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Chemicals and Organisms 

Sample solutions contained deionized water, D2O (99.9%, Aldrich), or water 

obtained from a waste stabilization pond (WSP) described previously (1), NaCl (Fisher), and 

either phosphate (NaH2PO4, Fisher) or bicarbonate (NaHCO3, Fisher) as a buffer. The 

natural organic matters (NOM) tested were Fluka humic acid (FHA; Fluka), Aldrich Humic 

Acid (AHA; Aldrich), Suwannee river humic acid (SRHA; International Humic Substance 

Society) and Pony Lake Fulvic Acid (PLFA; International Humic Substance Society). 

MgCl2 (Fisher) was added to enhance MS2-NOM interactions. The probe compound for 

measuring [1O2]bulk concentrations was furfuryl alcohol (FFA; 99%, Aldrich). Iron analysis 

included ferroZine iron reagent (98%, Acros), hydroxylamine hydrochloric reagent (Acros), 

ammonium acetate (Fisher Chemicals) and sulfuric acid (Fisher Chemicals). 

Chemiluminecent measurements included tetrabutylammonium fluoride (TBAF 1.0 M in 

tetrahydrofuran; Aldrich), acetonitrile (ACS grade, Mallinckrodt), and 2-[1-(3-tert-

butyldimethylsiloxy)phenyl)-1-methoxy-methylene]tricyclo[3.3.1.1]decane (OMe probe, 

synthesized according to ref. 2. 

MS2 coliphage (ATCC 15597-B1) was cultured and enumerated as described in ref. 

3 using the materials listed previously (1). Selected MS2 samples were analyzed in triplicate 

and yielded reproducible results (95% confidence intervals of 0.08 log units). Several MS2 

inactivation and 1O2 formation experiments were conducted in duplicate with high 

reproducibility. 
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Total organic carbon analysis.   

 Total organic carbon (TOC) was determined using a Shimadzu TOC-5000 A 

analyzer.  

 

Measurement of 1O2 concentrations 

[1O2]bulk during the MS2 inactivation experiments (Oriel solar simulator) was 

determined by adding a hydrophilic probe compound with a known quenching rate constant, 

furfuryl alcohol (4), to a replicate 150-mL reactor and monitoring its decay. The detection 

limit for this method was 10-15 M.   

Measurements of [1O2] internal and the ratio [1O2] internal : [
1O2]bulk (Atlas solar simulator) 

were based on the trapping of 1O2 by a vinyl ether probe compound, (2-[1-[(3-tert-butyl-

dimethylsilyloxy)phenyl]-1-methoxymethylene]adamantane), (TPMA , Figure S1) to form a 

dioxetane (TPMA-O 2, Figure S1).  The amount of 1O2 trapped as dioxetane was quantified 

by inducing the dioxetane to undergo chemiluminescent decomposition.  The 

chemiluminescence intensity was related to the 1O2 concentration by a calibration curve. 

Chemiluminescence was recorded via a Turner Designs TD-20/20 

Chemiluminometer and analyzed via KaleidaGraphTM (v. 3.5, 2000, Synergy Software) as 

describe in ref. 5. Samples (5 mL) contained 5 mM phosphate buffer, 10 mM NaCl, 10 µM 

of the hydrophobic vinyl ether probe (TPMA , Figure S1) for the determination of 

[1O2] internal, as  well as 100 µM FFA to simultaneously determine [1O2]bulk. Aliquots of NOM 

were added to the sample solutions to obtain the NOM concentrations specified. Sampling 

was executed by taking 100 µL aliquots periodically during photolysis.  
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The hydrophobic vinyl ether probe partitions between the bulk aqueous environment 

and hydrophobic environment within NOM to form a complex (TPMA·NOM , Figure S1) 

characterized by its binding coefficient, KOM. Within the complex, TPMA  reacts with 

[1O2] internal to form TPMA-O 2.  The same intermediate dioxetane is formed when unbound 

TPMA  reacts with [1O2]bulk. Introduction of fluoride initiates chemiluminescence that is 

recorded and analyzed as the concentration of singlet oxygen apparent to the probe, [1O2]app, 

for each irradiation experiment with varied concentration of NOM (Figure S2).  These data 

were fit to Equation S1 (5): 

( ) bulkbulkernal
OM

OM
app OOO

NOMK

NOMK
O ][][][

][1

][
][ 2

1
2

1
int2

1
2

1 +−
+

=  (eq. S1) 

Extrapolation of the resulting model fits provided an estimate of [1O2] internal for each NOM 

(Figure S2). Additionally, KOM was determined from the model fits for comparison of 

hydrophobicity. 
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Figure S1: Reaction of hydrophobic vinyl ether probe (TMPA ) with singlet oxygen (1O2) to 

form TMPA-O 2.   The amount of TMPA-O 2 formed is quantified by subsequent fluoride 

(F-) induced chemiluminescent degradation.  Equation 1 expresses the equilibrium reached 

between unbound probe and natural organic matter (NOM) to form the NOM-bound probe 

(TPMA·NOM). This equilibrium is governed by its binding coefficient, KOM. Dioxetane is 

formed by reaction of free and bound probe molecules with [1O2]bulk and [1O2] internal, 

respectively. (Equations 2-3) 
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Figure S2: Binding plots for the adsorption of the hydrophobic vinyl ether probe onto NOM. 

The apparent singlet oxygen concentration, [1O2]app, reported by the vinyl ether probe was 

modeled as a weighted sum of the 1O2 concentrations experienced by NOM-bound and 

-unbound probe molecules (eq. S1; solid line indicates model fits).  [1O2] internal  was 

determined by extrapolation to the completely bound limit. Error bars indicate 95 % 

confidence intervals. 
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 Correction for light screening 

The light screening correction factor was derived from the comparison of light 

intensity at the surface of the solution and the mean light intensity over a given solution 

thickness.  At the optically thin surface layer, the rate of light absorption is given by the 

sum of the light absorbed over the light spectrum (eq. S2). 

∑=
λ

λλα 0,, 303.2 Ik thinabs                    (eq. S2) 

Where αλ is the light attenuation at a given wavelength and Iλ,0 is the light irradiance at a 

given wavelength at the surface.  Outside the optically thin regime, one must use the 

mean light intensity, <Iλ>z, due to the significant absorption within solutions (eq. S3).  

∑=
λ

λλα 0,, 303.2 Ik thickabs                    (eq. S3) 

Where the average light irradiance at depth z is the irradiance at the surface multiplied by 

the light screening factor (eq. S4).  
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The correction factor (CF) is then defined as the ratio of light absorbed at optically thin 

conditions over the light absorbed at optically thick conditions (eq. S5). 
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The correction factor was applied to data acquired for TPMA and MS2. 

Note that this approach does not account for light scattering. 
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Illustration of NOM-mediated MS2 inactivation  

 

 
 
Figure S3: Illustration of NOM-mediated MS2 inactivation in the bulk phase, and by 

adsorbed NOM. The distance (dotted arrow) between 1O2 and MS2 is greater in the bulk 

solution than for the MS2-NOM complex, which results in less quenching of 1O2 by the 

solvent.  
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Surface heterogeneity of MS2 
 

 
 
Figure S4: Distribution of acidic, basic, hydrophobic and easily oxidizable groups on the 

surface of MS2. A: carboxylic acid residues (aspartic acid and glutamic acid); B: basic 

residues (arginine and lysine; MS2 contains no histidine); C: hydrophobic (aliphatic) 

residues (glycine, alanine, valine, leucine and isoleucine); D: residues sensitive to 

oxidation by 1O2 (according to ref. 6; tyrosine, tryptophane, cysteine and methionine; 

note that the concentration of 1O2-sensitive residues is higher on the inside surface of 

MS2). Images were created in pymol, based on pdb file no. 2ms2.

A B 

C D 
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Rate constant enhancement in D2O and upon addition of Mg2+ 

 
Table S1: Enhancement of kobs (at 5 mg/L NOM) in D2O, and upon addition of 2mM 

Mg2+. kobs in H2O and D2O are corrected for a baseline inactivation (without NOM) of 

0.046 h-1. kobs in Mg2+ are corrected for a baseline inactivation (without NOM, but with 

Mg2+) of 0.084 h-1. 

 
 kobs(D2O) / kobs(H2O) 

(experimental) 

kobs(D2O) / kobs(H2O) 

(calculated)a 

 kobs(Mg2+)/ kobs
 

FHA 3.0 1.4 2.8 

SRHA 5.0 1.4 1.2 

AHA 8.1 6.4 3.8 

PLFA 10.3 6.5 4.1 

 
a Values were calculated based on eq. 5 and the fitting parameters in Table 1, and assuming that [1O2]bulk 
increases 13-fold in D2O. 
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Contributions of NOM-associated and bulk phase inactivation to kobs 
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Figure S5: Contributions of NOM-associated (open symbols) and bulk-phase (solid symbols) 

inactivation to the overall inactivation rate constant kobs. The fractions were calculated as 

obs

NOMNOM

k

fk *
 and 

obs

bulkbulk

k

fk *
, respectively, where kobs is the experimental inactivation rate 

constant at each NOM concentration. Note that the NOM-associated inactivation is always 

more dominant than inactivation in the bulk solution. 
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kobs in (diluted) WSP water 

 

Figure S6: kobs as a function of TOC in (diluted) pond water. The solid line indicates the 

model fit to equation 5. Error bars indicate 95 % confidence intervals. 
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