Supporting information

I. CO adsorption on (111) metals

Table 1. Physical characteristics of CO adsorption on Ni(111)^a

site	$E_{ m ads}$	x_{0A} (M-CO)	<i>h</i> (C-O)	$\omega_A(M-CO)$	ω(C-O)	References
	-31±0.7					Calorimetry ¹ ; $\theta \rightarrow 0$
3f-hollow brg		1.05±0.17 1.27	1.19±0.06			SEXAFS ² ; θ =0.5
	-30±2.5					TPD ³ ; $\theta \rightarrow 0$
top brg fcc hcp	-35.7 -41.5 -43.8 -44.5	1.837 1.439 1.337 1.321	1.161 1.183 1.191 1.192		2037 1864 1805 1800	periodic DFT; GGA; θ =1/4 ⁴
hollow top	-43.8 to -45	1.329	1.192	353 430	1804 2041	DFT/GGA/PW91 ⁵ ; θ =1/4
fcc/hcp		(1.25/1.3)±0.04				photo-electron diffract.; $\theta = 1/4^{6}$
top brg		1.80±0.04 1.27±0.05	1.13 1.13			photo-electron diffract ⁷
fcc hcp		(1.27 to 1.32) ±.1 1.29±0.07				photo-electron diffract ; θ =0.25 ⁸
fcc hcp		1.29 ±0.07 1.34±0.07	1.18±0.07 1.15±0.07			LEED; θ =1/2 ML ⁹
	-30.0 -26.5 -23.5					LEED ¹⁰ ; $\theta \rightarrow 0$ $\theta = 0.1$ to 0.3 $\theta = 0.3$ to 0.45
top brg				400	2050 1810	EELS; low coverage ¹¹
3f-hollow					1793 to 1822	FT-RAIRS; low θ^{12}
top	-26					LEED;TDS ¹³ ; θ =1/3
3f-hollow 2f -hollow top					1817 1910 2045	LEED; TDS ¹⁴ θ =0.05 θ =0.5 θ =0.57

Continue	of	Table	1

site	$E_{ m ads}$	x_{0A} (M-CO)	<i>h</i> (C-O)	$\omega_A(M-CO)$	ω(C-O)	References
	-29.9					HREELS, $\theta \rightarrow 0^{15}$
brg				380	1815	EELS; θ =0.5 ¹⁶
3f- hollow				400 to 410		EELS; low coverage ¹⁷
	-27					UBI-QEP ¹⁸
top brg hollow	-31.6 to -34.1 - 34.1 to -38.5 -35.7 to -40					Periodic DFT; GGA; $\theta = 1/3^{-19}$

^a Distances x_{0A} and *h* in Angstrøm, frequencies in cm⁻¹, CO adsorption energy (E_{ads}) in kcal/mol, θ is the surface covering;

site	$E_{ m ads}$	x_{0A} (M-CO)	<i>h</i> (C-O)	ω _A (M-CO)	ω(C-O)	References
	-32					theoret. BOC MP ¹⁸
	-45 to -24					TPS;AES, LEED ¹³ θ = 0.027 to 0.5
top brg	-34.7±4			480 380	2100 1850	LEED, EELS, TDS; low θ^{20}
top brg		1.85 1.55	1.15 1.15			LEED, $\theta \rightarrow 0^{21}$
top brg fcc hcp	-33.7/-37.8 -31.8/-38.6 -32.3/-40.1 -31/-39.6	1.87/1.86 1.49/1.46 1.37/1.33 1.38/1.35	1.16/1.15 1.18/1.17 1.19/1.18 1.19/1.18			DFT; B3LYP/PW91; $\theta = 1/3^{22}$
top brg hollow	-30.9 to -38.5	2.00	1.157	487 372 352	2081 1880 1793	DFT/GGA;PW91; θ =1/4 ⁵
top brg				464 376		RAIRS; θ =0.5 ²³
top brg					2093 1871	RAIRS; θ =0.1 ²⁴
	-33.0±2 -27.0±2					Ref 25; $\theta \rightarrow 0$ and $\theta = 1/3$ $\theta = 0.5$
terrace step	-24 to -27 -33					TDS ²⁶
	-29.6					AES; flash desorption mass Spectroscopy; $\theta \sim 0^{27}$
	-33.3					TDS; extrapol. to $\theta \sim 0^{-28}$
top	-37.8	1.85	1.15			periodic DFT;LDA/GGA θ =1/2 ²⁹
	-29.9					Molec. scatt.; AES; LEED 30
	-32±2					LITD ³¹ ; low θ
top	-27±3.6				2083	SFG ³² ; $\theta = 1/2$

Table 2 Physical characteristics of CO adsorption on Pt(111) ^a

site	$E_{ m ads}$	<i>x</i> _{0A} (M-CO)	<i>h</i> (C-O)	ω _A (M-CO)	ω(C-O)	References
				480		Refs 33-35
top brg				480	2090 1860	EELS; low θ high θ^{36}
	-30 to -32					HEERL; low coverage ³⁷
top hollow	-26.5 -27.7	1.90 1.52	1.154 1.191		1987 1714	DFT; cluster model ³⁸ ; (7/6) (6/7)
	-43±2 -28±4.5					calorimetry ³⁹ ; $\theta \rightarrow 0$ $\theta = 0.5$
top hollow	-19.1 to -32.7 -23.5 to -27.4					Periodic DFT ¹⁹ ; θ =1/3
	-32					UBI-QEP ¹⁸
top	-38.7	1.84	1.16			Periodic DFT; RPBE+AER; $\theta=1/4^{87}$
top	-35.7	1.85	1.14			Periodic DFT; LDA; GGA; $\theta=1/4^{53}$
top	-36.7					Periodic DFT; GGA; θ =1/4 ⁴²

Continue of table 2

site	$E_{ m ads}$	x_{0A} (M-CO)	<i>h</i> (C-O)	ω _A (M-CO)	ω(C-O)	References
	-35.5 -28.5					TDS, LEED ⁴⁵ ; $\theta \rightarrow 0$ $\theta = 1/3$
top brg 3f hollow	-30				2110 1962 1895	TPD; IRAS ⁴⁶ ; $\theta \rightarrow 0$
fcc hollow		1.29±.05	1.15±.05			LEED ⁴⁷ ; $\theta = 1/3$
top brg fcc				322	2097 1951 1893	RAIRS; HEERLS ⁴⁸ ; θ =0.72
fcc hollow hcp fcc		1.27±.05 1.37±.06 1.31±.06	1.14±0.12 1.14±0.14			HRLEES ⁴¹ ; $\theta = 1/3$ $\theta = 0.5$ $\theta = 0.5$
hollow brg top					1823 1936 2092	RAIRS ⁵⁰ ; $\theta \rightarrow 0$ $\theta = 0.5$ $\theta > 0.5$
	-33.5					Ref 51; low coverage
top brg fcc					2103 1950 1890	SFG ⁵² ; θ>0.6 θ~0.6 θ~0.75
hollow						periodic DFT ⁵ ; GGA; θ =1/3
	-48.2 to -49.3 -38.7	1.31	1.188	319	1810	PW91; RPBE
fcc hollow	-31.1		1.19			Periodic DFT; RPBE+AER; $\theta=1/4^{87}$
	-34					UBI-QEP ¹⁸
top hollow	-21 -26.5	1.96 1.61	1.16 1.176		2012 1795	DFT; cluster model ³⁸ ; (7/6) (6/7)
top hollow	-23.5 to -28.1 -32.7 to -34.8					periodic DFT ¹⁹ ; θ =1/3

site	$E_{ m ads}$	<i>x</i> _{0A}	<i>h</i> (C-O)	$\omega_A(M-CO)$	ω(C-O)	References
top	-42.8/ -36.0			466/463	2015/ 2027	periodic DFT;
brg	-41.7/ -32.4			346	1833	$GGA/(GGA+U) \theta = 1/4^{54}$
hcp	-44.6/ -33.9			344/346	1758/ 1785	
fcc	-42.1/ -31.8			339	1777	
top	-42.9/ -35.7	1.99	1.162	468	2029	DFT;GGA: PW91/RPBE $\theta \rightarrow 1/4^{5}$
top	-34.6 -30					photoemission ⁵⁵ ; $\theta = 0.18$ $\theta = 1/3$
top	-38.5±1.4 -39.4±0.6					TREELS ⁵⁶ , $\theta = 1/3$: modulated beam single beam
top	-32.3					He ⁵⁷ ; $\theta = 1/3$
ton	-47/-38 7	1 83	1 17			periodic DFT 58
hra	-44/-36.6	1.50	1.17			GGA: PW91/RPBF
hcn	-45 9/-35 5	1.50				$\hat{H} = 1/3$
fcc	-43.6/-33.4	1.37				0-1/5
top		1.87±0.04	1.20±0.05			LEED; $\theta = 1/3^{59}$
top hollow					2049 1831	HREELS; low coverage ⁶⁰
	-31.6					LEED; $\theta \rightarrow 0^{61}$
4				490	1000	
top				480	1990	HREELS $\overset{\circ}{}; \theta> 0$
top				400	2070	$\theta = 1/2$
brg					1870	
	-31					LEED, $\theta = 1/3^{63}$
						DFT; cluster model 38 ;
top	-33.7	1.86	1.162		1950	(7/3)
hollow	-31.4	147	1.182		1687	(6/7/3)
	-32					UBI-QEP ¹⁸
						RAIRS TDS 83
ton					2025_>20751	$A = 0.08 \times 0.78$
bra					1875	$0 - 0.00 \rightarrow 0.70$
hollow					1075	$\theta = 0.04 \text{ to } 0.78$
nonow					1001	$\theta = 0.64$ to 0.78

Table 4. Physical characteristics of CO adsorption on Rh(111)^a

Continue of Table 4

Periodic DFT-GGA ⁸³ $\theta = 1/8$ $\theta \rightarrow 0$ -"- -"-	2003	507	1.163	1.845	-43.8 -46.1 -47.7 -49.6	top brg fcc hcp
Periodic DFT; RPBE+AER; $\theta=1/4^{87}$			1.17	1.86 2.04 2.13 2.11	-39.4 -36.0 -36.2 -37.6	top brg fcc hcp
HREELS,TDS,LEED ⁸⁵ low $\theta \sim 0$ $\theta > 1/3$	2015 1861	468 390			-37.1±1	top hollow
DFT, (9/4) cluster model ⁸⁶	2020 to 2060 1795 to 1862					top hollow

site	$E_{ m ads}$	x_{0A}	<i>h</i> (C-O)	ω _A (M-CO)	ω(C-O)	References
top	-41.7 -34.7 -31					IRAS ⁶⁴ ; $\theta = 0$ $\theta = 0.33$ $\theta = 0.5$
top					2090	TPD;IRAS; $\theta \rightarrow 0^{65}$
	-36					IRAS; $\theta \rightarrow 0^{66}$
	-35±1					TDS;LEED; θ =1/3 ⁶⁷
	-45.2/-37.8			505	2041	DFT;GGA: PW91/RPBE $\theta \rightarrow 1/4^{5}$
top	-48.9	1.85	1.17			Periodic DFT; RPBE+AER; θ =1/4 ⁸⁷
top hollow	-32.4 -24.4	1.88 1.63	1.160 1.189		1975 1702	DFT; cluster model ³⁸ ; (7/6) (6/7)
	-44.4±0.4					Ref 16
	-34					UBI-QEP ¹⁸
	-44±2 -37±1					$\begin{array}{c} \text{IRAS} \ {}^{59}\\ \theta {=} 0.05\\ \theta {=} 0.6 \end{array}$

Table 5 Physical characteristics of CO adsorption on Ir(111) ^a

site	$E_{ m ads}$	$x_{0\mathrm{A}}$	<i>h</i> (C-O)	ω _A (M-CO)	ω(C-O)	References
top	-12					RAIRS, LEED; θ =1/3 ⁶⁸
top	-15.2					Periodic DFT; GGA; $\theta=1/4^{42}$
top	-14.3	1.94 (fixed)	1.14 (fixed)		2162	Periodic DFT ⁶⁹ ; GGA
top brg fcc hollow fcc hollow	-16.8/-9.7 -17.1/-9.0 -19.4/-10.6 -19.1/-10.4	1.96/2.00 1.55/1.57 1.43/1.47 1.43/1.46	1.156/1.162 1.173/1.179 1.180/1.185 1.179/1.185	322/307 281/265 290/261 289/257	2046/2034 1901/1894 1854/1847 1859/1849	Periodic DFT ⁷⁰ ; θ=1/4 PW91/RPBE GGA
top	-11.3					TDS; low coverage ⁷¹
top		1.91				ARPEFS ⁷² ; $\theta = 1/3$
top					2075	RAIRS ⁷³ ; $\theta = 1/3$
top	-17.3/-9.7	1.96	1.156	323	2038	Periodic DFT ⁵ ; θ=1/3 PW91/RPBE GGA
	-10.6					AES, LEED, EELS ⁷⁴ ; $\theta = 1/3$
	-11					LEED,TDS, UPS ⁷⁵ ; θ <1/3
	-12					UBI-QEP ¹⁸
top				332	2077	EELS, RAIRS ⁷⁶ ; $\theta < 1/3$
top				345	2072	RAIRS 77

Table 6. Physical characteristics of CO adsorption on Cu(111)^a

site	$E_{ m ads}$	$x_{0\mathrm{A}}$	<i>h</i> (C-O)	ω _A (M-CO)	ω(C-O)	References
top	-38.3±1.5 -41.9					TPD ⁷⁸ ; $\theta \sim 0$ $\theta = 0.33$
top				445	1980	EELS; θ =0.2 ⁷⁹
top	-43.6/-39	2.03	1.166	439	1990	periodic DFT ⁵; PW91/RPBE GGA
top	-41.5	1.90	1.17			Periodic DFT; RPBE+AER; θ =1/4 ⁸⁷
top hollow	-27.2 -21.7				1901 1648	DFT; cluster model ³⁸ ; (7/6) (6/7)
top		1.93±.04	1.1±.05			LEED ⁸⁰ ; θ=0.33
top				447	1990	HREELS ⁸¹ ; θ =0.33
				436	1980	HREELS ⁸² ; θ =0.1
top h-hollow f-hollow brg	-41.2 -39.2 -37.1 -36.4	1.92 2.18 2.18 2.11				Periodic DFT-GGA ⁸⁴ θ =1/4

Table 7. Physical characteristics of CO adsorption on Ru(0001) $^{\rm a}$

References to Tables 1-7

- (1) Stuckless, J. T.; Al-Sarraf, N.; Wartnaby, C.; King, D. A. J. Chem. Phys. 1993, 99, 2202
- (2) L. Becker, S. Aminpiroz, B. Hillert, M. Pedio, J. Haase, D.L. Adams, *Phys. Rev. B.* 1993, 47, 9710
- (3) Miller, J. B.; Siddiqui, H. R.; Gates, S. M.; Russel, J. N.; Yates, J. T.; Tully, J. C.;
- Cardio, M. J. J. Chem. Phys. 1987, 87, 6725
- (4) Eichler, A. Surf. Sci. 2003, 526, 332
- (5) Gajdoš, M.; Eichler, A.; Hafner, J. J. Phys: Condens. Matter 2004, 16, 1141
- (6) Davis, R.; Woodruff, D.P.; Hoffman, Ph.; Schlaff, O.; Fernandez, V.; Schindler, K.-M.;
- Fritzsche, V.; Bradshaw, A. M.; J.Phys.: Condens. Matter. 1996, 8,1367
- (7) Kevan, S. D. et al., Phys. Rev. Lett. 1981, 46, 1629
- (8) Davlia M.E. et al., Surf. Sci. 1994, 311, 337
- (9) Mapledoran, L. D.; Bessent, M.P.; Wander, A.; King, D. A. Chem. Phys. Lett. 1994, 228, 527
- (10) Christman, K.; Schober, O.; Ertl, G. J. Chem. Phys. 1974, 60, 4719
- (11) Earlay, W.; Wagner, H.; Ibach, H. Surf. Sci. 1979, 80, 612
- (12) Chen J.G.; Erley, W.; Ibach, H. Surf. Sci. 1989, 223, L891
- (13) Conrad, H.; Ertl, G.; Kuppers, J.; Latta, E.E. Surf. Sci. 1976, 57, 475
- (14) Campuzano, J. C.; Greenler, R. G. Surf. Sci. 1979, 83, 301
- (15) Froitzheim, H.; Kohler, U. Surf. Sci. 1987, 188, 70
- (16) Bertolini, J. C.; Tardy, B. Surf. Sci. 1981, 102, 131
- (17) Earley, W.; Wagner, W.; Ibach, H. Surf. Sci. 1979, 80, 612
- (18) Hei, M.J.; Chen, H.B.; Yi, J.; Lin, Y. J.; Lin, Y.Z.; Wei, G.; Liao, D.W. Surf. Sci. 1998, 417,
 82
- (19) Philipsen, P. H.; van Lenthe, E; Snijders, J.G.; Baerends, E. J. Phys. Rev. B. 1997, 56, 13556
- (20) Steininger, H.; Lehwald, S.; Ibach, H. Surf. Sci. 1982, 123, 264

- (21) Ogletree, D.F.; Van Hove, M.A.; Samorjai, G. A. Surf. Sci. 1986, 173, 351
- (22) Doll, K. Surf. Sci. 2004, 573, 464
- (23) Surman, M.; Hagans, P.L.; Wilson, N. E.; Baily, C. J.; Russel, A E. Surf. Sci. 2002,

511,L303

- (24) Yoshinobu, J.; Kawai, M. Surf. Sci. 1996, 363, 105
- (25) Ertl, G.; Neumann, M.; Streit, K. M. Surf. Sci. 1977, 64, 393
- (26) Collins, D. M.; Spicer, W. E. Surf. Sci. 1977, 69, 85
- (27) McCabe, R. W.; Shmidt, L. D. Surf. Sci. 1977, 65, 189
- (28) Campbell, C. T.; Ertl, G.; Kuipers, H.; Segner, J. Surf. Sci. 1981, 107, 207
- (29) Morikawa, Y.; Mortensen, J.J.; Hammer, B.; Norskov, J.K. Surf. Sci. 1997, 386, 67
- (30) Lin, T. H.; Somorjai, G. A. Surf. Sci. 1981, 107, 573
- (31) Seebauer, E. G.; Kong, A. C. F.; Schmidt, L. D. J. Vac. Sci. Technol. A. 1987, 5, 464
- (32) Westberg, S.; Wang, C.; Somorjai, G.A. Surf. Sci. 2005, 582, 137
- (33) Froitzheim, H.; Hopster, H.; Ibach, H.; Lehwald, S. Appl. Phys. 1977, 13, 147
- (34) Hopster, H.; Ibach, H. Surf. Sci. 1978, 77, 109
- (35) Baro, A. M.; Ibach, H. J. Chem. Phys. 1979, 71, 4812
- (36) Grote, R. J.; Schmidt, L. D. Surf. Sci. 1981, 111, 260
- (37) Crowell, J. F.; Garfunkel, E. L.; Somorjai, G. A. Surf. Sci. 1982, 121, 303
- (38) Koper, M.T.M.; van Santen, R.A.; Wasilesky, S. A.; Weaver, M. J. J. Chem, Phys. 2000, 113, 4392
- (39) Yeo, Y.Y.; Vattuone, L.; King, D.A. J. Chem. Phys. 1997, 106, 392
- (40) Zhang, C. J.; Hu, P. J. Amer. Chem. Soc. 2001, 123, 1166
- (41) Gieβel, T.; Schaff, O.; Hirschmugel, C. J.; Fernandez, V.; Schindler, K.-M.; Theobald, A.;
- Bao, S.; Lindsay, R.; Berndt, W.; Bradshaw, A. M.; Baddeley, C.; Lee, A. F.; Lambert, R. M.;

Woodruff, D. P. Surf. Sci. 1998, 406, 90

- (42) Zhang, C. J.; Baxter, R. J., Hu, P.; Alavi, A.; Lee, M-H. J.Chem. Phys. 2001, 115, 5272
- (43) Weaver, M. J.; Zhou, S.; Tang, C. J. Chem Phys. 1999, 111, 368
- (44) Weaver, M. J. Surf. Sci. 1999, 437, 215
- (45) Guo, X .; Yates J. T. Jr.; J. Chem. Phys. 1989, 90, 6761
- (46) Szanyi, J.; Kuhn, W. K.; Goodman, D. W. J. Vac. Sci. Technol. A. 1993, 11, 1969
- (47) Ohtani, H.; Van Hove M. A.;. Somorjai G. A. Surf. Sci. 1987, 187, 372
- (48) Surnev, S.; Sock, M.; Ramsey M.G.; Netzer, F. P.; Wiklund, M.; Borg, M.; Andersen, J.N. *Surf. Sci.* **2000**, *470*, 171
- (49) Boyle, R. W.; Lauterbach, J.; Schick, M.; Mitchell, W. J.; Weinberg, W. H. Ind. Eng. Chem.

Res. **1996**, *35*, 2986

- (50) Bradshaw, A. M.; Hoffman, F. M. Surf. Sci. 1978, 72, 513
- (51) Conrad, H.; Ertl, G.; Koch, J.; Latta, E.E. Surf. Sci. 1974,43, 462
- (52) Rupprechter,G;Unterhalt, H.; Morkel,M.; Galletto, P.; Hu, L.;Feund, H.-J. *Surf. Sci.* **2002**, *502-5031*, 109
- (53) Bleakley, K.; Hu, P. J. Amer. Chem. Soc. 1999, 121, 7644
- (54) Kohler, L.; Kresse, G.; Phys. Rev. B. 2004, 70, 165405
- (55) B. Smedh, H. A.; Borg, M.; Nyholm, R.; Andersen, J. N. Surf. Sci. 2001, 491, 115
- (56) Wei, D. H.; Scelton, D. C.; Kevan, S. D. Surf. Sci. 1997, 381, 49
- (57) Perlinz, K. A..; Curtiss, T. J.; Sibener, S. J. J. Chem. Phys. 1991, 95, 6972
- (58) Mavrikakis, M.; Rempel, J.; Greeley, J.; Hansen, L. B.; Norskov, J. K. J. Chem. Phys. 2002,
- 117, 6737
- (59) Gierer, M.; Barbieri, A.; van Hove, M. A.; Somorjai, G. A. Surf. Sci. 1997, 391, 176
- (60) Smedh, M.; Beutler, A.; Ramsvik, T.; Nyholm, R.; Borg, M.; Andersen, J. N.; Duschek, R.;
- Sock, M.; Netzer, F. P.; Ramsey, M. Surf. Sci. 2001, 491, 99
- (61) Thiel, P. A.; Williams, E. D.; Yates, J. T., Weinberg, W. H. Surf. Sci. 1979, 84,54
- (62) Dubois, L. H.; Somorjai, G. A. Surf. Sci. 1980, 91, 514

- (63) Castner, D.G.; Sexton, B.A.; Somorjai, G. A. Surf. Sci. 1978, 71, 519
- (64) Sushchikh, M.; Lauterbach, J.; Weinberg,, W. H. J. Vac. Sci. Technol. A. 1997, 15, 1630
- (65) Sushchikh, M.; Lauterbach, J.; Weinberg,, W. H. Surf. Sci. 1997, 393, 135
- (66) Lauterbach, J.; Boyle, R. W.; Schick, M.; Mitchell, W. J.; Meng, B.; Weinberg, W. H. Surf.
- Sci. 1996, 350, 32
- (67) Comrie, C. M.; Weinberg, W. H. J. Chem. Phys. 1976, 64, 250
- (68) Hollins, P; Pritchard, J. Surf. Sci. 1979, 89, 486
- (69) Hammer, B.; Morikawa, Y.; Norskov, J. K. Phys. Rev. Lett. 1996, 76, 2141
- (70) Gajdoš, M; Hafner J. Surf. Sci. 2005, 590, 117
- (71) Volmer, S.; Witte, G.; Wöll, C. Catal. Lett. 2001, 77, 97
- (72) Moler, E.J.; Kellar, S.A.; Huff, W.R. A.; Hussain, Z. Phys. Rev. B. 1996, 54, 10862
- (73) Eve, J.K.; McCash, E. M. Chem. Phys. Lett. 1999, 313, 575
- (74) Kessler, J.; Thieme, F. Surf. Sci. 1977, 67, 405
- (75) Kirstein, W.; Kruger, B.; Thieme, F. Surf. Sci. 1986, 176, 505
- (76) Raval, R.; Parker, S.F; Pemble, M. E.; Hollins, P.; Pritchard, J.; Chesters, M. A. Surf. Sci.

1988, 203, 353

- (77) Hurschmugl, C. J.; Williams, G. P.; Hoffman, F. M.; Chabal, Y. J. J Electron. Spectrosc Relat. Phenom. **1990**, 54/55, 109
- (78) Pfnür, H; Feulner, P.; Menzel, D. J. Chem Phys. 1983, 79, 4613
- (79) Thomas, G. E.; Weinberg, W. H. J. Chem Phys. 1979, 70, 954
- (80) Over, H.; Moritz, W; Ertl, G. Phys. Rev. Lett. 1993, 70, 315
- (81) Jakob, P.; Persson, B. N. J. Phys. Rev. Lett. 1997, 78, 3503
- (82) He, P; Dietrich, H.; Jacobi, K. Surf. Sci. 1996, 345, 241
- (83) Krenn, G.; Bako, I.; Schennach, R. J.Chem. Phys., 2006, 124, 144703
- (84) Stampfl, C.; Schffler, M. Phys. Rev. B. 2002, 65, 155417

(85) Linke, R., Curilla, D.; Hopstaken, M. J. P..; Niemanstverdriet, J. W. J. Chem. Phys. 2001, 115, 8209

(86) Curilla, D.; Linke, R., Clotet, A.; Ricart, J. M.; Niemanstverdriet, J. W. Chem. Phys. Lett.

2002, *354*, 503

(87) Liu, W.; Zhu, Y.F.; Lian, L.S.; Jiang, Q. J. Phys. Chem. C. 2007, 111, 1005

II. Oxygen atomic adsorption on (111) metals

$x_{0\mathrm{B}}$	$\omega_{ m B}$	$\Delta E_{ m ads}$	References and comments
		-53	TPD ¹ ; θ>0
		-55	TPD ²
	485		EELS ³⁻⁵
1.24		-33.7	periodic DFT; $\theta = 1/4^{6}$
1.19	490	-43	periodic DFT; $\theta = 1/4^7$
		-42/-44	periodic DFT; GGA; PBE/rev PBE ⁸
1.138	498	-42.3	DFT; cluster model; ⁹

Table 8: Characteristics of oxygen atomic adsorption on Pd(111) surface

^a Distance x_{0B} , in Angstrøm, frequency ω_{B} in cm⁻¹, energy ΔE_{ads} in kcal/mol, θ is the surface covering

$x_{0\mathrm{B}}$	$\omega_{ m B}$	$\Delta E_{ m ads}$	References and comments
1.16±0.08			NEXAFS ¹⁰ ; $\theta = 1/4$ to $1/3$
1.11±0.06			LEED ¹¹ ;
		-105	calorimetry; low coverage ¹²
1.08±0.02			NEXAFS ¹³
1.21±0.09			LEED ¹⁴
1.14		-97	Periodic DFT GGA; $\theta = 1/3^{15}$
1.16 1.12		-106 -87.6	Periodic DFT; LSD ¹⁷ $\theta = 1/4$ $\theta = 1/2$
		-122	Periodic DFT; GGA; PB91 $\theta = 1/2^{16}$
1.200	566	-88	DFT; cluster model ⁹
		-112	CFSO-BEBO 58

Table 9: Characteristics of atomic adsorption of oxygen on Ni (111) surface ^a

X _{0B}	$\omega_{ m B}$	$\Delta E_{ m ads}$	References and comments	
	490	-47.8	AES,EELS,UPS,TDS,LEED ^{18, 19} high coverage limit	
		-48 to -53	TDS, LEED , θ ~0 to ~ 1 20	
	480		EELS, LEED, TDS ^{21, 22}	
1.18 to 1.19			LEED ^{23, 24}	
		-73±8 to -50	Calorimetry; $\theta = 0$ to 0.6 ²⁵	
	466	-51 -43	AES, LEED, UPS, HREELS, DTP 27 $\theta = 0$ $\theta = 1/4$	
			NEXAFS ²⁸	
		-50.9 -42	Scattering of molecular beams ²⁹ Low coverage Near saturation	
	475		HREELS, TDP; θ =0.2 to 0.45 ³¹	
1.23	470	-38	Periodic DFT; LSD; θ =0.5 ^{7, 32}	
1.25		-28.1	Periodic DFT, GGA-BPW91 ; $\theta \sim 1^{33}$	
	510 to 530	-32.5	DFT; B3Lyp-GGA; 9/10/9 cluster; fixed Pt-Pt ³⁴	
1.240	484		DFT; B3PW91; cluster model ; Pt_3 ³⁵	
1.15	442	-49/-21	Periodic DFT; GGA-PW91/RPBE ³⁶	
		-58 to -68	CFSO-BEBO 58	
1.262		-13	DFT, (6/3/1) cluster ⁶⁴	
1.237		-27	DFT; B3LYP; cluster model; ⁹	
		-60 -49	FDS ³⁹ ; low coverage 75% of saturation	
		-58 to -68	CFSO-BEBO 58	

Table 10: Characteristics of atomic adsorption of oxygen on Pt (111) surface^a

$x_{0\mathrm{B}}$	$\omega_{ m B}$	$\Delta E_{ m ads}$	References and comments	
	380		HREELS 40	
$1.1 \\ 0.2 \pm .2$			SEXAFS ⁴¹ ; fixed Cu-Cu relaxed Cu-Cu	
	403		EELS 43	
		-86.2	Microcalorimetry ⁴⁴	
1.35	550	-83.5	Five parameter Morse potential ⁴⁶	
1.13	482	-68	Periodic DFT; GGA-PW91; $\theta = 1/4^{47, 48}$	
1.23			DFT; cluster model ; two layers ⁴⁹	

Table 11: Characteristics of atomic adsorption of oxygen on Cu (111) surface ^a

x _{0B}	$\omega_{ m B}$	$\Delta E_{ m ads}$	References and comments
	550		EELS ⁵⁰
	525		EELS ; $\theta = 0.25$ to 0.5 ⁵¹
		-65±3	LEED, Auger ; $\theta \sim 0^{52}$
1.22	483	-80.8	Periodic DFT; $\theta = \frac{1}{4}$; relax Ir-Ir ⁵³
1.244	630	-76.2	DFT; cluster model; ⁹

Table 12 Characteristics of atomic adsorption of oxygen on Ir (111) surface ^a

$x_{0\mathrm{B}}$	$\omega_{ m B}$	$\Delta E_{ m ads}$	References and comments	
		-96 to -86	LEED,AES ⁵⁴ ; θ from low to 0.5	
	509 500 to 600	-99 to -86	DFT-GGA ; θ from 1/9 to 1 ⁵⁶ SERS ^{67 b}	
		-95 to -78	Periodic DFT-GGA ; θ from .25 to 1^{68}	
	516 to 596		EELS; θ from low to saturation ⁵⁷	
1.278	612	-105	DFT; cluster model ⁹	

Table 13: Characteristics of atomic adsorption of oxygen on Ru(0001) surface ^a

^a see ref to Table 8; ^b gold coated by thin film of ruthenium

$x_{0\mathrm{B}}$	$\omega_{ m B}$ $\Delta E_{ m ads}$		References and comments		
			periodic DFT-GGA ⁵⁹		
1.24		-51.7	$\theta=0.25$		
1.23		-45	θ=0.5		
1.16		-32.3	$\theta = 1.0$		
1.22			LEED; θ =0.5 ⁶⁰		
			LEED ⁶¹		
1 24+0 06		$\theta = 0.25$			
1.25 ± 0.05			$\theta = 0.5$		
		-56±2	LEED, TPD, AES; $\theta \sim 0^{-62}$		
		-56±2	TPD , $\theta < 0.15^{-63}$		
1.212		-101	DFT; LDA-VWN ; (6/3/1) cluster ⁶⁴		
			Periodic DFT: GGA -PW91/RPBE 66		
1.23		-95/-69	$\theta = 0.25$		
1.191	572	-82.7	DFT, cluster model ⁹		

Table 14 : Characteristics of atomic adsorption of oxygen on Rh(111) surface^a

^a see ref to Table 8

References to Tables 8-14

- (1) Guo, X.; Hoffman, A.; Yates, J. T. J. Chem. Phys. 1989, 90, 5787
- (2) Conrad, H.; Ertl, G.; Kupers, J.; Latta, E. Surf. Sci. 1977, 65, 245
- (3) Imbihl, R.; Demutz, J. E. Surf. Sci. 1986, 173, 395
- (4) Kolasinski, K. W.; Cemic, F.; Hassebrink, E. Chem. Phys. Lett. 1994, 219, 113
- (5) Nolan, P. D.; Lutz, B. P.; Tanaka, P. L.; Mullins, C. B. Surf. Sci. 1998, 419, L107
- (6) Honkala, K.; Laassonen, K. J. Chem. Phys. 2001, 115, 2297
- (7) Eichler, A. G.; Mittendorfer, F.; Hafner, J. Phys. Rev. B 2000, 62, 4744
- (8) Hammer, B.; Hansen, L. B.; Norskov, J. K. Phys. Rev. B. 1999, 59, 7413
- (9) German, E. D.; Sheintuch, M. J. Phys. Chem A. 2005, 109, 7957
- (10) Pedio, M.; Becker, L.; Hillert, B.; D'Addato, S.; Haase, J. Phys. Rev. B 1990, 41, 7462
- (11) Schmidtke, E.; Schwennicke, C.; Pfnur, H. Surf. Sci. 1994, 312, 301
- (12) Stuckless, J. T.; Wartnaby, C. E.; Al-Sarraf, N.; Dixon-Warren, St. J. B.; Kovar, M.;
 King, D. A. J. Chem. Phys. **1997**, 106, 2012
- (13) Mendez, M. A.; Oed, W.; Fricke, A.; Hammer, L.; Heinz, K.; Muller, K.; Surf. Sci. 1991, 253, 99
- (14) Marcus, P. M.; Demuth, J. E.; Jepsen, D. W. Surf. Sci. 1975, 53, 501
- (15) Yamagishi, S.; Jenkins, S. J.; King, D. A. Surf. Sci. 2003, 543, 12
- (16) Li, T.; Bhatia, B.; Sholl, D. S. J. Chem. Phys. 2004, 121, 10241
- (17) Mittendorfen, F.; Eichler, A.; Hafner, J. Surf. Sci. 1999, 433-435, 756
- (18) Gland, J. L.; Sexton, B.; Fisher, G. B. Surf. Sci. 1980, 95, 587
- (19) Gland, J. L. Surf. Sci. 1980, 93, 487
- (20) Winkler, A.; Guo, X.; Siddiqui, H. R.; Hagans, P. L.; Yates, J. T. Surf. Sci. 1988, 201, 419
- (21) Steininger, H.; Lehwald, S.; Ibach, H. Surf. Sci. 1982, 123, 1
- (22) Lehwald, S.; Ibach, H.; Steiniger, H. Surf. Sci. 1982,117, 342
- (23) Starke, U.; Materer, N.; Barbieri, A.; Doll, R.; Heintz, K.; van Hove, M. A.;

Somorjai, G. A. Surf. Sci. 1993, 287/288, 432

- (24) Materer, N.; Starke, U.; Barbieri, A.; Doll, R.; Heinz, K.; van Hove, M. A.; Somorjai, G. A.. Surf. Sci. **1995**, *325*, 207
- (25) Yeo, Y.Y.; Vattuone, L. King, D. A. J. Chem. Phys. 1997, 106, 392
- (26) Outka, D. A.; Stohr, J.; Jark, W.; Stevens, P.; Solomon, J.; Madix, R. J.

Phys. Rev. B 1987, 35, 4119

- (27) Parker, D. H.; Bartram, M. E.; Koel, B. E. Surf. Sci. 1989, 217, 489
- (28) Wurth, W.; Stohr, J.; Feulner, P. Pan, X.; Bauchspiese, K. R.; Baba, Y.;
- Hundel, E.; Rocker, G.; Meuzel, D. Phys. Rev. Lett. 1990, 65, 2426
- (29) Campbell, C. T.; Ertl, G.; Kuipers, H.; Segner, J. Surf. Sci. 1981, 107, 220
- (30) Puglia, C.; Nilsson, A.; Hernnas, B.; Karis, O.; Bennich, P.; Martensson, N.
- Surf. Sci. 1995, 342, 119
- (31) Zhu, X. Y.; Hatch, S. R.; White, J. M. J. Chem. Phys. 1989, 91, 5011
- (32) Eichler, A. G.; Hafner, J. Phys. Rev. Letts. 1997, 79, 4481
- (33) Kokalj, A.; Lesar, A.; Hodošček, M., Causa, M. J. Phys. Chem. B. 1999, 103, 7222
- (34) Jacob, T.; Muller, R. P.; Goddard III, W. A. J. Phys. Chem. B 2003, 107, 9465
- (35) Li, T.; Balbuena, P. J. Phys. Chem. B 2001, 105, 9943
- (36) Ford, D. C., Xu, Y.; Mavrikakis, M. Surf. Sci. 2005, 587, 159
- (37) Gustafsson, K.; Andersson, S. J. Chem. Phys. 2004, 120, 7750
- (38) Wurth, W.; Stohr, J.; Feulner, P.; Pan, X.; Bauchspiess, K. R.; Baba, Y; Hudel, E.;
- Rocker, J.; Menzel, D. Phys. Rev. Lett. 1990, 65, 2426
- (39)Franz, A. J.; Ranney, J. T.; Jackson, W. B.; Gland, J. L. J Phys. Chem. B. 1999, 103, 4457
- (40) Sueyoshi, T.; Sasaki, T.; Iwasawa, Y. Surf. Sci. 1996, 365, 310
- (41) Haase, J.; Kuhr, H. J. Surf. Sci. 1988, 203, L695
- (42) Habraken, F. H. P.; Kieffer, E. Ph.; Bootsma, G. A. Surf. Sci. 1979, 83, 45
- (43) Dubois, L. H. Surf. Sci. 1982, 119, 399

- (44) Giamello, E.; Fubini, B.; Lauro, P.; Bossi, A. J. Catal. 1984, 87, 443
- (45) Jiang, L.; Wang, J.; Cai, Z.; Pan, Y.; Zhao, X. J. Molec. Str. (Theochem.) 2004, 710, 97
- (46) Wang, Z. X.; Tlan, F. H. J. Phys. Chem. B 2003, 107, 6153
- (47) Xu, Y.; Mavrikakis M. Surf. Sci. 2001, 494, 131
- (48) Xu, Y.; Mavrikakis M. Surf. Sci. 2003, 538, 219
- (49) Koper, M.T.; van Santen, R.A. J. Electroanal. Chem. 1999, 472, 126
- (50) Cornish, J. C. L.; Avery, N. R. Surf. Sci. 1990, 235, 209
- (51) Davis, J. E.; Nolan, P. D.; Karseboom, S. G.; Mullins, C. B. J. Chem. Phys. 1997, 107, 943
- (52) Ivanov, V.P.; Boreskov, G.K.; Savchenko, V.J.; Egelhoff, W.F.; Weinberg, W.H.

Surf. Sci. 1976, 61, 207

- (53) Xu, Y.; Mavrikakis, M. J. Chem. Phys., 2002, 116, 10846
- (54) Madey, T. K.; Engelhardt, M.A., Menzel, D. Surf. Sci. 1975, 48, 304
- (55) Savelieva, G.A.; Speranskaya, G.V.; Popova, N.M. React . Kinet. Catal. Let. 1980, 13, 12
- (56) Stampfl, C, Kreuzer, H. J., Payne, S.H.; Pfnur, H.; Schefler, M. Phys. Rev. Lett. 1999, 83, 2993
- (57) Thomas, G.E.; Weinberg W. H. J. Chem Phys., 1979, 70, 954
- (58) Weinberg, W.H., Merril, R. P. Surf. Sci. 1973, 39, 206
- (59) Ganduglia-Pirovano, M. V.; Scheffler, M. Phys. Rev. B. 1999, 59, 15533
- (60) Wong, K. C.; Liu, W.; Mitchell, K. A. R. Surf. Sci. 1996, 360, 137
- (61) Schwegmann, S.; Over, H.; De Renzi, V.; Ertl, G. Surf. Sci. 1997, 375, 91
- (62) Thiel, P. A.; Yates, J. T.; Weinberg, W.H. Surf. Sci. 1979, 82, 22
- (63) Petrlinz, K. A.; Sibener, S. J. J. Phys. Chem. 1995, 99, 2817
- (64) Chen, M.; Bates, S. P.; van Santen, R. A.; Friend, C. M. J. Phys. Chem. B. 1997, 101, 10051

- (65) Inderwildi, O. R.; Lebiedz, D.; Deutschmann, O; Warnatz, J. J. Chem. Phys. 2005, 122, 034710
- (66) Mavrikakis, M.; Rempel, J.; Greeley, J.; Hansen, L. B.; Norskov, J. K. J. Chem. Phys. 2002, 117, 6737
- (67) Wilke, T, Gao, X.; Takoudis, G.; Weaver, M. J. Langmuir, 1991, 7, 714
- (68) Stampfl, C.; Scheffler, M. Phys. Rev. B. 1996, 54, 2868
- (69) Stampfl, C.; Schwegmann, S.; Over, H.; Scheffler, Ertl, G. Phys. Rev. Lett, 1996, 77, 3371

III. Carbon dioxide adsorption on (111) metals

Table 15. Data compiled from published works and our data calculated in terms of cluster modelscharacterizing of carbon dioxide adsorption on (111) transition metals †

Structure of cluster and references to published data	$E_{ m ads}$	<i>d</i> / <i>x</i>	r/ y	A1 / A2 / A3	$\omega(C-O_{(1)})/\omega(C-O_{(2)})/\omega(M-CO_2)$
$\begin{array}{ccc} \text{Ni}(7/3): & b - b^{a} \\ \text{Ni}(7/6/3): & b - b^{a} \\ \text{Ni}(10/5): & b - b^{a} \end{array}$	-13.3 -12.7 -5.7	1.943/1.813 1.939/1.822 1.964/1.878	1.311/1.209 1.299/1.211 1.280/1.210	110/110/130 110/110/119 107/107/134	1148/1740/429 1088/1742/403 1110/1761/360
Ni(7/6/3): <i>b-h</i> ^a	-18.8	1.885/1.740	1.358/1.203	113/105/128	934/1754/421
Ref 2 ^b	-6.5				
Ref 3 ^d	7		1.224/1.203		
Cu(7/6/3): <i>b-h</i>					
Ref 2 ^b Ref 4 ^e	-5.3 -4 to -5				
Rh(7/3): $b-b^{a}$ Rh(7/6/3): $b-b^{a}$	-5.3 -4.3	2.104/1.959 2.071/1.946	1.300/1.210 1.307/1.209	111/111/130 110/110/121	1052/1742/339 1061/1741/368
Rh(7/6/3): <i>b-h</i> ^a	-15.7	2.035/1.859	1.371/1.201	114/107/128	880/1761/390
Ref 2 ^b	-5.2				
Refs 5, 6 ^e	-6 to -7				
Ir(7/3): $b-b^{a}$ Ir(7/6/3): $b-b^{a}$	9.2 -3.1	2.122/1.983 2.106/1.991	1.336/1.203 1.336/1.205	111/111/126 110/110/121	950/1756/350 990/1753/388
Ir(7/6/3): $b - h^{a}$	-14.3	2.051/1.902	1.432/1.194	112/105/134	656/1809/348
Ref 2 ^b	-4.3				
Pd(7/3): $b-b^{a}$ Pd(7/6/3): $b-b^{a}$	3.3 0.9	2.181/2.066 2.114/1.986	1.232/1.199 1.263/1.192	109/109/144 110/110/113	1180/1031/non-identif. 1140/1843/278
Pd(7/6/3): $b-h^{a}$	-1.9	2.051/1.866	1.307/1.197	114/108/120	1026/1808/320
Ref 7 ^c	-1.8				
Ref 2 ^b	-3.8				
Refs 8, 9 ^e	-6 to -7				
Ref $10^{\text{ f}}$	5	2.049	1.279/1.211	114/114/133	1140/1782/?

Pt(7/3):	b - b^{a}	10.3	2.197/2.055	1.277/1.197	112/112/135	1085/1832/197
Pt(7/6/3):	<i>b-h</i> ^a	15.8	2.052/1.872	1.364/1.193	114/108/126	894/1811/ non-identif.
Ref 2 ^b		-3.6				
Refs 11, 12	2 ^e	-2.5 to -7				

[†] DFT method as implemented in Gaussian 03⁻¹ was employed. Calculations were performed in terms of cluster models with the use of B3LYP functional; the basis set used for metal atoms is a LANL set for the effective core potentials of double- ζ type (LANL2DZ). For oxygen and carbon, the cc-pVDZ basis set was used. *b-b* and *b-h* denote *bond-bond* (Figs. 1a, b, and c) and *bond-hollow* (Fig. 1d) complexes, respectively. Denotations of the geometric characteristics are shown in Fig.2; (m/n/k) denotes three-layer cluster, (m/n) denotes two-layer cluster; E_{ads} in kcal/mol, *d*, y_1 and y_2 in Å, angles A1, A2 and A3 in degrees, and frequencies ω in cm⁻¹; ^a our cluster calculation; ^b semi-empirical estimation using approach of Ref 13; ^c periodic DFT calculations for *b-h* configuration; ^d periodic DFT calculations for *b-b* configuration; ^e experimental estimation; ^f DFT calculation using two-layer cluster Pd(10/5) for *b-b* configuration; basis set for CO₂ is 6-311⁺⁺g(2d).

References to Table 15

- (1) Frisch, M. J et al, Gaussian 03, Revision B.05. Gaussian, Inc., Pittsburgh PA, 2003.
- (2) Hei, M. J.; Chen, H. B.; Yi, J.; Lin, Y. J.; Lin, Y. Z.; Wei, G.; Liao, D.W. Surf. Sci. 1998, 417, 82
- (3) Wang, S.-G.; Cao, D.-B.; Li, Y.-W.; Wang, J.; Jiao, H. J. Phys. Chem. B. 2005, 109, 18956
- (4) Hadden, R.A.; Vandervell, H.D.; Waughy, K.C.Webb, G. In Philips, M.J.; Ternan, M. (Eds),
- Proc. 9th Int. Cong. Catalysis, The Chemical Institute of Canada, Ottawa, **1988**, *4*, 1835 (cit from Ref 2)
- (5) Brown, L. S.; Sibener, S. J. J. Chem. Phys. 1989, 90, 2807
- (6) Matsushima, T.; Matsui, T.; Hashimoto, M. J. Chem. Phys. 1984, 81, 5151
- (7) Salo, P.; Honkala, K.; Alatalo, M.; Laasonen K., Surf. Sci. 2002, 516, 247
- (8) Matsushima, T. Surf. Sci. 1983, 127, 403
- (9) Matsushima, T.; Asada, H. J. Chem. Phys. 1986, 85, 1658
- (10) Habas, M.-P.; Mele, F.; Sodupe, M. Illas, F. Surf. Sci. 1999, 431, 208
- (11) Matsushima, T. J. Phys. Chem. 1987, 91, 6192
- (12) Campbell, C. T.; Ertl, G.; Kuipers, H.; Segner, J., J. Chem. Phys. 1980, 73, 5862
- (13) Shustorovich, E.; Surf. Sci. 1988, 205, 336

b

a

d

с

Figure 2. Structure characteristics of a chemisorbed CO₂ molecule

