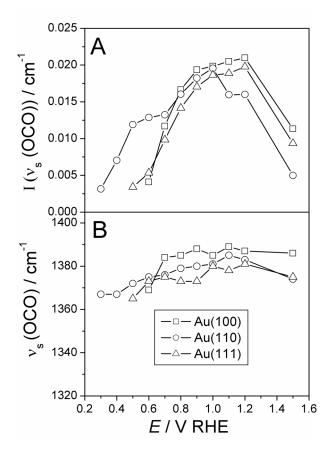
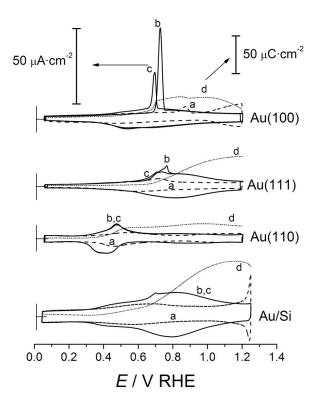
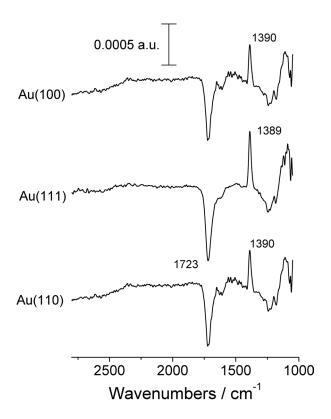

In-situ Infrared Study of the Adsorption and Surface Acid-Base Properties of the Anions of Dicarboxylic Acids at Gold Single Crystal and Thin-Film Electrodes.

José Manuel Delgado, Antonio Berná, José Manuel Orts, Antonio Rodes* and Juan Miguel Feliu


Supporting information


Cyclic voltammograms for Au(100), Au(111), Au(110) and an electrochemically annealed thin-film gold electrode in 0.1 M HClO₄ (a, dashed line) and 0.01 M H₄C₃O₄ + 0.1 M HClO₄ (b and c, solid lines, correspond to the first and second voltammetric cycle, respectively). Sweep rate: 50 mV s⁻¹. Dotted curves (d) correspond to the charge density vs potential curves calculated by integrating the difference between voltammetric curves c and a.


Potential-difference spectra collected at 1.20 V for a Au(100), Au(111) and Au(110) electrodes in 0.01 M $H_4C_3O_4 + 0.1$ M $HClO_4$ solutions. Reference potential: 0.10 V; 1000 interferograms collected at each potential.

Plots of (A) the integrated intensity and (B) the adsorbate band frequencies of the adsorbate bands as measured in the potential-difference spectra collected for Au(100), Au(111) and Au(110) electrodes in contact with 0.01 M $H_4C_3O_4 + 0.1$ M $HClO_4$ solutions.

Cyclic voltammograms for Au(100), Au(111), Au(110) and an electrochemically annealed thin-film gold electrode in 0.1 M $HClO_4$ (a, dashed line) and 0.01 M $H_6C_4O_4$ + 0.1 M $HClO_4$ (b and c, solid lines, correspond to the first and second voltammetric cycle, respectively). Sweep rate: 50 mV s⁻¹. Dotted curves (d) correspond to the charge density vs potential curves calculated by integrating the difference between voltammetric curves c and a.

Potential-difference spectra collected at 1.20 V for a Au(100), Au(111) and Au(110) electrodes in 0.01 M $H_6C_4O_4 + 0.1$ M $HClO_4$ solutions. Reference potential: 0.10 V; 1000 interferograms collected at each potential.