3B)   | 1.510(8)  |
| C(2B)-H(2B)   | 0.9800    |
| C(3B)-C(12B)  | 1.405(8)  |
| C(3B)-C(4B)   | 1.375(8)  |
| C(4B)-C(5B)   | 1.427(9)  |
| C(4B)-Ag(1)   | 2.441(6)  |
| C(4B)-H(4B)   | 0.9300    |

| C(5B)-C(6B)        | 1.369(9)  |
|--------------------|-----------|
| C(5B)-Ag(1)        | 2.652(6)  |
| C(5B)-H(5B)        | 0.9300    |
| C(6B)-C(7B)        | 1.415(8)  |
| C(6B)-H(6B)        | 0.9300    |
| C(7B)-C(12B)       | 1.425(8)  |
| C(7B)-C(8B)        | 1.419(8)  |
| C(8B)-C(9B)        | 1.367(10) |
| C(8B)-H(8B)        | 0.9300    |
| C(9B)-C(10B)       | 1.420(10) |
| C(9B)-H(9B)        | 0.9300    |
| C(10B)-C(11B)      | 1.380(8)  |
| C(10B)-Ag(2)       | 2.528(6)  |
| C(10B)-H(10B)      | 0.9300    |
| C(11B)-C(12B)      | 1.411(8)  |
| Ag(1)-O(12)        | 2.393(5)  |
| Ag(1)-O(12)#1      | 2.481(5)  |
| S(1)-O(13)         | 1.406(6)  |
| S(1)-O(11)         | 1.391(6)  |
| S(1)-O(12)         | 1.431(5)  |
| S(1)-C(1)          | 1.820(8)  |
| O(12)-Ag(1)#1      | 2.481(5)  |
| O(13)-Ag(2)        | 2.405(5)  |
| C(1)-F(11)         | 1.272(10) |
| C(1)-F(12)         | 1.294(11) |
| C(1)-F(13)         | 1.271(10) |
| Ag(2)-O(22)        | 2.343(6)  |
| S(2)-O(23)         | 1.438(5)  |
| S(2)-O(22)         | 1.432(5)  |
| S(2)-O(21)         | 1.426(5)  |
| S(2)-C(2)          | 1.791(9)  |
| C(2)-F(23)         | 1.327(10) |
| C(2)-F(21)         | 1.317(10) |
| C(2)-F(22)         | 1.325(10) |
| C(2A)-C(1A)-C(2B)  | 89.7(4)   |
| C(2A)-C(1A)-C(11A) | 104.0(5)  |
| C(2B)-C(1A)-C(11A) | 119.3(4)  |

| C(2A)-C(1A)-H(1A)   | 113.6    |
|---------------------|----------|
| C(2B)-C(1A)-H(1A)   | 113.6    |
| C(11A)-C(1A)-H(1A)  | 113.6    |
| C(3A)-C(2A)-C(1A)   | 106.1(5) |
| C(3A)-C(2A)-C(1B)   | 118.0(5) |
| C(1A)-C(2A)-C(1B)   | 89.9(4)  |
| C(3A)-C(2A)-H(2A)   | 113.4    |
| C(1A)-C(2A)-H(2A)   | 113.4    |
| C(1B)-C(2A)-H(2A)   | 113.4    |
| C(12A)-C(3A)-C(4A)  | 118.9(6) |
| C(12A)-C(3A)-C(2A)  | 108.2(5) |
| C(4A)-C(3A)-C(2A)   | 133.0(6) |
| C(3A)-C(4A)-C(5A)   | 118.6(7) |
| C(3A)-C(4A)-Ag(2)   | 93.9(4)  |
| C(5A)-C(4A)-Ag(2)   | 77.5(5)  |
| C(3A)-C(4A)-H(4A)   | 120.7    |
| C(5A)-C(4A)-H(4A)   | 120.7    |
| Ag(2)-C(4A)-H(4A)   | 98.3     |
| C(6A)-C(5A)-C(4A)   | 122.8(7) |
| C(6A)-C(5A)-Ag(2)   | 96.9(5)  |
| C(4A)-C(5A)-Ag(2)   | 71.6(4)  |
| C(6A)-C(5A)-H(5A)   | 118.6    |
| C(4A)-C(5A)-H(5A)   | 118.6    |
| Ag(2)-C(5A)-H(5A)   | 101.7    |
| C(5A)-C(6A)-C(7A)   | 120.1(7) |
| C(5A)-C(6A)-H(6A)   | 120.0    |
| C(7A)-C(6A)-H(6A)   | 120.0    |
| C(6A)-C(7A)-C(8A)   | 127.6(7) |
| C(6A)-C(7A)-C(12A)  | 116.7(7) |
| C(8A)-C(7A)-C(12A)  | 115.7(6) |
| C(9A)-C(8A)-C(7A)   | 120.2(6) |
| C(9A)-C(8A)-H(8A)   | 119.9    |
| C(7A)-C(8A)-H(8A)   | 119.9    |
| C(8A)-C(9A)-C(10A)  | 122.5(7) |
| C(8A)-C(9A)-H(9A)   | 118.7    |
| C(10A)-C(9A)-H(9A)  | 118.7    |
| C(9A)-C(10A)-C(11A) | 119.6(7) |
| C(9A)-C(10A)-Ag(1)  | 86.2(4)  |

| C(11A)-C(10A)-Ag(1)  | 96.1(4)  |
|----------------------|----------|
| C(9A)-C(10A)-H(10A)  | 120.2    |
| C(11A)-C(10A)-H(10A) | 120.2    |
| Ag(1)-C(10A)-H(10A)  | 87.7     |
| C(12A)-C(11A)-C(10A) | 117.5(6) |
| C(12A)-C(11A)-C(1A)  | 109.0(5) |
| C(10A)-C(11A)-C(1A)  | 133.4(6) |
| C(3A)-C(12A)-C(11A)  | 112.6(5) |
| C(3A)-C(12A)-C(7A)   | 122.9(6) |
| C(11A)-C(12A)-C(7A)  | 124.4(6) |
| C(11B)-C(1B)-C(2B)   | 105.3(5) |
| C(11B)-C(1B)-C(2A)   | 120.8(5) |
| C(2B)-C(1B)-C(2A)    | 89.9(4)  |
| C(11B)-C(1B)-H(1B)   | 112.7    |
| C(2B)-C(1B)-H(1B)    | 112.7    |
| C(2A)-C(1B)-H(1B)    | 112.7    |
| C(3B)-C(2B)-C(1B)    | 105.7(5) |
| C(3B)-C(2B)-C(1A)    | 120.5(4) |
| C(1B)-C(2B)-C(1A)    | 90.3(4)  |
| C(3B)-C(2B)-H(2B)    | 112.6    |
| C(1B)-C(2B)-H(2B)    | 112.6    |
| C(1A)-C(2B)-H(2B)    | 112.6    |
| C(12B)-C(3B)-C(4B)   | 119.2(5) |
| C(12B)-C(3B)-C(2B)   | 107.2(5) |
| C(4B)-C(3B)-C(2B)    | 133.6(5) |
| C(3B)-C(4B)-C(5B)    | 118.4(6) |
| C(3B)-C(4B)-Ag(1)    | 92.4(4)  |
| C(5B)-C(4B)-Ag(1)    | 82.1(4)  |
| C(3B)-C(4B)-H(4B)    | 120.8    |
| C(5B)-C(4B)-H(4B)    | 120.8    |
| Ag(1)-C(4B)-H(4B)    | 95.4     |
| C(6B)-C(5B)-C(4B)    | 122.5(6) |
| C(6B)-C(5B)-Ag(1)    | 101.3(4) |
| C(4B)-C(5B)-Ag(1)    | 65.7(3)  |
| C(6B)-C(5B)-H(5B)    | 118.7    |
| C(4B)-C(5B)-H(5B)    | 118.7    |
| Ag(1)-C(5B)-H(5B)    | 102.9    |
| C(5B)-C(6B)-C(7B)    | 120.5(5) |

| 119.7      |
|------------|
| 119.7      |
| 116.1(5)   |
| 127.5(5)   |
| 116.4(5)   |
| 120.0(6)   |
| 120.0      |
| 120.0      |
| 122.8(6)   |
| 118.6      |
| 118.6      |
| 119.1(6)   |
| 96.6(4)    |
| 82.4(4)    |
| 120.5      |
| 120.5      |
| 91.0       |
| 118.3(6)   |
| 133.4(5)   |
| 108.3(5)   |
| 123.2(5)   |
| 113.4(5)   |
| 123.3(5)   |
| 126.2(2)   |
| 125.2(2)   |
| 102.7(2)   |
| 84.75(17)  |
| 93.2(2)    |
| 118.74(18) |
| 95.0(2)    |
| 134.9(2)   |
| 32.2(2)    |
| 109.88(19) |
| 117.8(5)   |
| 110.9(4)   |
| 113.8(4)   |
| 104.4(4)   |
|            |
|            |

| O(12)-S(1)-C(1)     | 103.8(4)  |
|---------------------|-----------|
| S(1)-O(12)-Ag(1)    | 118.7(3)  |
| S(1)-O(12)-Ag(1)#1  | 126.9(3)  |
| Ag(1)-O(12)-Ag(1)#1 | 95.26(17) |
| S(1)-O(13)-Ag(2)    | 164.0(5)  |
| F(11)-C(1)-F(12)    | 107.8(9)  |
| F(11)-C(1)-F(13)    | 108.3(9)  |
| F(12)-C(1)-F(13)    | 107.1(9)  |
| F(11)-C(1)-S(1)     | 110.6(7)  |
| F(12)-C(1)-S(1)     | 110.6(6)  |
| F(13)-C(1)-S(1)     | 112.3(6)  |
| O(22)-Ag(2)-O(13)   | 96.4(2)   |
| O(22)-Ag(2)-C(10B)  | 122.7(2)  |
| O(13)-Ag(2)-C(10B)  | 111.2(2)  |
| O(22)-Ag(2)-C(4A)   | 119.6(2)  |
| O(13)-Ag(2)-C(4A)   | 114.5(2)  |
| C(10B)-Ag(2)-C(4A)  | 93.5(2)   |
| O(22)-Ag(2)-C(5A)   | 96.9(2)   |
| O(13)-Ag(2)-C(5A)   | 99.9(3)   |
| C(10B)-Ag(2)-C(5A)  | 124.3(3)  |
| C(4A)-Ag(2)-C(5A)   | 30.9(2)   |
| O(23)-S(2)-O(22)    | 113.5(4)  |
| O(23)-S(2)-O(21)    | 116.0(3)  |
| O(22)-S(2)-O(21)    | 115.1(3)  |
| O(23)-S(2)-C(2)     | 103.2(4)  |
| O(22)-S(2)-C(2)     | 103.0(4)  |
| O(21)-S(2)-C(2)     | 103.8(4)  |
| S(2)-O(22)-Ag(2)    | 115.0(3)  |
| F(23)-C(2)-F(21)    | 105.3(8)  |
| F(23)-C(2)-F(22)    | 109.2(9)  |
| F(21)-C(2)-F(22)    | 108.3(7)  |
| F(23)-C(2)-S(2)     | 111.5(6)  |
| F(21)-C(2)-S(2)     | 110.9(7)  |
| F(22)-C(2)-S(2)     | 111.3(7)  |
|                     |           |

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1

Table 4. Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for  $[1 \cdot (AgCF_3SO_3)_2]_2$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2 [h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$ 

|              | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| C(1A)        | 49(3)           | 56(4)           | 27(3)           | 3(3)            | 4(2)            | 8(3)            |
| C(2A)        | 52(4)           | 49(3)           | 40(3)           | 9(3)            | 17(3)           | 3(3)            |
| C(3A)        | 48(4)           | 60(4)           | 39(3)           | 6(3)            | 22(3)           | 0(3)            |
| C(4A)        | 68(5)           | 68(5)           | 61(5)           | 3(4)            | 29(4)           | -17(4)          |
| C(5A)        | 62(5)           | 90(6)           | 74(5)           | -11(4)          | 28(4)           | -28(5)          |
| C(6A)        | 41(4)           | 117(7)          | 50(4)           | 7(4)            | 13(3)           | -3(4)           |
| C(7A)        | 41(3)           | 77(5)           | 40(4)           | 7(3)            | 15(3)           | 10(3)           |
| C(8A)        | 57(5)           | 94(6)           | 48(4)           | 16(4)           | 21(4)           | 26(4)           |
| C(9A)        | 79(5)           | 61(4)           | 52(4)           | 5(3)            | 27(4)           | 21(4)           |
| C(10A)       | 65(4)           | 53(4)           | 46(4)           | -1(3)           | 18(3)           | 8(3)            |
| C(11A)       | 56(4)           | 52(3)           | 25(3)           | 3(2)            | 17(3)           | 7(3)            |
| C(12A)       | 43(3)           | 60(4)           | 31(3)           | 6(3)            | 17(3)           | 2(3)            |
| C(1B)        | 44(3)           | 44(3)           | 49(4)           | 9(3)            | 13(3)           | 10(3)           |
| C(2B)        | 33(3)           | 49(3)           | 37(3)           | 5(2)            | 4(2)            | 10(2)           |
| C(3B)        | 30(3)           | 52(3)           | 38(3)           | 1(3)            | 13(2)           | 6(2)            |
| C(4B)        | 37(3)           | 47(3)           | 53(4)           | 0(3)            | 13(3)           | -2(3)           |
| C(5B)        | 42(3)           | 49(3)           | 56(4)           | 11(3)           | 17(3)           | -2(3)           |
| C(6B)        | 45(3)           | 67(4)           | 35(3)           | 13(3)           | 14(3)           | 8(3)            |
| C(7B)        | 29(3)           | 51(3)           | 36(3)           | 1(2)            | 10(2)           | 9(2)            |
| C(8B)        | 45(4)           | 71(4)           | 38(4)           | -8(3)           | 4(3)            | 5(3)            |
| C(9B)        | 54(4)           | 57(4)           | 61(5)           | -19(3)          | 5(3)            | 0(3)            |
| C(10B)       | 47(4)           | 43(3)           | 59(4)           | -6(3)           | 14(3)           | -2(3)           |
| C(11B)       | 35(3)           | 41(3)           | 49(4)           | 0(3)            | 15(3)           | 5(2)            |
| C(12B)       | 31(3)           | 47(3)           | 35(3)           | -3(2)           | 10(2)           | 5(2)            |
| Ag(1)        | 54(1)           | 60(1)           | 50(1)           | -1(1)           | 9(1)            | 12(1)           |
| <b>S</b> (1) | 46(1)           | 54(1)           | 51(1)           | -9(1)           | 11(1)           | -6(1)           |
| O(11)        | 52(4)           | 217(8)          | 112(6)          | -49(6)          | 15(4)           | 17(4)           |
| O(12)        | 65(3)           | 74(3)           | 64(3)           | 3(2)            | -3(3)           | -13(2)          |
| O(13)        | 193(8)          | 49(3)           | 68(4)           | 10(3)           | 30(4)           | -5(4)           |
| <b>C</b> (1) | 81(6)           | 77(5)           | 57(5)           | -9(4)           | 4(4)            | -8(5)           |
| F(11)        | 227(9)          | 182(7)          | 88(4)           | -56(4)          | 17(5)           | -115(7)         |
| F(12)        | 166(7)          | 285(10)         | 60(4)           | -8(5)           | 38(4)           | 79(7)           |
| F(13)        | 219(8)          | 125(5)          | 76(4)           | 19(3)           | -51(5)          | 13(5)           |
| Ag(2)        | 69(1)           | 63(1)           | 65(1)           | -11(1)          | 17(1)           | -7(1)           |

| S(2)  | 57(1)  | 50(1)  | 52(1)  | 7(1)   | 12(1)  | -4(1)  |
|-------|--------|--------|--------|--------|--------|--------|
| O(21) | 72(3)  | 58(3)  | 101(4) | 7(3)   | 32(3)  | -10(2) |
| O(22) | 93(4)  | 65(3)  | 97(4)  | -24(3) | 18(3)  | -5(3)  |
| O(23) | 66(3)  | 96(4)  | 81(4)  | 32(3)  | -3(3)  | 4(3)   |
| C(2)  | 94(6)  | 71(5)  | 70(6)  | 20(4)  | 19(5)  | 7(5)   |
| F(21) | 144(6) | 157(5) | 92(4)  | 50(4)  | -36(4) | 24(5)  |
| F(22) | 153(6) | 178(7) | 102(5) | 55(4)  | 52(4)  | -37(5) |
| F(23) | 236(8) | 141(6) | 92(4)  | -21(4) | 64(5)  | 40(5)  |
|       |        |        |        |        |        |        |
|       |        |        |        |        |        |        |

|        | Х    | у    | Z    | U(eq)   |
|--------|------|------|------|---------|
|        |      |      |      |         |
| H(1A)  | 3369 | 7237 | 2518 | 38(15)  |
| H(2A)  | 3833 | 8491 | 2808 | 90(30)  |
| H(4A)  | 5369 | 9113 | 3808 | 80(20)  |
| H(5A)  | 6717 | 8694 | 4194 | 120(40) |
| H(6A)  | 7061 | 7420 | 4204 | 100(30) |
| H(8A)  | 6537 | 5996 | 3917 | 80(20)  |
| H(9A)  | 5432 | 5216 | 3480 | 50(17)  |
| H(10A) | 4112 | 5697 | 3076 | 53(19)  |
| H(1B)  | 2972 | 8620 | 3654 | 40(15)  |
| H(2B)  | 2460 | 7412 | 3314 | 60(19)  |
| H(4B)  | 2708 | 5889 | 4107 | 80(20)  |
| H(5B)  | 3029 | 5504 | 5360 | 60(20)  |
| H(6B)  | 3669 | 6304 | 6285 | 49(17)  |
| H(8B)  | 4304 | 7687 | 6649 | 49(17)  |
| H(9B)  | 4565 | 8874 | 6239 | 58(19)  |
| H(10B) | 4230 | 9205 | 4980 | 70(20)  |
|        |      |      |      |         |

Table 5. Hydrogen coordinates ( x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for  $[1 \cdot (AgCF_3SO_3)_2]_2$ .

Table 6. Torsion angles [°] for  $[1 \cdot (AgCF_3SO_3)_2]_2$ .

| C(2B)-C(1A)-C(2A)-C(3A)    | 121.6(5)  |
|----------------------------|-----------|
| C(11A)-C(1A)-C(2A)-C(3A)   | 1.4(6)    |
| C(2B)-C(1A)-C(2A)-C(1B)    | 2.4(4)    |
| C(11A)-C(1A)-C(2A)-C(1B)   | -117.9(5) |
| C(1A)-C(2A)-C(3A)-C(12A)   | -0.5(6)   |
| C(1B)-C(2A)-C(3A)-C(12A)   | 98.2(6)   |
| C(1A)-C(2A)-C(3A)-C(4A)    | 179.2(6)  |
| C(1B)-C(2A)-C(3A)-C(4A)    | -82.0(8)  |
| C(12A)-C(3A)-C(4A)-C(5A)   | 1.6(10)   |
| C(2A)-C(3A)-C(4A)-C(5A)    | -178.1(6) |
| C(12A)-C(3A)-C(4A)-Ag(2)   | -76.3(5)  |
| C(2A)-C(3A)-C(4A)-Ag(2)    | 104.0(7)  |
| C(3A)-C(4A)-C(5A)-C(6A)    | -1.3(11)  |
| Ag(2)-C(4A)-C(5A)-C(6A)    | 86.4(7)   |
| C(3A)-C(4A)-C(5A)-Ag(2)    | -87.7(6)  |
| C(4A)-C(5A)-C(6A)-C(7A)    | 0.8(12)   |
| Ag(2)-C(5A)-C(6A)-C(7A)    | 73.3(7)   |
| C(5A)-C(6A)-C(7A)-C(8A)    | -179.5(7) |
| C(5A)-C(6A)-C(7A)-C(12A)   | -0.6(10)  |
| C(6A)-C(7A)-C(8A)-C(9A)    | 180.0(7)  |
| C(12A)-C(7A)-C(8A)-C(9A)   | 1.1(9)    |
| C(7A)-C(8A)-C(9A)-C(10A)   | -0.3(10)  |
| C(8A)-C(9A)-C(10A)-C(11A)  | -0.5(10)  |
| C(8A)-C(9A)-C(10A)-Ag(1)   | -95.3(7)  |
| C(9A)-C(10A)-C(11A)-C(12A) | 0.4(8)    |
| Ag(1)-C(10A)-C(11A)-C(12A) | 89.5(5)   |
| C(9A)-C(10A)-C(11A)-C(1A)  | 177.5(6)  |
| Ag(1)-C(10A)-C(11A)-C(1A)  | -93.4(6)  |
| C(2A)-C(1A)-C(11A)-C(12A)  | -1.8(6)   |
| C(2B)-C(1A)-C(11A)-C(12A)  | -99.5(6)  |
| C(2A)-C(1A)-C(11A)-C(10A)  | -179.0(6) |
| C(2B)-C(1A)-C(11A)-C(10A)  | 83.2(8)   |
| C(4A)-C(3A)-C(12A)-C(11A)  | 179.6(5)  |
| C(2A)-C(3A)-C(12A)-C(11A)  | -0.6(7)   |
| C(4A)-C(3A)-C(12A)-C(7A)   | -1.6(9)   |
| C(2A)-C(3A)-C(12A)-C(7A)   | 178.2(5)  |
| C(10A)-C(11A)-C(12A)-C(3A) | 179.3(5)  |

| C(1A)-C(11A)-C(12A)-C(3A)  | 1.6(6)    |
|----------------------------|-----------|
| C(10A)-C(11A)-C(12A)-C(7A) | 0.5(8)    |
| C(1A)-C(11A)-C(12A)-C(7A)  | -177.3(5) |
| C(6A)-C(7A)-C(12A)-C(3A)   | 1.0(9)    |
| C(8A)-C(7A)-C(12A)-C(3A)   | -179.9(5) |
| C(6A)-C(7A)-C(12A)-C(11A)  | 179.7(5)  |
| C(8A)-C(7A)-C(12A)-C(11A)  | -1.2(8)   |
| C(3A)-C(2A)-C(1B)-C(11B)   | -2.9(8)   |
| C(1A)-C(2A)-C(1B)-C(11B)   | 105.4(6)  |
| C(3A)-C(2A)-C(1B)-C(2B)    | -110.7(6) |
| C(1A)-C(2A)-C(1B)-C(2B)    | -2.4(4)   |
| C(11B)-C(1B)-C(2B)-C(3B)   | 2.2(6)    |
| C(2A)-C(1B)-C(2B)-C(3B)    | 124.3(4)  |
| C(11B)-C(1B)-C(2B)-C(1A)   | -119.7(4) |
| C(2A)-C(1B)-C(2B)-C(1A)    | 2.4(4)    |
| C(2A)-C(1A)-C(2B)-C(3B)    | -110.9(6) |
| C(11A)-C(1A)-C(2B)-C(3B)   | -5.0(8)   |
| C(2A)-C(1A)-C(2B)-C(1B)    | -2.4(4)   |
| C(11A)-C(1A)-C(2B)-C(1B)   | 103.6(6)  |
| C(1B)-C(2B)-C(3B)-C(12B)   | -1.7(6)   |
| C(1A)-C(2B)-C(3B)-C(12B)   | 98.3(6)   |
| C(1B)-C(2B)-C(3B)-C(4B)    | 177.1(6)  |
| C(1A)-C(2B)-C(3B)-C(4B)    | -83.0(8)  |
| C(12B)-C(3B)-C(4B)-C(5B)   | 0.9(8)    |
| C(2B)-C(3B)-C(4B)-C(5B)    | -177.7(6) |
| C(12B)-C(3B)-C(4B)-Ag(1)   | -81.3(5)  |
| C(2B)-C(3B)-C(4B)-Ag(1)    | 100.1(6)  |
| C(3B)-C(4B)-C(5B)-C(6B)    | -0.2(9)   |
| Ag(1)-C(4B)-C(5B)-C(6B)    | 88.2(6)   |
| C(3B)-C(4B)-C(5B)-Ag(1)    | -88.4(5)  |
| C(4B)-C(5B)-C(6B)-C(7B)    | -0.1(9)   |
| Ag(1)-C(5B)-C(6B)-C(7B)    | 68.2(6)   |
| C(5B)-C(6B)-C(7B)-C(12B)   | -0.3(8)   |
| C(5B)-C(6B)-C(7B)-C(8B)    | 178.8(6)  |
| C(6B)-C(7B)-C(8B)-C(9B)    | -178.6(6) |
| C(12B)-C(7B)-C(8B)-C(9B)   | 0.5(8)    |
| C(7B)-C(8B)-C(9B)-C(10B)   | -0.2(10)  |
| C(8B)-C(9B)-C(10B)-C(11B)  | 0.7(10)   |
|                            |           |

| C(8B)-C(9B)-C(10B)-Ag(2)    | -92.6(6)  |
|-----------------------------|-----------|
| C(9B)-C(10B)-C(11B)-C(12B)  | -1.5(8)   |
| Ag(2)-C(10B)-C(11B)-C(12B)  | 83.5(5)   |
| C(9B)-C(10B)-C(11B)-C(1B)   | 175.8(6)  |
| Ag(2)-C(10B)-C(11B)-C(1B)   | -99.3(6)  |
| C(2B)-C(1B)-C(11B)-C(10B)   | -179.5(6) |
| C(2A)-C(1B)-C(11B)-C(10B)   | 81.3(8)   |
| C(2B)-C(1B)-C(11B)-C(12B)   | -2.0(6)   |
| C(2A)-C(1B)-C(11B)-C(12B)   | -101.3(6) |
| C(4B)-C(3B)-C(12B)-C(7B)    | -1.4(8)   |
| C(2B)-C(3B)-C(12B)-C(7B)    | 177.5(5)  |
| C(4B)-C(3B)-C(12B)-C(11B)   | -178.5(5) |
| C(2B)-C(3B)-C(12B)-C(11B)   | 0.4(6)    |
| C(6B)-C(7B)-C(12B)-C(3B)    | 1.1(8)    |
| C(8B)-C(7B)-C(12B)-C(3B)    | -178.1(5) |
| C(6B)-C(7B)-C(12B)-C(11B)   | 177.9(5)  |
| C(8B)-C(7B)-C(12B)-C(11B)   | -1.3(8)   |
| C(10B)-C(11B)-C(12B)-C(3B)  | 178.9(5)  |
| C(1B)-C(11B)-C(12B)-C(3B)   | 1.1(6)    |
| C(10B)-C(11B)-C(12B)-C(7B)  | 1.8(8)    |
| C(1B)-C(11B)-C(12B)-C(7B)   | -176.1(5) |
| C(9A)-C(10A)-Ag(1)-O(12)    | 23.4(5)   |
| C(11A)-C(10A)-Ag(1)-O(12)   | -96.0(4)  |
| C(9A)-C(10A)-Ag(1)-C(4B)    | 177.1(4)  |
| C(11A)-C(10A)-Ag(1)-C(4B)   | 57.7(5)   |
| C(9A)-C(10A)-Ag(1)-O(12)#1  | -62.5(5)  |
| C(11A)-C(10A)-Ag(1)-O(12)#1 | 178.1(4)  |
| C(9A)-C(10A)-Ag(1)-C(5B)    | 175.1(4)  |
| C(11A)-C(10A)-Ag(1)-C(5B)   | 55.7(6)   |
| C(3B)-C(4B)-Ag(1)-O(12)     | 95.2(4)   |
| C(5B)-C(4B)-Ag(1)-O(12)     | -23.2(4)  |
| C(3B)-C(4B)-Ag(1)-C(10A)    | -58.9(4)  |
| C(5B)-C(4B)-Ag(1)-C(10A)    | -177.3(4) |
| C(3B)-C(4B)-Ag(1)-O(12)#1   | -159.8(3) |
| C(5B)-C(4B)-Ag(1)-O(12)#1   | 81.8(4)   |
| C(3B)-C(4B)-Ag(1)-C(5B)     | 118.4(6)  |
| C(6B)-C(5B)-Ag(1)-O(12)     | 40.4(4)   |
| C(4B)-C(5B)-Ag(1)-O(12)     | 161.1(4)  |
|                             |           |

| C(6B)-C(5B)-Ag(1)-C(10A)    | -117.0(4)  |
|-----------------------------|------------|
| C(4B)-C(5B)-Ag(1)-C(10A)    | 3.7(5)     |
| C(6B)-C(5B)-Ag(1)-C(4B)     | -120.7(6)  |
| C(6B)-C(5B)-Ag(1)-O(12)#1   | 126.6(4)   |
| C(4B)-C(5B)-Ag(1)-O(12)#1   | -112.7(4)  |
| O(13)-S(1)-O(12)-Ag(1)      | 31.6(5)    |
| O(11)-S(1)-O(12)-Ag(1)      | -104.0(5)  |
| C(1)-S(1)-O(12)-Ag(1)       | 143.1(4)   |
| O(13)-S(1)-O(12)-Ag(1)#1    | 154.3(4)   |
| O(11)-S(1)-O(12)-Ag(1)#1    | 18.7(6)    |
| C(1)-S(1)-O(12)-Ag(1)#1     | -94.2(5)   |
| C(10A)-Ag(1)-O(12)-S(1)     | 47.4(5)    |
| C(4B)-Ag(1)-O(12)-S(1)      | -100.8(4)  |
| O(12)#1-Ag(1)-O(12)-S(1)    | 137.5(5)   |
| C(5B)-Ag(1)-O(12)-S(1)      | -113.0(4)  |
| C(10A)-Ag(1)-O(12)-Ag(1)#1  | -90.1(3)   |
| C(4B)-Ag(1)-O(12)-Ag(1)#1   | 121.7(2)   |
| O(12)#1-Ag(1)-O(12)-Ag(1)#1 | 0.002(1)   |
| C(5B)-Ag(1)-O(12)-Ag(1)#1   | 109.6(2)   |
| O(11)-S(1)-O(13)-Ag(2)      | -51.0(15)  |
| O(12)-S(1)-O(13)-Ag(2)      | 175.4(14)  |
| C(1)-S(1)-O(13)-Ag(2)       | 64.2(15)   |
| O(13)-S(1)-C(1)-F(11)       | -62.3(9)   |
| O(11)-S(1)-C(1)-F(11)       | 62.0(9)    |
| O(12)-S(1)-C(1)-F(11)       | -178.5(8)  |
| O(13)-S(1)-C(1)-F(12)       | 56.9(8)    |
| O(11)-S(1)-C(1)-F(12)       | -178.7(8)  |
| O(12)-S(1)-C(1)-F(12)       | -59.2(8)   |
| O(13)-S(1)-C(1)-F(13)       | 176.5(8)   |
| O(11)-S(1)-C(1)-F(13)       | -59.1(9)   |
| O(12)-S(1)-C(1)-F(13)       | 60.4(8)    |
| S(1)-O(13)-Ag(2)-O(22)      | -18.3(15)  |
| S(1)-O(13)-Ag(2)-C(10B)     | -147.2(14) |
| S(1)-O(13)-Ag(2)-C(4A)      | 108.5(14)  |
| S(1)-O(13)-Ag(2)-C(5A)      | 79.9(15)   |
| C(11B)-C(10B)-Ag(2)-O(22)   | -168.8(4)  |
| C(9B)-C(10B)-Ag(2)-O(22)    | -50.2(5)   |
| C(11B)-C(10B)-Ag(2)-O(13)   | -55.7(4)   |
|                             |            |

| C(9B)-C(10B)-Ag(2)-O(13)  | 62.8(4)   |
|---------------------------|-----------|
| C(11B)-C(10B)-Ag(2)-C(4A) | 62.3(4)   |
| C(9B)-C(10B)-Ag(2)-C(4A)  | -179.1(4) |
| C(11B)-C(10B)-Ag(2)-C(5A) | 63.5(5)   |
| C(9B)-C(10B)-Ag(2)-C(5A)  | -178.0(4) |
| C(3A)-C(4A)-Ag(2)-O(22)   | 165.4(4)  |
| C(5A)-C(4A)-Ag(2)-O(22)   | 47.0(5)   |
| C(3A)-C(4A)-Ag(2)-O(13)   | 51.7(5)   |
| C(5A)-C(4A)-Ag(2)-O(13)   | -66.7(5)  |
| C(3A)-C(4A)-Ag(2)-C(10B)  | -63.4(5)  |
| C(5A)-C(4A)-Ag(2)-C(10B)  | 178.1(5)  |
| C(3A)-C(4A)-Ag(2)-C(5A)   | 118.4(7)  |
| C(6A)-C(5A)-Ag(2)-O(22)   | 97.5(5)   |
| C(4A)-C(5A)-Ag(2)-O(22)   | -140.2(5) |
| C(6A)-C(5A)-Ag(2)-O(13)   | -0.3(6)   |
| C(4A)-C(5A)-Ag(2)-O(13)   | 122.0(5)  |
| C(6A)-C(5A)-Ag(2)-C(10B)  | -124.6(5) |
| C(4A)-C(5A)-Ag(2)-C(10B)  | -2.3(6)   |
| C(6A)-C(5A)-Ag(2)-C(4A)   | -122.3(7) |
| O(23)-S(2)-O(22)-Ag(2)    | 3.7(5)    |
| O(21)-S(2)-O(22)-Ag(2)    | -133.3(3) |
| C(2)-S(2)-O(22)-Ag(2)     | 114.5(4)  |
| O(13)-Ag(2)-O(22)-S(2)    | -151.9(4) |
| C(10B)-Ag(2)-O(22)-S(2)   | -31.6(5)  |
| C(4A)-Ag(2)-O(22)-S(2)    | 85.1(4)   |
| C(5A)-Ag(2)-O(22)-S(2)    | 107.3(4)  |
| O(23)-S(2)-C(2)-F(23)     | -59.2(8)  |
| O(22)-S(2)-C(2)-F(23)     | -177.5(7) |
| O(21)-S(2)-C(2)-F(23)     | 62.1(8)   |
| O(23)-S(2)-C(2)-F(21)     | -176.3(6) |
| O(22)-S(2)-C(2)-F(21)     | 65.4(7)   |
| O(21)-S(2)-C(2)-F(21)     | -54.9(7)  |
| O(23)-S(2)-C(2)-F(22)     | 63.0(7)   |
| O(22)-S(2)-C(2)-F(22)     | -55.3(7)  |
| O(21)-S(2)-C(2)-F(22)     | -175.7(6) |
|                           |           |

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1