Novel Water-Soluble Near-Infrared Cyanine Dyes: Synthesis, Spectral Properties, and Use in the Preparation of Internally Quenched Fluorescent Probes

Cédric Bouteiller,^{†,‡,¶} Guillaume Clavé,^{†,‡,¶} Aude Bernardin,^{†,‡} Bertrand Chipon,^{†,‡} Marc Massonneau,[‡] Pierre-Yves Renard,^{*,†} and Anthony Romieu^{*,†}

IRCOF, Equipe de Chimie Bio-Organique, UMR 6014 CNRS, INSA de Rouen et Université de Rouen, 1, rue Lucien Tesnières, 76131 Mont-Saint-Aignan Cedex, France and QUIDD, Technopôle du Madrillet, 50, rue Ettore Bugatti, 76800 Saint-Etienne du Rouvray, France.

*<u>pierre-yves.renard@univ-rouen.fr</u> or <u>anthony.romieu@univ-rouen.fr</u>. Phone: +33-2-35-52-24-14 (or 24-15). Fax: +33-2-35-52-29-59.

[†] IRCOF, Equipe de Chimie Bio-Organique [‡] QUIDD

[¶] These authors contributed equally to this work

SUPPORTING INFORMATION

- S1 Experimental section : Synthesis of thiol-reactive NIR5.5-1 derivative 24 and fluorogenic NIR5.5-1/NIR7.0-2 hexapeptide 25.
- S2 MALDI-TOF mass spectrum of probe 25.
- S3 Absorption spectra of probe 25 in PBS and EtOH.
- S4 Emission (Ex. $\lambda = 670$ or 750 nm) spectra of probe 25 in PBS and EtOH.
- S5 Emission (Ex. λ = 780 nm) spectra of probe 19 in PBS and DMSO.

-S1- Experimental section : Synthesis of thiol-reactive NIR5.5-1 derivative 24 and fluorogenic NIR5.5-1/NIR7.0-2 hexapeptide 25.

HPLC separations. Several chromatographic systems were used for the analytical experiments and the purification steps. Each one of these systems was optimised in order to improve separation conditions.

<u>System A</u>: RP-HPLC (Thermo Hypersil GOLD C₁₈ column, 5μ m, 4.6 x 150 mm) with CH₃CN and 0.1% aq. trifluoroacetic acid (aq. TFA, 0.1%, v/v, pH 2.0) as the eluents, at a flow rate of 1 mL/min, with the following gradients:

A1 : [100% TFA (5 min), linear gradient from 0 to 20% (8 min) and 20 to 80 (27 min) of CH_3CN]. Dual UV-Visible detection was achieved at 260 and 680 nm.

A2 : [100% TFA (5 min), linear gradient from 0 to 40% (20 min) and 40 to 80% (40 min) of CH₃CN]. Triple UV-Visible detection was achieved at 260, 680 and 750 nm.

<u>System B</u>: RP-HPLC (Waters XTerra MS C₁₈ column, 5μ m, 7.8 x 100 mm) with CH₃CN and 0.1% aq. TFA as the eluents, at a flow rate of 2.5 mL/min, with the following gradients:

B1 : [85% TFA (5 min), linear gradient from 15 to 60% (45 min) of CH₃CN]. UV detection was achieved at 260 nm.

B2 : [80% TFA (5 min), linear gradient from 20 to 80% (60 min) of CH₃CN]. UV detection was achieved at 260 nm.

B3 : [85% TFA (5 min), linear gradient from 15 to 35% (10 min) and 35 to 80% (45 min) of CH_3CN]. UV detection was achieved at 260 nm.

TSTU DIFA NMP so, SO CO₂H NIR5.5-1 22. quant. vield .NH2 . 2 HCI H₂N DIEA, DMF, RT SOa SO: SIAB, CH₃CN borate buffer, pH 8.1 нŃ 23 75% 24.95%

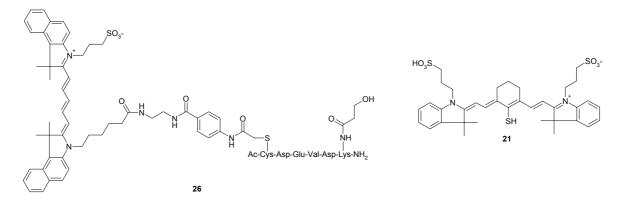
Preparation of thiol-reactive NIR5.5-1 derivative (24).

Synthetic reactions used for the preparation of thiol-reactive NIR5.5-1 derivative 24.

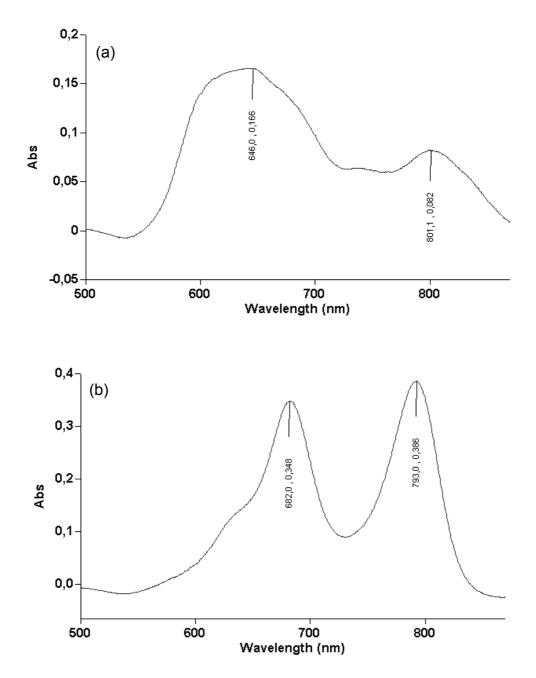
(a) Preparation of NIR5.5-1 carboxylic acid, Succinimidyl Ester 22. Free carboxylic acid dye NIR5.5-1 (6.6 mg, 9.6 μ mol) was introduced into a Reacti-VialTM and dissolved in 140 μ L of

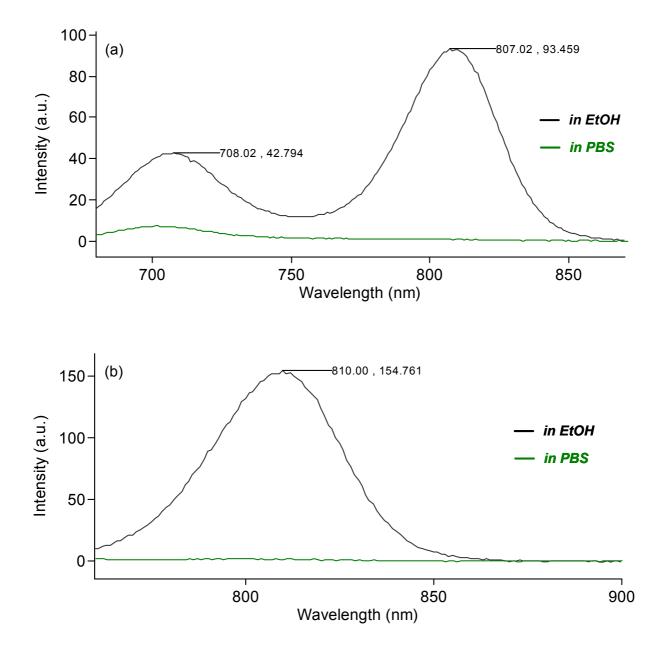

dry NMP. 20 μ L of a solution of TSTU reagent in dry NMP (2.88 mg, 9.6 μ mol) and 11.7 μ L of DIEA (28.8 μ mol) were added and the resulting reaction mixture was protected from light and stirred at room temperature for 1 h. The reaction was checked for completion by RP-HPLC (system A1) and the resulting succinimidyl ester **22** was used without further purification. HPLC (system A1): $t_{\rm R}$ = 33.6 min (compared to $t_{\rm R}$ = 32.6 min for **NIR5.5-1** carboxylic acid).

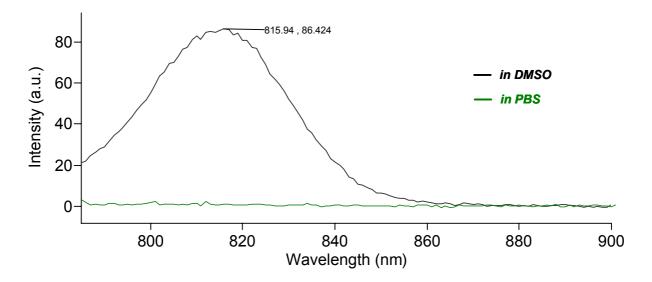
(b) Synthesis of **NIR5.5-1** amine **23**. Ethylenediamine dihydrochloride (150 mg, 1.152 mmol) was dissolved in a mixture of deionised water (0.9 mL) and DMF (10 mL). The crude reaction mixture containing the succinimidyl ester **22** and a 10% solution of DIEA in DMF (0.9 mL, 537 μ mol) were sequentially added and the resulting reaction mixture was was protected from light and stirred at room temperature for 1 h. The reaction was checked for completion by RP-HPLC (system A1) and the mixture was evaporated to dryness. The resulting residue was purified by RP-HPLC (system B1, 2 injections). The product-containing fractions were lyophilised to give the **NIR5.5-1** amine **23** as a blue amorphous powder (5.2 mg, yield 75%). HPLC (system A1): $t_{\rm R} = 29.8$ min, purity > 95%. MS (MALDI-TOF, positive mode, CHCA matrix): m/z 733.82 [M+H]⁺, calcd exact mass for C₄₄H₅₂N₄O₄S 732.99.


(c) Preparation of NIR5.5-1 SIAB derivative 24. NIR5.5-1 amine 23 (9.6 μ mol) was dissolved in a mixture of CH₃CN (250 μ L) and borate buffer (140 μ L, 50 mM, pH 8.1). A solution of SIAB reagent (4.14 mg, 10.3 μ mol) in a mixture of CH₃CN (400 μ L) and borate buffer (350 μ L) was added. The reaction mixture was protected from light and stirred at room temperature for 90 min. The reaction was checked for completion by RP-HPLC (system A1). Finally, the reaction mixture was quenched by dilution with aq. TFA 0.1% and purified by RP-HPLC (system B2, 2 injections). The product-containing fractions were lyophilised to give the thiol-reactive NIR5.5-1 derivative 24 as a blue amorphous powder (9.8 mg, yield 95%). HPLC (system A1): $t_{\rm R} = 32.4$ min, purity > 95%. MS (MALDI-TOF, positive mode, CHCA matrix): m/z 1020.88 [M+H]⁺, 1042.86 [M+Na]⁺, calcd exact mass for C₅₃H₅₈IN₅O₆S 1020.05.

Synthesis of Ac-Cys(NIR5.5-1)-Asp-Glu-Val-Asp-Lys(NIR7.0-2)-NH₂ (25). Peptide Ac-Cys-Asp-Glu-Val-Asp-Lys(NIR7.0-2)-NH₂ 18 (3.4 mg, 2.3 µmol) was introduced into a Reacti-VialTM and dissolved in 600 μ L of sodium bicarbonate buffer (0.1 M, pH 8.5). 400 μ L of a solution of iodoacetyl derivative 24 (0.8 mg, 0.77 μ mol) in DMF was added. The reaction mixture was protected from light and stirred at room temperature for 2 h. The reaction was checked for completion by RP-HPLC (system A2) and purified by RP-HPLC (system B3, 3 injections, $t_{\rm R} = 30.0$ min). The product-containing fractions were lyophilised to give the peptide Ac-Cys(NIR5.5-2)-Asp-Glu-Val-Asp-Lys(NIR7.0-2)-NH₂ 25 as a blue-green amorphous powder. This fluorogenic caspase-3 substrate was found to be not soluble in aqueous buffers even after conversion into the triethylammonium salt. Consequently, stock solution of 25 was prepared in HPLC grade water (containing 10% DMSO) and UV-Visible quantification was achieved in EtOH at λ_{max} of the NIR7.0-2 by using the ε value 171 000 M⁻ cm⁻¹ (yield after RP-HPLC purification: 24%). HPLC (system A2): $t_{\rm R}$ = 41.5 min, purity > 95%. UV/Visible (water, 25°C): $\lambda_{max} = 646$ (broad) and 801 nm. UV-Visible (EtOH, 25°C): λ_{max} = 682 and 793 nm. MS (MALDI-TOF, positive mode, CHCA matrix): m/z 1711.16 $[M+H]^+$, 1734.16 $[M+Na]^+$, 1753.13 $[M+K]^+$, calcd exact mass for $C_{85}H_{109}N_{13}O_{21}S_2$ 1713.02.


-S2- MALDI-TOF mass spectrum of the fluorogenic substrate of caspase-3 protease 25^a , in the positive mode, $[M+H]^+$: m/z: calcd $C_{85}H_{109}N_{13}O_{21}S_2$ 1713.02, found 1711.16. Structures of peptide 26 and thiol NIR dye 21.


^{*a*}Loss of thiol NIR dye **21** occurred during the ionisation process.


-S3- Absorption spectra of probe 25 at 25°C (concentration 2.2 μ M). (a) in PBS. (b) in EtOH.

-S4- Emission spectra of probe 25 at 25°C (concentration 2.2 μ M) (a) Ex. λ = 670 nm (in PBS and EtOH). (b) Ex. λ = 750 nm (in PBS and EtOH).

-S5- Emission spectra of probe 19 at 25°C (concentration 2.6 μ M). Ex. λ = 780 nm (in PBS and DMSO).

