Supplementary Materials to the manuscript

The Reaction of the Si₈O₂₀(SnMe₃)₈ Building Block with Silyl Chlorides: A New Synthetic Methodology for Preparing Nanostructured Building Block Solids

Jason C. Clark, Craig E. Barnes*

Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600

Submitted to Chemistry of Materials

Table of Contents:

Figure S1

 ^{29}Si Solid state NMR (SSNMR) spectra (MAS) of the product from the reaction of HSiCl₃ with Si₈O₂₀(SnMe₃)₈ in hexane with varying initial stoichiometries of HSiCl₃ : Si₈O₂₀(SnMe₃)₈

Figure S2

²⁹Si Solid state NMR (SSNMR) spectra (MAS) of the product from the reaction of Me_2SiCl_2 with $Si_8O_{20}(SnMe_3)_8$ in toluene with varying initial stoichiometries of Me_2SiCl_2 : $Si_8O_{20}(SnMe_3)_8$

Figure S3

²⁹Si Solid state NMR (SSNMR) spectra (MAS) of the product from the reaction of Me_2SiCl_2 with $Si_8O_{20}(SnMe_3)_8$ in hexane with varying initial stoichiometries of Me_2SiCl_2 : $Si_8O_{20}(SnMe_3)_8$

Figure S4

BJH pore volume distribution for the reaction of HSiCl₃ and Si₈O₂₀(SnMe₃)₈ in toluene This pore size distribution is typical of all the high surface area solids investigated in these studies.

Figure S5

²⁹Si SSNMR (MAS and CPMAS) of a nanostructure solid containing only "embedded" Me₂Si(OSi=)₂ groups linking Si₈O₂₀ building blocks. SiCl₄-derived linking groups are also present in the matrix.

Figure S6

²⁹Si SSNMR (MAS and CPMAS) of a nanostructure solid containing only "surface" Me₂SiCl(OSi≡) groups linking Si₈O₂₀ building blocks. SiCl₄-derived linking groups are also present in the matrix.

Table S1

BET Surface area analysis of the solids resulting from the reaction of Me_2SiCl_2 with $Si_8O_{20}(SnMe_3)_8$ under the conditions given. Absorption gas: nitrogen. Pore size distributions calculated using standard BJH equations.

Table S2

BET Surface area analysis of the solids resulting from the reaction of $HSiCl_3$ with $Si_8O_{20}(SnMe_3)_8$ under the conditions given. Absorption gas: nitrogen. Pore size distributions calculated using standard BJH equations.

Supp Mat Figure S1 ²⁹Si MAS NMR Si(OS⊫)₄ 50°C; 2 days; hexanes (=SiO)SiHCl2-(≡SiO)₃SiOSnMe₃-(≡SiO)₃SiCl---(≡SiO)<mark>,Si</mark>HCl (≡SiO)₃SiH 4 CI : 1 Sn grease а 3 CI : 1 Sn b 2 CI : 1 Sn С 1 CI : 1 Sn d -30 -70 -110 -130 -150 -10 -50 -90 ppm

Figure S1

Figure S2

Figure S4

BJH pore volume distribution for the reaction of $HSiCI_3$ Supp Mat Figure S4 and $Si_8O_{20}(SnMe_3)_8$ in toluene Total surface area: 672 m²/g

Figure S6

Table S1

Supp Mat Table S1

Table S1 BET Surface area analysis of the solids resulting from the
reaction of $Me_2SiCl_2 + Si_8O_{20}(SnMe_3)_8$ under the conditions given.
Absorption gas: nitrogen. Pore size distributions calculated using
standard BJH equations.

Conditions	CI:Sn	Surface Area (m²/g)	Total Pore Volume (cc/g)	Average Pore Radius (Å)
Toluene, 80-90°C, 2 days	4:1	low	low	low
Toluene, 80-90°C, 2 days	3:1	low	low	low
Toluene, 80-90°C, 2 days	2:1	172	0.150	17
Toluene, 80-90°C, 2 days	1:1	669	0.496	15
Hexanes, 50ºC, overnight	4:1	13	0.015	24
Hexanes, 50°C, overnight	3:1	29	0.171	13
Hexanes, 50ºC, overnight	2:1	12	0.010	19
Hexanes, 50°C, overnight	1:1	14	0.021	30

Table S2

Supp Mat Table S2

Table S2 BET Surface Area Analysis of the solids resulting from the reaction of $HSiCl_3 + Si_8O_{20}(SnMe_3)_8$ under the conditions given. Absorption gas: nitrogen. Pore size distributions calculated using standard BJH equations.

Conditions	CI:Sn	Surface Area (m²/g)	Total Pore Volume (cc/g)	Average Pore Radius (Å)
Toluene, 80-90°C, 2 days	4:1	low	low	low
Toluene, 80-90°C, 2 days	3:1	558	0.400	14
Toluene, 80-90ºC, 2 days	2:1	660	0.513	16
Toluene, 80-90°C, 2 days	1:1	672	0.539	16
Hexanes, 50°C, overnight	4:1	336	0.243	14
Hexanes, 50ºC, overnight	3:1	324	0.254	16
Hexanes, 50ºC, overnight	2:1	401	0.295	15
Hexanes, 50ºC, overnight	1:1	58	0.046	16