SUPPORTING INFORMATION

Influence of Stereochemistry, Affinity and Redox Potentials on Single- and Double-Strand DNA Cleavage by Copper and Nickel ATCUN Metallopeptides

Yan Jin[†], Mark A. Lewis[‡], Nikhil H. Gokhale[†], Eric C. Long^{*‡}, and J. A. Cowan^{*†}

Contribution from Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210 and Department of Chemistry & Chemical Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202

Table S1. Effect of Lys donor group and its stereochemistry on electrode potential $(M^{3+/2+})$ for Cu(II)• and Ni(II)•peptide complexes.

Peptide-	E° (M ^{3+/2+}) (vs NHE)*					
Complex	-COOH		-CONH ₂		-CONH ₂	
	C-terminus		C-terminus		C-terminus,	
					Lysine in D configuration	
	E ^{oa}	$\Delta E (mV)^{b}$	E ^{o a}	$\Delta E (mV)^{b}$	E ^{o a}	$\Delta E (mV)^{b}$
Cu-GGH	1.0341	61	1.0684	100	-	-
Cu-GKH	-	-	1.0577	127	1.03255	84
Cu-KGH	-	-	1.0515	102	1.03311	66
Cu-KKH	-	-	1.0178	97	0.99368	53
Cu-KGHK	1.0488	54	1.0497	84	-	-
	$E^{o}(M^{3+/2+})$ (vs NHE)*					
Ni-GGH	1.007	171	1.087	-	-	-
Ni-GKH		-	1.097	-	1.157	-
Ni-KGH		-	1.097	186	1.067	151
Ni-KKH		-	1.077	-	1.047	-
Ni-KGHK	1.047	96	1.067	111	-	-

*At pH 7.4, ^a square wave voltammetry ($E_s = 10 \text{ mV}$, $E_{sw} = 25 \text{ mV}$, f = 100 Hz, I/E = -4) ^b Cyclic voltammetry (Scan rate = 100 mV/s, I/E = -4). 1 mM Cu/Ni-Peptide (Cu/Ni:Peptide, 1:1.1), in phosphate buffer, [HPO₄]_t = 25 mM, pH = 7.4, $\mu = 0.1$ M KCl. D-configuration forms of Lys-Gly-His-Lys were not studied.

Figure S1. Cyclic voltammograms for some representative Cu(II)•peptide complexes. Conditions include: 1 mM Cu(II)•peptide (Cu:peptide, 1:1.1), in phosphate buffer, $[HPO_4]_t = 25 \text{ mM}$, pH 7.4, $\mu = 0.1 \text{ M}$ KCl. Scan rate = 100 mV/s, I/E = -4. Buffer background was subtracted from each data.

Figure 2S. Salt-dependent influence on the dsDNA cleavage reactivity of Cu^{2+} -ATCUN complexes. Cleavage activities of $-\bullet - Cu^{2+}$ -GGH, $-\bullet - Cu^{2+}$ -GKH, $-\bullet - Cu^{2+}$ -KGH, $-\bullet - Cu^{2+}$ -GdKH, $-\bullet - Cu^{2+}$ -KGHK, $-\bullet - Cu^{2+}$ -KGHK were studied, where [DNA] = 50 μ M, [Cu²⁺-ATCUN] = 40 μ M, [ascorbate] = 500 μ M in 20 mM Tris buffer, pH = 7.4, 37°C for 15 min, at 0 mM, 4 mM, 40 mM, 150 mM and 400 mM final NaCl concentrations.

Figure 3S. Salt-dependent influence on the dsDNA cleavage reactivity of Ni²⁺-ATCUN complexes. Cleavage activities of - - Ni^{2+} -GGH, - - Ni^{2+} -GKH, - Ni^{2+} -KGH, - Vi^{2+} -GdKH, - Ni^{2+} -GdKH,