Supplementary Materials to the manuscript

The Reaction of the $\mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$ Building Block with Silyl Chlorides: A New Synthetic Methodology for Preparing Nanostructured Building Block Solids

Jason C. Clark, Craig E. Barnes*
Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600

Submitted to Chemistry of Materials
Table of Contents:
Figure S1
${ }^{29} \mathrm{Si}$ Solid state NMR (SSNMR) spectra (MAS) of the product from the reaction of HSiCl_{3} with $\mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$ in hexane with varying initial stoichiometries of $\mathrm{HSiCl}_{3}: \mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$

Figure S2
${ }^{29} \mathrm{Si}$ Solid state NMR (SSNMR) spectra (MAS) of the product from the reaction of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ with $\mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$ in toluene with varying initial stoichiometries of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}: \mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$

Figure S3
${ }^{29} \mathrm{Si}$ Solid state NMR (SSNMR) spectra (MAS) of the product from the reaction of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ with $\mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$ in hexane with varying initial stoichiometries of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}: \mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$

Figure S4
BJH pore volume distribution for the reaction of HSiCl_{3} and $\mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$ in toluene This pore size distribution is typical of all the high surface area solids investigated in these studies.

Figure S5
${ }^{29}$ Si SSNMR (MAS and CPMAS) of a nanostructure solid containing only "embedded" $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{OSi} \equiv)_{2}$ groups linking $\mathrm{Si}_{8} \mathrm{O}_{20}$ building blocks. SiCl_{4}-derived linking groups are also present in the matrix.

Figure S6
${ }^{29}$ Si SSNMR (MAS and CPMAS) of a nanostructure solid containing only "surface" $\mathrm{Me}_{2} \mathrm{SiCl}(\mathrm{OSi} \equiv)$ groups linking $\mathrm{Si}_{8} \mathrm{O}_{20}$ building blocks. SiCl_{4}-derived linking groups are also present in the matrix.

Table S1
BET Surface area analysis of the solids resulting from the reaction of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ with $\mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$ under the conditions given. Absorption gas: nitrogen. Pore size distributions calculated using standard BJH equations.

Table S2
BET Surface area analysis of the solids resulting from the reaction of HSiCl_{3} with $\mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$ under the conditions given. Absorption gas: nitrogen. Pore size distributions calculated using standard BJH equations.

Figure S1

Figure S2

Figure S3

Figure S4
BJH pore volume distribution for the reaction of HSiCl_{3} Supp Mat Figure S4 and $\mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$ in toluene
Total surface area: $672 \mathrm{~m}^{2} / \mathrm{g}$

Figure S5
${ }^{29}$ Si MAS-CPMAS NMR
Supp Mat Figure S5

Figure S6

Supp Mat Table S1

Table S1 BET Surface area analysis of the solids resulting from the reaction of $\mathrm{Me}_{2} \mathrm{SiCl}_{2}+\mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$ under the conditions given. Absorption gas: nitrogen. Pore size distributions calculated using standard BJH equations.

Conditions	$\mathrm{Cl}: \mathrm{Sn}$	Surface Area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$	Total Pore Volume $(\mathrm{cc} / \mathrm{g})$	Average Pore Radius (\AA)
Toluene, $80-90^{\circ} \mathrm{C}, 2$ days	$4: 1$	low	low	low
Toluene, $80-90^{\circ} \mathrm{C}, 2$ days	$3: 1$	low	low	low
Toluene, $80-90^{\circ} \mathrm{C}, 2$ days	$2: 1$	172	0.150	17
Toluene, $80-90^{\circ} \mathrm{C}, 2$ days	$1: 1$	669	0.496	15
Hexanes, $50^{\circ} \mathrm{C}$, overnight	$4: 1$	13	0.015	24
Hexanes, $50^{\circ} \mathrm{C}$, overnight	$3: 1$	29	0.171	13
Hexanes, $50^{\circ} \mathrm{C}$, overnight	$2: 1$	12	0.010	19
Hexanes, $50^{\circ} \mathrm{C}$, overnight	$1: 1$	14	0.021	30

Table S2

Supp Mat Table S2

Table S2 BET Surface Area Analysis of the solids resulting from the reaction of $\mathrm{HSiCl}_{3}+\mathrm{Si}_{8} \mathrm{O}_{20}\left(\mathrm{SnMe}_{3}\right)_{8}$ under the conditions given.
Absorption gas: nitrogen. Pore size distributions calculated using standard BJH equations.

Conditions	Cl:Sn	Surface Area $\left(\mathbf{m}^{2} / \mathbf{g}\right)$	Total Pore Volume $(\mathbf{c c} / \mathbf{g})$	Average Pore Radius (\mathbf{A})
Toluene, $80-90^{\circ} \mathrm{C}, 2$ days	$4: 1$	low	low	low
Toluene, $80-90^{\circ} \mathrm{C}$, 2 days	$3: 1$	558	0.400	14
Toluene, $80-90^{\circ} \mathrm{C}, 2$ days	$2: 1$	660	0.513	16
Toluene, $80-90^{\circ} \mathrm{C}, 2$ days	$1: 1$	672	0.539	16
Hexanes, $50^{\circ} \mathrm{C}$, overnight	$4: 1$	336	0.243	14
Hexanes, $50^{\circ} \mathrm{C}$, overnight	$3: 1$	324	0.254	16
Hexanes, $50^{\circ} \mathrm{C}$, overnight	$2: 1$	401	0.295	15
Hexanes, $50^{\circ} \mathrm{C}$, overnight	$1: 1$	58	0.046	16

